854 research outputs found

    Scalable Multiagent Coordination with Distributed Online Open Loop Planning

    Full text link
    We propose distributed online open loop planning (DOOLP), a general framework for online multiagent coordination and decision making under uncertainty. DOOLP is based on online heuristic search in the space defined by a generative model of the domain dynamics, which is exploited by agents to simulate and evaluate the consequences of their potential choices. We also propose distributed online Thompson sampling (DOTS) as an effective instantiation of the DOOLP framework. DOTS models sequences of agent choices by concatenating a number of multiarmed bandits for each agent and uses Thompson sampling for dealing with action value uncertainty. The Bayesian approach underlying Thompson sampling allows to effectively model and estimate uncertainty about (a) own action values and (b) other agents' behavior. This approach yields a principled and statistically sound solution to the exploration-exploitation dilemma when exploring large search spaces with limited resources. We implemented DOTS in a smart factory case study with positive empirical results. We observed effective, robust and scalable planning and coordination capabilities even when only searching a fraction of the potential search space

    Adapting to the Shifting Intent of Search Queries

    Full text link
    Search engines today present results that are often oblivious to abrupt shifts in intent. For example, the query `independence day' usually refers to a US holiday, but the intent of this query abruptly changed during the release of a major film by that name. While no studies exactly quantify the magnitude of intent-shifting traffic, studies suggest that news events, seasonal topics, pop culture, etc account for 50% of all search queries. This paper shows that the signals a search engine receives can be used to both determine that a shift in intent has happened, as well as find a result that is now more relevant. We present a meta-algorithm that marries a classifier with a bandit algorithm to achieve regret that depends logarithmically on the number of query impressions, under certain assumptions. We provide strong evidence that this regret is close to the best achievable. Finally, via a series of experiments, we demonstrate that our algorithm outperforms prior approaches, particularly as the amount of intent-shifting traffic increases.Comment: This is the full version of the paper in NIPS'0
    • …
    corecore