A novel sensor control solution is presented, formulated within a
Multi-Bernoulli-based multi-target tracking framework. The proposed method is
especially designed for the general multi-target tracking case, where no prior
knowledge of the clutter distribution or the probability of detection profile
are available. In an information theoretic approach, our method makes use of
R\`{e}nyi divergence as the reward function to be maximized for finding the
optimal sensor control command at each step. We devise a Monte Carlo sampling
method for computation of the reward. Simulation results demonstrate successful
performance of the proposed method in a challenging scenario involving five
targets maneuvering in a relatively uncertain space with unknown
distance-dependent clutter rate and probability of detection