5 research outputs found

    Self-Supervised Siamese Learning on Stereo Image Pairs for Depth Estimation in Robotic Surgery

    Full text link
    Robotic surgery has become a powerful tool for performing minimally invasive procedures, providing advantages in dexterity, precision, and 3D vision, over traditional surgery. One popular robotic system is the da Vinci surgical platform, which allows preoperative information to be incorporated into live procedures using Augmented Reality (AR). Scene depth estimation is a prerequisite for AR, as accurate registration requires 3D correspondences between preoperative and intraoperative organ models. In the past decade, there has been much progress on depth estimation for surgical scenes, such as using monocular or binocular laparoscopes [1,2]. More recently, advances in deep learning have enabled depth estimation via Convolutional Neural Networks (CNNs) [3], but training requires a large image dataset with ground truth depths. Inspired by [4], we propose a deep learning framework for surgical scene depth estimation using self-supervision for scalable data acquisition. Our framework consists of an autoencoder for depth prediction, and a differentiable spatial transformer for training the autoencoder on stereo image pairs without ground truth depths. Validation was conducted on stereo videos collected in robotic partial nephrectomy.Comment: A two-page short report to be presented at the Hamlyn Symposium on Medical Robotics 2017. An extension of this work is on progres

    A PROMPT METHODOLOGY TO GEOREFERENCE COMPLEX HYPOGEA ENVIRONMENTS

    Get PDF

    The Challenge of Augmented Reality in Surgery

    Get PDF
    Imaging has revolutionized surgery over the last 50 years. Diagnostic imaging is a key tool for deciding to perform surgery during disease management; intraoperative imaging is one of the primary drivers for minimally invasive surgery (MIS), and postoperative imaging enables effective follow-up and patient monitoring. However, notably, there is still relatively little interchange of information or imaging modality fusion between these different clinical pathway stages. This book chapter provides a critique of existing augmented reality (AR) methods or application studies described in the literature using relevant examples. The aim is not to provide a comprehensive review, but rather to give an indication of the clinical areas in which AR has been proposed, to begin to explain the lack of clinical systems and to provide some clear guidelines to those intending pursue research in this area

    Ultrasound-Augmented Laparoscopy

    Get PDF
    Laparoscopic surgery is perhaps the most common minimally invasive procedure for many diseases in the abdomen. Since the laparoscopic camera provides only the surface view of the internal organs, in many procedures, surgeons use laparoscopic ultrasound (LUS) to visualize deep-seated surgical targets. Conventionally, the 2D LUS image is visualized in a display spatially separate from that displays the laparoscopic video. Therefore, reasoning about the geometry of hidden targets requires mentally solving the spatial alignment, and resolving the modality differences, which is cognitively very challenging. Moreover, the mental representation of hidden targets in space acquired through such cognitive medication may be error prone, and cause incorrect actions to be performed. To remedy this, advanced visualization strategies are required where the US information is visualized in the context of the laparoscopic video. To this end, efficient computational methods are required to accurately align the US image coordinate system with that centred in the camera, and to render the registered image information in the context of the camera such that surgeons perceive the geometry of hidden targets accurately. In this thesis, such a visualization pipeline is described. A novel method to register US images with a camera centric coordinate system is detailed with an experimental investigation into its accuracy bounds. An improved method to blend US information with the surface view is also presented with an experimental investigation into the accuracy of perception of the target locations in space
    corecore