97 research outputs found

    Towards Imperceptible and Robust Adversarial Example Attacks against Neural Networks

    Full text link
    Machine learning systems based on deep neural networks, being able to produce state-of-the-art results on various perception tasks, have gained mainstream adoption in many applications. However, they are shown to be vulnerable to adversarial example attack, which generates malicious output by adding slight perturbations to the input. Previous adversarial example crafting methods, however, use simple metrics to evaluate the distances between the original examples and the adversarial ones, which could be easily detected by human eyes. In addition, these attacks are often not robust due to the inevitable noises and deviation in the physical world. In this work, we present a new adversarial example attack crafting method, which takes the human perceptual system into consideration and maximizes the noise tolerance of the crafted adversarial example. Experimental results demonstrate the efficacy of the proposed technique.Comment: Adversarial example attacks, Robust and Imperceptible, Human perceptual system, Neural Network

    Generating Adversarial Examples with Adversarial Networks

    Full text link
    Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.Comment: Accepted to IJCAI201
    • …
    corecore