5 research outputs found

    A network tomography approach for traffic monitoring in smart cities

    Get PDF
    Various urban planning and managing activities required by a Smart City are feasible because of traffic monitoring. As such, the thesis proposes a network tomography-based approach that can be applied to road networks to achieve a cost-efficient, flexible, and scalable monitor deployment. Due to the algebraic approach of network tomography, the selection of monitoring intersections can be solved through the use of matrices, with its rows representing paths between two intersections, and its columns representing links in the road network. Because the goal of the algorithm is to provide a cost-efficient, minimum error, and high coverage monitor set, this problem can be translated into an optimization problem over a matroid, which can be solved efficiently by a greedy algorithm. Also as supplementary, the approach is capable of handling noisy measurements and a measurement-to-path matching. The approach proves a low error and a 90% coverage with only 20% nodes selected as monitors in a downtown San Francisco, CA topology --Abstract, page iv

    Adaptive Loss Inference Using Unicast End-to-End Measurements

    Get PDF
    We address the problem of inferring link loss rates from unicast end-to-end measurements on the basis of network tomography. Because measurement probes will incur additional traffic overheads, most tomography-based approaches perform the inference by collecting the measurements only on selected paths to reduce the overhead. However, all previous approaches select paths offline, which will inevitably miss many potential identifiable links, whose loss rates should be unbiasedly determined. Furthermore, if element failures exist, an appreciable number of the selected paths may become unavailable. In this paper, we creatively propose an adaptive loss inference approach in which the paths are selected sequentially depending on the previous measurement results. In each round, we compute the loss rates of links that can be unbiasedly determined based on the current measurement results and remove them from the system. Meanwhile, we locate the most possible failures based on the current measurement outcomes to avoid selecting unavailable paths in subsequent rounds. In this way, all identifiable and potential identifiable links can be determined unbiasedly using only 20% of all available end-to-end measurements. Compared with a previous classical approach through extensive simulations, the results strongly confirm the promising performance of our proposed approach

    Robust Network Tomography in the Presence of Failures

    No full text
    corecore