6,164 research outputs found

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    A Multi-User, Single-Authentication Protocol for Smart Grid Architectures

    Get PDF
    open access articleIn a smart grid system, the utility server collects data from various smart grid devices. These data play an important role in the energy distribution and balancing between the energy providers and energy consumers. However, these data are prone to tampering attacks by an attacker, while traversing from the smart grid devices to the utility servers, which may result in energy disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm is proposed for preserving demand–response security in a smart grid. The proposed mechanism also provides a fine-grained access control feature where the utility server can only access a limited number of smart grid devices. The initial authentication between the utility server and smart grid device in a group involves a single public key operation, while the subsequent authentications with the same device or other devices in the same group do not need a public key operation. This reduces the overall computation and communication overheads and takes less time to successfully establish a secret session key, which is used to exchange sensitive information over an unsecured wireless channel. The resilience of the proposed algorithm is tested against various attacks using formal and informal security analysis

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    The Elgamal Cryptosystem is better than Th RSA Cryptosystem for Mental Poker

    Get PDF
    Cryptosystems are one of the most important parts of secure online poker card games. However, there is no research comparing the RSA Cryptosystem (RC) and Elgamal Cryptosystem (EC) for mental poker card games. This paper compares the RSA Cryptosystem and Elgamal Cryptosystem implementations of mental poker card games using distributed key generation schemes. Each implementation is based on a joint encryption/decryption of individual cards. Both implementations use shared private key encryption/decryption schemes and neither uses a trusted third party (TTP). The comparison criteria will be concentrated on the security and computational complexity of the game, collusions among the players and the debate between the discrete logarithm problem (DLP) and the factoring problem (FP) for the encryption/decryption schemes. Under these criteria, the comparison results demonstrate that the Elgamal Cryptosystem has better efficiency and effectiveness than RSA for mental poker card games

    Efficient and secure ranked multi-keyword search on encrypted cloud data

    Get PDF
    Information search and document retrieval from a remote database (e.g. cloud server) requires submitting the search terms to the database holder. However, the search terms may contain sensitive information that must be kept secret from the database holder. Moreover, the privacy concerns apply to the relevant documents retrieved by the user in the later stage since they may also contain sensitive data and reveal information about sensitive search terms. A related protocol, Private Information Retrieval (PIR), provides useful cryptographic tools to hide the queried search terms and the data retrieved from the database while returning most relevant documents to the user. In this paper, we propose a practical privacy-preserving ranked keyword search scheme based on PIR that allows multi-keyword queries with ranking capability. The proposed scheme increases the security of the keyword search scheme while still satisfying efficient computation and communication requirements. To the best of our knowledge the majority of previous works are not efficient for assumed scenario where documents are large files. Our scheme outperforms the most efficient proposals in literature in terms of time complexity by several orders of magnitude

    Enhancing the security of classical communication with post-quantum authenticated-encryption schemes for the quantum key distribution

    Get PDF
    This research aims to establish a secure system for key exchange by using post-quantum cryptography (PQC) schemes in the classic channel of quantum key distribution (QKD). Modern cryptography faces significant threats from quantum computers, which can solve classical problems rapidly. PQC schemes address critical security challenges in QKD, particularly in authentication and encryption, to ensure the reliable communication across quantum and classical channels. The other objective of this study is to balance security and communication speed among various PQC algorithms in different security levels, specifically CRYSTALS-Kyber, CRYSTALS-Dilithium, and Falcon, which are finalists in the National Institute of Standards and Technology (NIST) Post-Quantum Cryptography Standardization project. The quantum channel of QKD is simulated with Qiskit, which is a comprehensive and well-supported tool in the field of quantum computing. By providing a detailed analysis of the performance of these three algorithms with Rivest–Shamir–Adleman (RSA), the results will guide companies and organizations in selecting an optimal combination for their QKD systems to achieve a reliable balance between efficiency and security. Our findings demonstrate that the implemented PQC schemes effectively address security challenges posed by quantum computers, while keeping the the performance similar to RSA
    • …
    corecore