971 research outputs found

    Slender PUF Protocol: A lightweight, robust, and secure authentication by substring matching

    Get PDF
    We introduce Slender PUF protocol, an efficient and secure method to authenticate the responses generated from a Strong Physical Unclonable Function (PUF). The new method is lightweight, and suitable for energy constrained platforms such as ultra-low power embedded systems for use in identification and authentication applications. The proposed protocol does not follow the classic paradigm of exposing the full PUF responses (or a transformation of the full string of responses) on the communication channel. Instead, random subsets of the responses are revealed and sent for authentication. The response patterns are used for authenticating the prover device with a very high probability.We perform a thorough analysis of the method’s resiliency to various attacks which guides adjustment of our protocol parameters for an efficient and secure implementation. We demonstrate that Slender PUF protocol, if carefully designed, will be resilient against all known machine learning attacks. In addition, it has the great advantage of an inbuilt PUF error tolerance. Thus, Slender PUF protocol is lightweight and does not require costly additional error correction, fuzzy extractors, and hash modules suggested in most previously known PUF-based robust authentication techniques. The low overhead and practicality of the protocol are confirmed by a set of hardware implementation and evaluations

    Authentication Algorithm for Portable Embedded Systems using PUFs

    Get PDF
    Physical Unclonable Functions (PUFs) are circuits that exploit chip-unique features to be used as signatures which can be used as good silicon biometrics. These signatures are based on semiconductor fabrication variations that are very difficult to control or reproduce. These chipunique signatures together with strong challenge-response authentication algorithm can be used to authenticate and secure chips. This paper expands the security avenues covered by PUF and FPGAs by introducing a new class of concept called 201C;Soft PUFs.201D; This scheme propose robust challenge- response authentication solution based on a PUF device that provides stronger security guarantees to the user than what previously could be achieved. By exploiting the silicon uniqueness of each FPGA device and incorporating a special authentication algorithms in existing FPGA fabric, FPGA based embedded systems can be used for new security-oriented and network- oriented applications that were not previously possible or thought of
    • …
    corecore