491 research outputs found

    Towards fully automated deep-learning-based brain tumor segmentation: is brain extraction still necessary?

    Full text link
    State-of-the-art brain tumor segmentation is based on deep learning models applied to multi-modal MRIs. Currently, these models are trained on images after a preprocessing stage that involves registration, interpolation, brain extraction (BE, also known as skull-stripping) and manual correction by an expert. However, for clinical practice, this last step is tedious and time-consuming and, therefore, not always feasible, resulting in skull-stripping faults that can negatively impact the tumor segmentation quality. Still, the extent of this impact has never been measured for any of the many different BE methods available. In this work, we propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods. Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance. Moreover, we propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline. Our results show that this approach leads to a competitive performance at a fraction of the time. We conclude that, in contrast to the current paradigm, training tumor segmentation models on non-skull-stripped images can be the best option when high performance in clinical practice is desired.Comment: 15 pages, 9 figure

    Machine Learning Methods for Image Analysis in Medical Applications, from Alzheimer\u27s Disease, Brain Tumors, to Assisted Living

    Get PDF
    Healthcare has progressed greatly nowadays owing to technological advances, where machine learning plays an important role in processing and analyzing a large amount of medical data. This thesis investigates four healthcare-related issues (Alzheimer\u27s disease detection, glioma classification, human fall detection, and obstacle avoidance in prosthetic vision), where the underlying methodologies are associated with machine learning and computer vision. For Alzheimer’s disease (AD) diagnosis, apart from symptoms of patients, Magnetic Resonance Images (MRIs) also play an important role. Inspired by the success of deep learning, a new multi-stream multi-scale Convolutional Neural Network (CNN) architecture is proposed for AD detection from MRIs, where AD features are characterized in both the tissue level and the scale level for improved feature learning. Good classification performance is obtained for AD/NC (normal control) classification with test accuracy 94.74%. In glioma subtype classification, biopsies are usually needed for determining different molecular-based glioma subtypes. We investigate non-invasive glioma subtype prediction from MRIs by using deep learning. A 2D multi-stream CNN architecture is used to learn the features of gliomas from multi-modal MRIs, where the training dataset is enlarged with synthetic brain MRIs generated by pairwise Generative Adversarial Networks (GANs). Test accuracy 88.82% has been achieved for IDH mutation (a molecular-based subtype) prediction. A new deep semi-supervised learning method is also proposed to tackle the problem of missing molecular-related labels in training datasets for improving the performance of glioma classification. In other two applications, we also address video-based human fall detection by using co-saliency-enhanced Recurrent Convolutional Networks (RCNs), as well as obstacle avoidance in prosthetic vision by characterizing obstacle-related video features using a Spiking Neural Network (SNN). These investigations can benefit future research, where artificial intelligence/deep learning may open a new way for real medical applications

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book
    • …
    corecore