5,673 research outputs found

    Randomized Robust Subspace Recovery for High Dimensional Data Matrices

    Full text link
    This paper explores and analyzes two randomized designs for robust Principal Component Analysis (PCA) employing low-dimensional data sketching. In one design, a data sketch is constructed using random column sampling followed by low dimensional embedding, while in the other, sketching is based on random column and row sampling. Both designs are shown to bring about substantial savings in complexity and memory requirements for robust subspace learning over conventional approaches that use the full scale data. A characterization of the sample and computational complexity of both designs is derived in the context of two distinct outlier models, namely, sparse and independent outlier models. The proposed randomized approach can provably recover the correct subspace with computational and sample complexity that are almost independent of the size of the data. The results of the mathematical analysis are confirmed through numerical simulations using both synthetic and real data

    Provable Self-Representation Based Outlier Detection in a Union of Subspaces

    Full text link
    Many computer vision tasks involve processing large amounts of data contaminated by outliers, which need to be detected and rejected. While outlier detection methods based on robust statistics have existed for decades, only recently have methods based on sparse and low-rank representation been developed along with guarantees of correct outlier detection when the inliers lie in one or more low-dimensional subspaces. This paper proposes a new outlier detection method that combines tools from sparse representation with random walks on a graph. By exploiting the property that data points can be expressed as sparse linear combinations of each other, we obtain an asymmetric affinity matrix among data points, which we use to construct a weighted directed graph. By defining a suitable Markov Chain from this graph, we establish a connection between inliers/outliers and essential/inessential states of the Markov chain, which allows us to detect outliers by using random walks. We provide a theoretical analysis that justifies the correctness of our method under geometric and connectivity assumptions. Experimental results on image databases demonstrate its superiority with respect to state-of-the-art sparse and low-rank outlier detection methods.Comment: 16 pages. CVPR 2017 spotlight oral presentatio

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Local Subspace-Based Outlier Detection using Global Neighbourhoods

    Full text link
    Outlier detection in high-dimensional data is a challenging yet important task, as it has applications in, e.g., fraud detection and quality control. State-of-the-art density-based algorithms perform well because they 1) take the local neighbourhoods of data points into account and 2) consider feature subspaces. In highly complex and high-dimensional data, however, existing methods are likely to overlook important outliers because they do not explicitly take into account that the data is often a mixture distribution of multiple components. We therefore introduce GLOSS, an algorithm that performs local subspace outlier detection using global neighbourhoods. Experiments on synthetic data demonstrate that GLOSS more accurately detects local outliers in mixed data than its competitors. Moreover, experiments on real-world data show that our approach identifies relevant outliers overlooked by existing methods, confirming that one should keep an eye on the global perspective even when doing local outlier detection.Comment: Short version accepted at IEEE BigData 201

    Robust Orthogonal Complement Principal Component Analysis

    Full text link
    Recently, the robustification of principal component analysis has attracted lots of attention from statisticians, engineers and computer scientists. In this work we study the type of outliers that are not necessarily apparent in the original observation space but can seriously affect the principal subspace estimation. Based on a mathematical formulation of such transformed outliers, a novel robust orthogonal complement principal component analysis (ROC-PCA) is proposed. The framework combines the popular sparsity-enforcing and low rank regularization techniques to deal with row-wise outliers as well as element-wise outliers. A non-asymptotic oracle inequality guarantees the accuracy and high breakdown performance of ROC-PCA in finite samples. To tackle the computational challenges, an efficient algorithm is developed on the basis of Stiefel manifold optimization and iterative thresholding. Furthermore, a batch variant is proposed to significantly reduce the cost in ultra high dimensions. The paper also points out a pitfall of a common practice of SVD reduction in robust PCA. Experiments show the effectiveness and efficiency of ROC-PCA in both synthetic and real data
    corecore