22,652 research outputs found

    Field programmable Gate Array based Real Time Object Tracking using Partial Least Square Analysis

    Get PDF
    In this paper, we proposed an object tracking algorithm in real time implementation of moving object tracking system using Field programmable gate array (FPGA). Object tracking is considered as a binary classification problem and one of the approaches to this problem is that to extract appropriate features from the appearance of the object based on partial least square (PLS) analysis method, which is a low dimension reduction technique in the subspace. In this method, the adaptive appearance model integrated with PLS analysis is used for continuous update of the appearance change of the target over time. For robust and efficient tracking, particle filtering is used in between every two consecutive frames of the video. This has implemented using Cadence and Virtuoso software integrated environment with MATLAB. The experimental results are performed on challenging video sequences to show the performance of the proposed tracking algorithm using FPGA in real time

    A COLOR FEATURES-BASED METHOD FOR OBJECT TRACKING EMPLOYING A PARTICLE FILTER ALGORITHM

    Get PDF
    We proposed a method for object tracking employing a particle filter based on color feature method. A histogramā€based framework is used to describe the features. Histograms are useful because they have property that they allow changes in the object appearance while the histograms remain the same. Particle filtering is used because it is very robust for nonā€linear and nonā€Gaussian dynamic state estimation problems and performs well when clutter and occlusions are present on the image. Bhattacharyya distance is used to weight the samples in the particle filter by comparing each sampleā€™s histogram with a specified target model and it makes the measurement matching and sampleā€™s weight updating more reasonable. The method is capable to track successfully the moving object in different outdoor environment with and without initial positions information, and also, capable to track the moving object in the presence of occlusion using an appearance condition. In this paper, we propose a color featuresā€based method for object tracking based on the particle filters. The experimental results and data show the feasibility and the effectiveness of our method.International Conference on Power Control and Optimization, 1-3, June 2009, Bali, Indonesi

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page

    Bags of Affine Subspaces for Robust Object Tracking

    Full text link
    We propose an adaptive tracking algorithm where the object is modelled as a continuously updated bag of affine subspaces, with each subspace constructed from the object's appearance over several consecutive frames. In contrast to linear subspaces, affine subspaces explicitly model the origin of subspaces. Furthermore, instead of using a brittle point-to-subspace distance during the search for the object in a new frame, we propose to use a subspace-to-subspace distance by representing candidate image areas also as affine subspaces. Distances between subspaces are then obtained by exploiting the non-Euclidean geometry of Grassmann manifolds. Experiments on challenging videos (containing object occlusions, deformations, as well as variations in pose and illumination) indicate that the proposed method achieves higher tracking accuracy than several recent discriminative trackers.Comment: in International Conference on Digital Image Computing: Techniques and Applications, 201

    Information theoretic approach to robust multi-Bernoulli sensor control

    Full text link
    A novel sensor control solution is presented, formulated within a Multi-Bernoulli-based multi-target tracking framework. The proposed method is especially designed for the general multi-target tracking case, where no prior knowledge of the clutter distribution or the probability of detection profile are available. In an information theoretic approach, our method makes use of R\`{e}nyi divergence as the reward function to be maximized for finding the optimal sensor control command at each step. We devise a Monte Carlo sampling method for computation of the reward. Simulation results demonstrate successful performance of the proposed method in a challenging scenario involving five targets maneuvering in a relatively uncertain space with unknown distance-dependent clutter rate and probability of detection
    • ā€¦
    corecore