41 research outputs found

    Utilization of timed automata as a verification tool for real-time security protocols

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 85-92)Text in English; Abstract: Turkish and Englishxi, 92 leavesTimed Automata is an extension to the automata-theoretic approach to the modeling of real time systems that introduces time into the classical automata. Since it has been first proposed by Alur and Dill in the early nineties, it has become an important research area and been widely studied in both the context of formal languages and modeling and verification of real time systems. Timed automata use dense time modeling, allowing efficient model checking of time-sensitive systems whose correct functioning depend on the timing properties. One of these application areas is the verification of security protocols. This thesis aims to study the timed automata model and utilize it as a verification tool for security protocols. As a case study, the Neuman-Stubblebine Repeated Authentication Protocol is modeled and verified employing the time-sensitive properties in the model. The flaws of the protocol are analyzed and it is commented on the benefits and challenges of the model

    Re-verification of a Lip Synchronization Algorithm using robust reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm.This lip synchronization protocol is an interesting case because timing aspect are crucial for the correctness of the protocol. Several versions of the model are considered, with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Re-verification of a Lip Synchronization Protocol using Robust Reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper, we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm. This lip synchronization protocol is an interesting case because timing aspects are crucial for the correctness of the protocol. Several versions of the model are considered: with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Approximating Idealised Real-Time Specifications Using Time Bands

    Get PDF
    Timed specifications are often formalised at an absolute level of precision, which does not reflect the real world that the specifications model, i.e., in the real world, inputs cannot be sampled with absolute precision and physical hardware cannot react instantaneously. As a result the developed specifications can often become unimplementable. In this paper, we consider the time bands model which allows time to be structured into several layers of abstraction and relationships between bands to be formalised. This allows the timed specifications developed under idealised assumptions to be approximated using the time band in which the variables are sampled. We implement the approximated specifications using teleo-reactive programs embedded with time bands

    Validating plans with exogenous events

    Get PDF
    We are concerned with the problem of deciding the validity of a complex plan involving interacting continuous activity. In these situations there is a need to model and reason about the continuous processes and events that arise as a consequence of the behaviour of the physical world in which the plan is expected to execute. In this paper we describe how events, which occur as the outcome of uncontrolled physical processes, can be taken into account in determining whether a plan is valid with respect to the domain model. We do not consider plan generation issues in this paper but focus instead on issues in domain modelling and plan validation

    Quantitative testing

    Get PDF
    We investigate the problem of specification based testing with dense sets of inputs and outputs, in particular with imprecision as they might occur due to errors in measurements, numerical instability or noisy channels. Using quantitative transition systems to describe implementations and specifications, we introduce implementation relations that capture a notion of correctness “up to ε”, allowing deviations of implementation from the specification of at most ε. These quantitative implementation relations are described as Hausdorff distances between certain sets of traces. They are conservative extensions of the well-known ioco relation. We develop an on-line and an off-line algorithm to generate test cases from a requirement specification, modeled as a quantitative transition system. Both algorithms are shown to be sound and complete with respect to the quantitative implementation relations introduced

    Challenges in Timed Languages: From Applied Theory to Basic Theory

    Get PDF
    The Concurrency Column, by Luca Aceto. Partially based on the invited talk at FORMATS'03 workshopCurrent state and perspectives of development of the theory of timed languages are analyzed. A large list of open problems is suggested

    Robust Model-Checking of Linear-Time Properties in Timed Automata

    No full text
    International audienceFormal verification of timed systems is well understood, but their \emphimplementation is still challenging. Recent works by Raskin \emphet al. have brought out a model of parameterized timed automata that can be used to prove \emphimplementability of timed systems for safety properties. We define here a more general notion of robust model-checking for linear-time properties, which consists in verifying whether a property still holds even if the transitions are slightly delayed or expedited. We provide PSPACE algorithms for the robust model-checking of Büchi-like and LTL properties. We also verify bounded-response-time properties
    corecore