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ABSTRACT

Various urban planning andmanaging activities required by a Smart City are feasible

because of traffic monitoring. As such, the thesis proposes a network tomography-based

approach that can be applied to road networks to achieve a cost-efficient, flexible, and

scalable monitor deployment. Due to the algebraic approach of network tomography, the

selection of monitoring intersections can be solved through the use of matrices, with its rows

representing paths between two intersections, and its columns representing links in the road

network. Because the goal of the algorithm is to provide a cost-efficient, minimum error, and

high coverage monitor set, this problem can be translated into an optimization problem over

a matroid, which can be solved efficiently by a greedy algorithm. Also as supplementary, the

approach is capable of handling noisy measurements and a measurement-to-path matching.

The approach proves a low error and a 90% coverage with only 20% nodes selected as

monitors in a downtown San Francisco, CA topology.
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SECTION

1. INTRODUCTION

Road traffic monitoring is a fundamental component of future Smart Cities. Urban

planners need dynamic traffic data to control traffic flow and construct road network. Effec-

tive and efficient trafficmonitoring approaches are in need to inquire information such as the

average traveling time from one location to another. Current traffic monitoring commonly

relies on crowdsourcing or deploying sensors. The thesis presents a network tomography

based camera deployment strategy while considering cost, coverage, and accuracy.

Scientists have investigated network tomography as a useful tool to estimate internal

network behavior, such as delay distribution and packet loss rate [1]. It is suitable for large

and diverse networks. In particular, a subset of nodes that located at the edge of the network

is selected as monitors. Monitors exchange probing packets between each other and collect

end-to-end measurements along paths. Within each time window, a control center collects

these measurements centrally, and linear algebraic methods are applied to infer link-level

delay. If solves the linear system infers the delay of an individual link successfully, the

link is identifiable. Link identifiability depends on network topology, selected monitors,

gathered measurements.

To adopt network tomography from communication networks to road networks, we

use nodes to present road intersections and edges for roads. Selected intersections are

equipped with cameras to identify vehicles and save its pass-by timing. An end-to-end

measurement is complete and recorded once the same vehicle reaches another monitoring

location. The delay is the average traveling time along that path. Assume the cost of



2

selecting a node as a monitor varies by locations. The goal of the research is to maximize

identifiability while minimizing the deployment cost and inference error. The following

paper addressed in details an algorithm to solve the optimization problem.

Network tomography is a promising approach for road traffic monitoring with chal-

lenges. For example, the difference in driving speed leads to noise in measurements. The

challenge is formulated as a linear optimization problem. Finding a minimum margin of

noise and solving linear inequalities minimize the error due to noisy inputs. Also, there are

uncertainty and unknown in determining the driving path of a vehicle since it is uncontrol-

lable by the probing system. An algorithm assigning measurements to paths is designed

inspired by Kernighan- Lin graph partitioning algorithm [3].

To evaluate the performance of designed algorithms, experiments are applied to both

downtown San Francisco networks and synthetic QuadTree-based networks. The solutions

retrieved by the proposed network tomography approach are compared to the results of

weighted vertex cover [2] and k-means.
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ABSTRACT

Traffic monitoring is a crucial enabler for several planning and management activities of

a Smart City. However, traditional techniques are often not cost efficient, flexible, and

scalable. This paper proposes an approach to traffic monitoring that does not rely on probe

vehicles, nor requires vehicle localization through GPS. Conversely, it exploits just a limited

number of cameras placed at road intersections to measure car end-to-end traveling times.

We model the problem within the theoretical framework of network tomography, to infer

the traveling times of all individual road segments in the road network. We specifically

deal with the potential presence of noisy measurements, and the unpredictability of vehicles

paths. Moreover, we address the issue of optimally placing the monitoring cameras in

order to maximize coverage, while minimizing the inference error, and the overall cost. We

provide an extensive experimental assessment on the topology of downtown San Francisco,

CA, using real measurements obtained through theGoogleMapsAPIs, as well as on realistic

synthetic networks. Our approach provides a very low error in estimating the traveling times

of more than 95% of all roads even when as few as 20% of road intersections are equipped

with cameras.

Keywords: traffic monitoring, network tomography, smart cities

1. INTRODUCTION

The Smart City paradigm is continuously gaining momentum, also thanks to innova-

tive applications for the efficient management of a city’s assets leveraged by the availability

of pervasive monitoring devices. According to the Smart City Council [32], efficient traffic

monitoring is a key enabler to improve urban livability, and sustainability by optimizing

traffic flow, road construction, and urban planning in general [3].

Collecting continuous and detailed traffic information is challenging. Previous work

in this area has often relied on the deployment of traffic sensors, such as inductive loop

detectors embedded in pavements [30], or cameras placed at strategic spots [7], but those
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approaches incur in high deployment and maintenance cost, and can only provide local

information. Other strategies have been proposed that make use of probe vehicles, such

as taxis, buses, and Unmanned Aerial Vehicles [8, 9, 16]; however, probe vehicles do not

represent the actual traffic flow and are not pervasively available in many cities. Crowd

sensing technologies, such as smartphones, have also been proposed for the evaluation of

urban dynamics [33]; although potentially effective, these approaches may pose a threat for

the user’s privacy and can be the target of cyber attacks [1].

An interesting alternative approach that has been discussed in the literature is based

on Network Tomography, an efficient theoretical tool to estimate the internal state of a

network by relying only on end-to-end measurements [4]. This framework has been tradi-

tionally investigated in the context of computer networks, but it has also been applied to

other contexts, including vehicular traffic estimation [27, 31]. A limited number of monitors

are coupled to nodes at the edge of the network so that they can exchange probing packets to

collect end-to-end measurements of the network paths. The end-to-end measurements are

related to the unknown individual link measurements by solving a linear system of equa-

tions. Clearly, monitors need to be strategically placed in order to maximize the number of

identifiable links, i.e., the number of links for which a unique solution exists.

In this paper, we use network tomography to devise a novel approach for vehicular

traffic monitoring in Smart Cities. We assume that cameras are statically placed at few

selected road intersections so that they will play the role of monitors in the network tomog-

raphy terminology. Similarly, cars traversing the roads between pairs of cameras represent

the probing packets. At each of the monitored intersections, images of car license plates

are captured and sent to a Centralized Traffic Control Center (TCC) for analysis, so that the

corresponding end-to-end traveling times may be inferred. The TCC constructs and solves

an optimization problem to infer the traffic conditions on all individual roads segments for

which only end-to-end traveling times had initially been collected.
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The application of Network Tomography to vehicular traffic is not straightforward,

and several challenges need to be addressed. Specifically, in communication networks probe

packets are assumed to follow a predefined (possibly source-assigned) path [4]. Predefined

paths apparently do not hold for vehicles, which are entirely independent, and may very well

follow multiple paths between any pair of cameras. Besides, end-to-end traveling times are

affected by non-negligible noise, which might make the resulting linear system impossible.

To address those issues, we provide theoretical proofs that allow us to formulate

an optimization problem for the camera placement problem to obtain maximum coverage

and minimum error while minimizing the cost of deploying cameras. Furthermore, we

formulate a linear optimization problem to minimize the margin of error for measurements,

so that it is possible to solve the linear system. Finally, we design a greedy approach inspired

by the Kernighan-Lin graph partitioning algorithm [17] to assign end-to-end measurements

to paths between cameras.

We test our approach on real network topologies of the downtown San Francisco

area and generate realistic traveling times for cars over such topologies by a script based on

the Google Maps API [12]. Our results show that our approach can cover more than 95%

of the road network when as few as 20% of road intersections are equipped with cameras.

2. RELATEDWORK

Traditional approaches to urban traffic monitoring rely on the city infrastructure to

gather information about road conditions and usage; for instance, data related to traffic flow

is often directly measured through inductive loop detectors embedded in pavements [30],

or inferred by cameras placed at strategic spots, such as road intersections [7]. Even though

extensive deployment may be devised, such approaches are not very cost-effective, and can

hardly obtain pervasive coverage.
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Other strategies have been proposed that require some form of collaboration on part

of the involved entities, either through devices installed on board of commercial or public

transportation vehicles, such as taxis or buses; the authors of [8], for instance, describe a

system for real-time estimate of the average speed of traffic through GPS sensors installed in

the public transportation fleet of a Greek city. Direct control over the monitoring equipment

clearly allows for more flexibility; however bus routes, for instance, are not necessarily

representative of the general traffic conditions due to dedicated routes, frequent stops, and

so on.

Recently, the use of a more advanced technology has been proposed; a system

employing Vehicular Sensor Networks for traffic estimation and optimization has been

proposed in [9]. In this approach, probing vehicles that equipped with on-board units

play the role of mobile sensors. They traverse the city and sense traffic condition to form

centralized traffic matrix. By planning the path for some probing vehicles according to

sample-error correlation and sampling rules, the uneven sampling issue caused by using

public transportation vehicles is solved. Afterward, to reconstruct un-sampled data, a matrix

completion based estimation method can be applied to the uniform randomly sampled traffic

matrix.

In addition, another advanced technology, the use of Unmanned Aerial Vehicles

(UAVs) for real-time traffic monitoring and management is surveyed in [16]. UAVs serves

a border range of traffic monitoring requirements, which is not limited to traffic conditions.

It can react in real-time to emergency and congestion. The inherent drawback of such

approaches is that an extensive investment needs to be made, which can be prohibitively

expensive and might make testing impractical.

Finally, an alternative line of research has suggested the use of crowd sensing

technologies for the evaluation of urban dynamics. For example, using smartphones as

probes to perform traffic detection [33]. In this particular approach, traffic monitoring also

relies on existed mobile cellular network infrastructure. Both entering cell and exiting
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cell reveal location and timing information. As limitations, spatial accuracy and time-lag

problemneed to be concerned for such system. Also, crowd sensing, in general, impose extra

costs to users, necessarily require user-provided information, which can be manipulated,

and may also pose a threat with regards to users’ privacy.

Our goals set our approach apart from those proposals. First of all, no explicit

collaboration from the vehicles is assumed, that merely act as "passive" probes, and we

do not require cars to be equipped with tracking devices, nor we assume any explicit

collaborations from the users. We instead chose to rely on the theoretical grounds provided

by network tomography [13, 19, 26, 34]. The authors of [13] studied network tomography

to identify constant and additive link metrics, and it can be done on any network with three-

edge connectivity by using a single monitor and its monitoring cycles. A probing nodes

selection algorithm under dynamic routing is presented in [19]. The algorithm computes

the monitor-able edge set for each candidate node under all possible routing protocols, and

then it discards some candidate nodes to form a subset of remaining probing nodes, which

can still obtain a full edge coverage in a given network. Instead of probing nodes selection,

[34] addressed a path selection algorithm, and a set of paths is evaluated according to the

expected rank of the linear system in the presence of network failures.

Traditional approaches in this field have been proven successful in reconstructing

the set of all end-to-end measurements by probing a basis of paths determined by rank

decomposition techniques [36]. Nevertheless, these approaches are designed for internet

traffic on communication networks, and probe packets are assumed to be source routed.

This assumption does not hold in our context, where drivers are free to choose their path.

Only a few papers consider network tomography applied to vehicular traffic moni-

toring, but these papers do not deal with the placement of cameras nor the presence of noisy

measurements [21, 31]. For example, [31] compared the monitoring quality of individuals

sensor with the performance of multi-sensor cooperated. In that case, network tomography

is applied to data given by sensors located at Seattle area to produce traffic flow informa-
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tion. [21] reviewed network tomography related applications and developments. The survey

covers both active routing and passive routing, along with two standard approaches, node

oriented and path oriented. Traffic monitoring is addressed as a particular application for

passive routing in the paper, but it concentrates on the routing matrix estimation problem

for solving linear equalities.

In [26], a linear programming formulation is proposed in the context of network

tomography to maximize the load carried on the network. This formulation differs from the

objectives and constraints of the optimization problems studied in this paper, and therefore

cannot be directly compared.

Artificial Intelligence approaches to infer individual road segment delays given

some, possibly noisy, traveling times obtained from cameras have been proposed in [14, 15,

27]. These approaches are based on kernel ridge regression [15] and inverse Markov chains

[14, 27]. However, these solutions do not address the placement of cameras at intersections

to obtain the end-to-end delays, and therefore cannot be directly compared to ours.

Overall, our framework advances previously proposed approaches by comprehen-

sively solving the challenges that arise by applying network tomography to vehicular net-

works, to provide a cost-efficient, flexible and accurate way for traffic monitoring in Smart

Cities.

3. BACKGROUND ON NETWORK TOMOGRAPHY

Network tomography was originally designed for communication networks, such

as the Internet, to infer the internal network state through end-to-end measurements taken

by monitors, typically strategically placed at the edge of the network [24]. A network is

modeled as an undirected graph G = (V, E), where V is the set of nodes, and E is the set of

links. Some of the nodes are selected asmonitors andwill exchange probing packets in order

collect end-to-end measurements of the metric of interest (e.g. the overall delay, or packet

loss, across the path between two monitors). With reference to the toy example shown
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in Figure 1, monitor nodes are indicated by shadowed circles, and thick lines highlight

three of the possible paths between any pair of such monitors, namely p1(m1,m3) = {l1, l7},

p2(m1,m9) = {l1, l15}, and p3(m9,m3) = {l15, l7}.

The fundamental assumption is the additive nature of the metric to be inferred. As

an example, the delay of an end-to-end path is the sum of the delays of its links. If we let

bi indicate the measurement obtained by probing path i, and by x j the (yet unknown) delay

on link j th, measurements collected on the path between monitors m1 and m9 in Figure 1

would be expressed as: x1 + x15 = b1.

In general, let P = {p1, p2, ..., p|P |} represent the set of probing paths between

monitors. The relation between paths and links is represented by a binary matrix R, of size

|P | × |E |, where each row refers to a specific probing path. More specifically, element (i, j)

of matrix R is set to 1 if link l j belongs to path pi, and to 0 otherwise. The end-to-end

measurements are stored in a 1 × |P | vector b, whose elements bi represent the end-to-end

measurements over path pi.

Hence, if we let x j represent the delay along link l j , then the overall delay on path pi

may be expressed as
∑|E |

j=1 ri j x j = bi. We can easily extend this over all paths, and formulate

the following linear system:

Rx = b (1)

where x represents the individual link measurements. By solving the linear system, the

value of x is inferred.

In Figure 1, nodes 1 and 9 are selected as monitors. Adding node 3, and solving the

corresponding linear system would completely determine the traveling times on all involved

links which are thus said to be identifiable. Only a limited set of monitors was used. Node

5, in particular, was not selected as a monitor, so no camera would need to be deployed at

the corresponding road intersection. It is worth noting that a different choice of monitors,

covering a larger part of the network, however, does not necessarily improve identifiability;

for instance, withmonitors {1, 4, 9} and paths p1(m1,m4) = {l1, l7, l9}, p2(m1,m9) = {l1, l15},
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1

2 3 4

5 6 7

8 9 10

l1 l2 l3

l4 l5

l6

l7 l8

l9

l10 l11

l12 l13

l14

l15 l16

l17

l18 l19



l1 + l7 + l9 = b1

l1 + l2 + l8 + l9 = b2

l1 + l15 = b3

l15 + l7 + l9 = b4

l16 + l8 + l9 = b5

R =


1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0


Figure 1. A sample network with 10 nodes and 19 links; the linear system for the choice of
nodes {1, 4, 9} as monitors, and multiple possible paths, and the corresponding matrix.

and p3(m9,m4) = {l15, l7, l9}, the system cannot produce a unique solution for links l7 and l9.

Considering additional paths would not guarantee an improvement in identifiability either.

Several works focused on monitor placement and path selection to maximize identifiability

in communication networks [24, 34]. However, applying network tomography to vehicular

networks introduces novel and unique challenges.

4. A FRAMEWORK FOR VEHICULAR TRAFFIC MONITORING BASED ON
NETWORK TOMOGRAPHY

The goal of our framework is to exploit network tomography to provide an accurate

estimation of the average traveling time for each road segment in a road network relying

only on end-to-end measurements detected by cameras placed at road intersections. To this

purpose, we begin by stating our model and assumptions, and then describe the three main

modules of our framework. Table 1 summarizes the relevant notation used in the paper.
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Table 1. Summary of relevant notation.

Symbol Description
G =

(V, E)
Road network G, E road segments and V inter-
sections.

V ′ ⊆ V Set of candidate intersections for camera place-
ment.

M ⊆ V ′ Set of selected intersections for camera place-
ment.

cm Cost of placing a camera at intersection m ∈ V .
l ∈ E Road segment, or link.
xl, x Traveling time for link l, vector of link traveling

times.
bi, b Traveling time for path pi , vector of path trav-

eling times.
P Set of paths between the monitors in V ′.
R Path matrix, R[i, j] = 1 if lj belongs to pi , 0

otherwise.
Ps,d Set of paths between cameras ms,md ∈ M
Ts,d Set of measurements collected by cameras

ms,md ∈ M
Ti Set ofmeasurements assigned to path pi ∈ Ps,d

4.1. MODEL AND ASSUMPTIONS. Given the map of the Smart City’s road

network, we create a graph G = (V, E) where V is the set of nodes representing road

intersections, and E the set of road segments connecting them. In the following we use

the term “road intersection” and “node” interchangeably; similarly, we use “road segment”

and “link” as synonyms. With no loss of generality, we also assume that all links are

symmetrical. Each road segment l ∈ E is characterized by an average traveling time xl ,

which represents the time for a car to traverse the link l, averaged over several measurements

in order to account for variability in travel speed.

Our only requirement in terms of hardware is that a limited number of cameras are

deployed at road intersections to collect the images of license plates belonging to cars going

through that intersection. We do not concern ourselves here specifically with the issue of

automatic detection of license plates, as this is a well-investigated problem in image analysis

and can be performed with very high accuracy [10].
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We assume that cameras can be deployed at a subset V ′ ⊆ V of all possible inter-

sections. For each intersection m ∈ V ′ the cost of placing a camera is cm. The actual set

M ⊆ V ′ of intersections where cameras are placed is determined by the approach discussed

in Section 4.2. If we consider a pair of cameras deployed at intersections m1,m2 ∈ M , as a

vehicle passes through m1 and m2 the corresponding time stamps are sent to the TCC which

can thus compute the traveling time for that specific vehicle.

4.2. CAMERA PLACEMENT PROBLEM. The first problem we address is the

selection of the set M of intersections where cameras need to be deployed. Ideally, our

choice of nodes should incur minimum cost, while providing maximum coverage and a

minimum estimation error.

Let us consider the linear system Rx = b resulting by placing cameras at all

possible intersections inV ′. Obviously, this solution would provide maximum coverage and

minimum error, however, it would incur a very high cost. By using network tomography,

we are able to use a much smaller set M ⊆ V ′ and provide both same coverage and error,

for a significantly lower cost. To this purpose, we recall the concept of basis of the matrix

R.

Definition 1 (Basis [22]). Given a binary matrix R of size |P | × |E |, a basis B is a maximal

subset of linearly independent rows (paths).

In the following theorems, we show that any basis of the matrix R has two rele-

vant properties, namely, it provides both maximum coverage and minimum error. In the

following, we use path matrices such as R as sets of vector, to ease the notation.

Theorem 2. Given a binary matrix R of size |P | × |E |, for any basis B of R, if there exists

a path in P that covers a link l ∈ E , then there exists a path in B that covers l.

Proof. We prove the statement by contradiction. Let us consider a basis B = {v1, . . . , vn},

and assume that there exists a link l that is not covered by any vector in B. However, since

l is covered in R, then there must exist at least a vector v̂ ∈ R that covers l and, since B is a
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basis, it should be possible to express v̂ as a linear combination of {v1, . . . , vn}. However,

we assumed that l is not covered in B, i.e., vi[l] = 0 for each i = 1, . . . , n. Therefore, v̂

cannot be expressed as a linear combination of the paths in B, thus B is not a basis of R,

which leads to a contradiction. �

We now focus on the properties of a basis relative to the inference error. By solving

the linear system Rx = b, some links are identifiable. Therefore the error for those links

is zero, provided that the measurements in b are accurate. However, for links that are not

identifiable, multiple values exist that would satisfy the system. Our algorithm for inferring

values for unidentifiable links is described in detail in Section 4.3, but intuitively the larger

the space of possible choices, the larger the potential inference error for the unidentifiable

links.

More formally, let Q ⊆ R be any set of paths whose end points we are planning to

monitor through cameras. Furthermore, let Vol(Q) be the volume of the polyhedron of fea-

sible solutions for the linear system considering only the equations in Rx = b corresponding

to the paths in Q. We denote such smaller system as QxQ = bQ. The larger Vol(Q), the

higher the error we may cause by picking a point in the polyhedron, conversely if Vol(Q) is

smaller the inference error is also smaller1.

Considering all paths in R obviously allows us to obtain the minimum number of

unidentifiable links, as well as the minimum volume of Vol(R). It is well known in linear

algebra that if we restrict ourselves to consider a basis B of R, and solve the corresponding

linear system BxB = bB, we obtain the same set of unidentifiable links [5]. In the following

theorem, we further show that such system implies the same volume for the polyhedron of

possible solutions for unidentifiable links (i.e., Vol(B) = Vol(R)), and therefore it provides

the same minimum inference error.

1Note that, upper and lower bounds for the link delays can be easily added to the system to ensure
Vol(Q) < ∞.
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Algorithm 1: Greedy camera placement algorithm.
Input: Matrix R

1 Q = ∅;
2 while rank(Q) ≤ rank(R) do
3 p∗ = path in R \Q with minimum cost and linearly independent from the paths in Q;
4 Q = Q ∪ p∗;
5 foreach Path p ∈ Q \ R do
6 Update cost cp considering the cameras already required by Q

7 return Q

Theorem 3. Consider a binary matrix R of size |P | × |E | and an end-to-end measurement

vector b. For any basis B of R, the polyhedron of possible solutions for the system Rx = b

is the same of the polyhedron of the solutions of the system Bx = bB.

Proof. A solution x for the system Rx = b exists if the vector b lies in the span of the

vectors in R [22]. Since B is a basis of R, they both span the same vector space. As a result,

x is also a solution for Bx = bB. �

By combining Theorems 2 and 3 we can conclude that in order to obtain maximum

coverage and minimum error while minimizing the cost of deploying cameras, we need to

look for the basis of the matrix R with minimum cost. This may be formally stated as an

optimization problem, as follows:

minimize
Q⊆R

C(Q)

subject to Q is a basis of R
(2)

whereC(Q) is the cost of deployingmonitors at the intersections identified by the set of paths

Q. The solution Q of the above problem can be easily translated into a set of intersections

M by placing cameras at the end points of each path in Q.

We note that C() is a submodular function [18]. Additionally, the linearly inde-

pendent subsets of R form a matroid. As a result, our problem is the minimization of

a submodular function over a matroid constraint. The unconstrained minimization of a

submodular function can be solved in polynomial time using the Lovász extension [18].
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However, even simple cardinality constraints can make the problem hard [18]. For this

reason, in this paper, we propose a greedy algorithm to solve the optimization problem in

Eq. (2).

The algorithm takes as input the matrix R obtained by placing cameras at all inter-

sections inV ′. It then starts with an empty solution Q (line 1), which is iteratively expanded

by the while loop (lines 2-6). The loop iterates as long as Q is not a basis (i.e., its rank is

less than that of R). At each iteration, the path with least cost, which is linearly independent

from the paths in Q, is selected and added to Q (lines 3-4). The inner for loop (lines 5-6)

updates the costs of the paths not in Q by taking into account the cameras required by the

paths in Q. This is a necessary step to take into account the submodularity of the objective

function.

Complexity Analysis. The while loop runs at most rank(R) times. Calculating

the rank can be performed in O(|E |3) using Gaussian Elimination. Finding the path with

minimum cost can be done in O(|P |). Finally, the for loop to update the costs performs

O(|P |) iterations for each iteration of the while loop. As a result, the overall complexity is

O(rank(R) × (|E |3 + |P |)).

4.3. SOLVING A LINEAR SYSTEM OF NOISY MEASUREMENTS. In this

section, we address two specific challenges arising when applying Network Tomography to

vehicular traffic monitoring. First, traffic conditions, drivers’ behavior, and other external

factors will likely influence the traveling times between any pair of monitored intersections,

so we must assume that the corresponding delay measurement will be affected by unpre-

dictable noise. Such noise may result in an inconsistent linear system, with no solution.

Second, given a camera placement, theremay still be unidentifiable links, and thereforemul-

tiple solutions for the linear system. Therefore, in this section, we discuss our approach to

deal with noisy measurements and to identify a solution that is consistent with the available

information and provides a small inference error of the traveling times for unidentifiable

links.
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4.3.1. Dealing with Noisy Measurements. Let us consider a given set of cameras

M ⊆ V ′ obtained as discussed in Section 4.2. As previously mentioned, each pair of

cameras ms,md ∈ M identifies a set Ps,d of paths; for each path p ∈ Ps,d the Traffic Control

Center (TCC) will compute the average traveling time bp which will be used in the linear

system. However, not only might bp be intrinsically affected by a non-negligible amount of

noise due to different cars spending different times to traverse the same path, but cars might

as well follow different paths altogether between the same two intersections. As a result,

the average bp for a path p may be affected by significant noise. If the standard network

tomography approach were to be used, the linear system in Eq. (1) might have no solution.

To deal with this problem, we modify the original formulation to account for the

possible presence of noise in the measurements. Specifically, we define a parameter ∆

representing the allowed margin of noise, and substitute each of the equations in the linear

system by two inequalities:

|E |∑
j=1

ri j xj ≤ bi + ∆;
|E |∑
j=1

ri j xj ≥ bi − ∆ (3)

A sufficiently large value for ∆ allows making sense of the available end-to-end

measurements, so that a solution for the system may exist. However, an excessively large

value for this parameter would result in an inaccurate solution, differing significantly from

the actual values of the traveling times of the road segments.

Our goal is thus to find the minimum value of ∆ that enables a solution of the linear

system while also minimizing the error in inferring the road segments traveling times. To

this purpose, we define the following linear optimization problem:

minimize ∆

subject to Rx ≤ b + ∆, Rx ≥ b − ∆

x ≥ 0

(4)
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where R is the binary matrix of size |P | × |E |. Note that, here the set P accounts for the

possibility of multiple paths between any two intersections where cameras are installed.

The problem can be solved efficiently by well-known linear optimization algorithms

such as the Simplex method [28], and the solution would provide a value x j for each road

segments l j ∈ E , that we use as an estimate of the average traveling time for that link if l j

is identifiable.

Note that we may extend the above formulation to include vehicle classes. It may

be possible to derive a linear system for each class to obtain more accurate information.

However, this may come at the expense of additional noise due to potentially inaccurate

vehicle classification, or inherent noise in each class. We will consider vehicle classes as a

future extension of our work.

4.3.2. Solution for Unidentifiable Links. It may be the case that only some road

segments are identifiable. For such segments the optimizer would return a unique solution;

conversely, the values for non-identifiable links would not be unique. In general, the

optimizer provides a solution in the form of a point on the surface of the convex polyhedron

H defined by the constraints of the optimization problem. We already discussed in Section

4.2 how to place cameras so that such polyhedron is as small as possible. However,

unidentifiable links cannot be avoided in general, so we need a method to pick a “good”

solution within the polyhedron that provides a small inference error.

The intuition behind our approach is that even though the vertices of the polyhedron

may be admissible solutions, they are likely not convenient for us. Such solutions are

characterized by very high traveling times assigned to few links, and very low ones to

others. Such disproportionate polarization is not realistic, therefore in our approach, the

goal is to return a solution which corresponds to the centroid of the polyhedron.

Definition 4 (Centroid). Given a polyhedron H ⊆ Rn with vertices = {v1, v2, . . . , vn}, the

centroid B(H) ∈ Rn is calculated as B(H) = 1
n
∑n

i=1 vi .
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Note that since H is convex, as it results from the intersection of convex polyhedrons

defined by the linear inequalities, the centroid B(H) always lies within H, and therefore it

is a feasible solution for the linear system. Calculating the centroid, however, requires the

knowledge of all the vertices of the polyhedron. Identifying such vertices is feasible using a

similar approach like the one adopted by the Simplex algorithm [28]. However, the number

of such vertices can be exponential with the number of constraints. Therefore we propose

an alternative approach to provide an approximated centroid.

Our approach consists in generating a set W of random points that lie within the

polyhedron H identified by the linear system in Eq. (4). We iteratively generate random

points and accumulate in W those that verify the constraints of the linear system. Subse-

quently, we calculate the centroid of B(W) as an approximation of the centroid B(H). We

show in Section 5 that this approach provides a very accurate estimation of the traveling

times of the links in the road network.

4.4. PAIRING END-TO-END MEASUREMENTS TO PATHS. We now focus

on the last challenge and deal with the possible different paths that drivers follow between

two monitors. Note that this problem does not occur in the original formulation of network

tomography for communication networks since routing is either source-based or known a

priori [2].

As an example of this problem, with reference to the linear system in Figure 1,

traveling times b1 and b2 are both computed from measurements collected by the same pair

of monitors (m1 and m4); however, b1 should be associated to path p1 = {l1, l7, l9}, whereas

b2 to path p2 = {l1, l2, l8, l9}.

In general, let Ps,d indicate the set of all paths that may be potentially traveled by cars

having twomonitored road intersections ms,md ∈ M as source and destination, respectively.

Paths in Ps,d may differ in length and traffic conditions, and consequently, be characterized

by significantly different traveling times. Moreover, we do not expect a car to be an active

part of our framework; in particular, they are not assumed to be equipped with any tracking



20

device, such as GPS, that might enable us to infer which of the paths in Ps,d was traversed

by a specific car. As a consequence, we are faced with the problem of correctly assigning a

delay measurement to a specific path.

Formally, the TCC may compute the traveling time t j for each vehicle j traveling

from ms to md . Additionally, in order to build the linear system described in Eq. (4), it needs

to compute the average traveling time bi for each path pi ∈ Ps,d . Let Ts,d = {t1, t2, . . . , tr} be

the set of end-to-end measurements collected for any of the paths in Ps,d between monitors

ms and md , and let |Ts,d | = r and |Ps,d | = k.

Our problem consist in determining a partition T1,T2, . . . ,Tk of Ts,d such that each

Ti contains only the end-to-end measurements that belong to path pi ∈ Ps,d . Once the

sets T1,T2, . . . ,Tk are identified, the average end-to-end traveling time for a path pi will

be computed as bi =
1
|Ti |

∑
t∈Ti t. This value can be used as the right-hand side for the

inequalities related to path pi in the linear system described in Section 4.3.

In order to find the partitioning of Ts,d , we assume that the probability Ps,d(pi) with

which a car follows a path pi between ms and md is known, so that we know that the

expected number of measurements belonging to set Ti is given by r × Ps,d(pi), where we

recall r = |Ts,d |. Note that, in Section 5.5 we relax this assumption and experimentally show

that our approach is effective even when there is an inaccurate knowledge of the probability

distribution.

We model the traveling times along a path pi by means of a random variable Xi,

whose probability distribution is not restricted to have any specific shape. Ti is then the set

of realizations of such random variable. If P(Xi = t) indicates the probability that a sample

t ∈ Ts,d has been generated by Xi, the likelihood of an assignment T1, . . . ,Tk is given by:

P(T1, . . . ,Tk) = Π
k
i=1Πt∈TiP(Xi = t) (5)
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Algorithm 2: Assignment of end-to-end measures to paths between a pair of
monitors.

1 Generate a random assignment T1,T2, . . . ,Tk ;
2 Calculate the empirical distributions P̂i for each Xi;
3 do
4 δ∗ = 0;
5 foreach pair of samples t1, t2 ∈ Ts,d do
6 Calculate δ1,2 as the increase in P(T1, . . . ,Tk) by switching t1 and t2;
7 if δ1,2 > 0 and δ∗ < δ1,2 then
8 δ∗ = δ1,2

9 Switch t1 and t2 that provided δ∗

10 while δ∗ > δmin;
11 return the current assignment T1,T2, . . . ,Tk

and the best assignment T1, . . . ,Tk is one that maximizes such likelihood. In the ideal

case when the distributions are known for each variable Xi, the best partitioning can be

determined by assigning each measurement t to the variable Xi for which P(Xi = t) is the

highest.

In our case, however, the distributions are not known, so we resort to an iterative

greedy approach inspired by the Kernighan-Lin graph partitioning algorithm [17]. The idea

is to start from a random assignment respecting the cardinality constraints for each set Ti,

and iteratively make use of the samples in Ti to estimate the empirical distribution P̂i of

each variable Xi. Then, for each pair of samples t1 ∈ Ti and t2 ∈ Tj we calculate δ1,2 which

is defined as the increase in the likelihood of the assignment in Eq. (5) by swapping t1

and t2, i.e. by assigning t1 to Tj and t2 to Ti. The pair of samples with highest δ are then

switched at the current iteration. The algorithm terminates as soon as the increase drops

below a threshold δmin.

The pseudo-code for the algorithm is in shown in Algorithm 2. Each iteration of the

algorithm has O(r3) complexity, since each pair of samples t1, t2 ∈ Ts,d must be analyzed,

and, for each of these pairs, δ1,2 must be computed, an operation whose complexity is upper

bounded by O(r).
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In order to ensure convergence of the algorithm, δ1,2 is calculated as follows. For

t1 ∈ Ti and t2 ∈ Tj , we simulate the swapping of t1 and t2, obtaining the corresponding sets

T ′i = Ti \ {t1} ∪ {t2} and T ′j = Tj \ {t2} ∪ {t1} and the new empirical distributions P̂′i and P̂
′
j ,

for Xi and X j . δ1,2 is defined as:

δ1,2 =max{(Πt∈T ′i P̂
′
i(Xi = t) − Πt∈Ti P̂i(Xi = t)), 0}×

max{(Πt∈T ′j P̂
′
j(X j = t) − Πt∈Tj P̂ j(X j = t)), 0}

(6)

The rationale behind the above formula is that whenever t1 and t2 are exchanged, a strictly

positive increase in the probability of the new assignment occurs even if the empirical

distributions of Xi and X j may change.

5. EXPERIMENTAL ASSESSMENT

5.1. EXPERIMENTAL SETUP. In this section, we experimentally evaluate our

framework through simulations. We consider both synthetic and real road networks. Syn-

thetic road networks have been generated using the realistic model proposed in [11]. The

model is based on quadtrees and has two parameters: the number of intersections f , and q

which controls the amount of sprawl. In our experiments, f is varied to consider different

scenarios, and q is set to 1. Traveling times are randomly generated in the interval [3, 10],

which represents the ground truth for our inference. An example of the topology generated

with this model is shown in Figure 2.

The real road network topology is instead taken from downtown San Francisco,

CA, as shown in in Figure 3. When required, we generate networks of varying size by

considering only the part of the road network comprised within a specified radial distance

from a geographical center of the map. We developed a script based on the Google Maps

API [12] to obtain real traveling times. Specifically, our script uses the APIs to obtain

the current traveling time in every road segment in the downtown San Francisco map.
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Figure 1: the quadtree model. Left: r = 3/4 (large-square preference). Middle: r = 1 (neutral). Right: r = 5/4
(small-square preference).

Figure 2: Left: the Growing Random Planar Graph model [16]. Middle: the roads of San Joaquin County, California,
USA [19]. Right: the quadtree model with r = 15/16.

w

wNW wNE

wSW wSE

Splitn = w

Figure 3: Splitting square w.

3

Figure 2. Example of quadtree based synthetic topology [11].

Figure 3. Road topology used for the experiments.

Figure 4 shows the Cumulative Density Function (CDF) for the observed delays at 2PM on

8/8/20172. We used these values as ground truth for our experiments with the real road

network topology.

For both synthetic and real networks, we generated the cost cm of deploying a camera

at intersection m ∈ V ′ as a random number in the interval [1, 10].

In order to account for the fact that in a real-life scenario, drivers may decide to

follow alternate, but not entirely dissimilar, routes for each pair of intersections ms,md , we

consider all paths in the set Ps,d whose number of hops is less than or equal to a factor θ of

2We also considered different times and days, and we obtained similar results.
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Figure 4. Cumulative Density Function (CDF) of delays observed in downtown San Fran-
cisco, CA.

the length of the shortest path between ms and md . The set Ps,d was constructed through

a modified version of the transitive closure of the adjacency matrix of the roadmap graph

G [29]. In our experiment, we show the impact of the parameter θ on the performance of

our approach. We also assumed that collected end-to-end traveling times may be randomly

corrupted by some amount of noise, and we performed experiments to show the impact of

such noise.

We focus on three main metrics to evaluate our approach. Cost refers to the total

cost of deploying cameras at the selected intersections. Coverage is defined as the fraction

of links for which an estimation is provided with respect to the total number of links in

E . The inference error is measured using the Mean Square Error (MSE). Specifically, let

x1, . . . , x|E | be the ground truth values of delays in the network, and let x̂1, . . . , x̂|E | be the

inferred values. The MSE is defined as MSE = 1
|E |

∑|E |
i=1(x̂i − xi)

2. Note that, for uncovered

links, we assume that the inferred delay is zero so that the corresponding error is maximized.

The availability of additional information is available, e.g., road lengths and speed limits

would result in better inference.

Results are averaged over several runs to obtain a reliable confidence interval. The

plots show the average and standard deviation of the considered metrics.
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5.2. A COMPARISON APPROACH BASED ON VERTEX COVER. Previous

works on vehicular traffic estimation based on cameras [14, 27, 31] do not address the

camera placement problem. Similarly, monitor placement in communication networks is

based on routing assumptions that do not hold for vehicular networks [19, 23, 24, 35]. For

these reasons, we chose instead to compare our method to an approach inspired by the

Weighted Vertex Cover (WVC) problem [6], which has been adopted in several coverage

problems in communication and vehicular networks [20]. Specifically, given the road

network G = (V, E) and the costs cm for each m ∈ V , we assume that if a camera is placed

at an intersection m ∈ V , the traffic along all the links in E incident to m can be accurately

monitored. In terms of the WVC problem, we say that m covers the links adjacent to it.

Under this setting, we are looking for a set MWVC ⊆ V to place cameras such that it incurs

minimum costs and each edge in E is covered by at least one camera in MWVC . A similar

formulation of the problem is straightforward for the case when cameras are allowed to be

placed only at a subset V ′ ⊆ V of intersections.

TheWVCproblem isNP-Complete, however, there are several heuristics that provide

a provable approximation bound. In this paper we use the heuristic proposed by Clarkson

et al. that provides a 2 approximation bound with respect to the optimal solution [6]. This

approach is referred to as WVC.

5.3. SYNTHETIC NETWORKS. Experiment I. In the first set of experiments

we allow cameras to be potentially deployed at any intersection in the network, i.e., V ′ = V .

In addition, we consider three values for θ, namely 1, 1.2, and 1.5, and we consider no

errors in the measurements nor the assignment of measurements to paths.

Figure 5(a) shows the total cost of deploying cameras at intersections returned by

our approach, and at those selected by WVC, under different network sizes. Our approach

outperforms WVC. The strength of our solution is the ability to exploit the correlation

between end-to-end measurements through the solution of the linear system. Conversely,

each camera in WVC is only able to provide a local estimation, although unbiased, of its
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Figure 5. Synthetic Networks: Cost vs. size of the network (a), Coverage (b), Cost (c) and
MSE (d) vs. % of nodes where cameras can be placed, ∆ (e), MSE (f) vs. % of noise.
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adjacent links. As a result, WVC requires more cameras, and therefore it incurs a higher

cost. In addition, our solution requires a lower cost as the value of θ increases, since fewer

cameras are necessary to cover the network. Nevertheless, even in the extreme case of a

single path between each pair of cameras (θ = 1), we still significantly outperform WVC.

Note that, by allowing cameras to be potentially deployed at every intersection, our

approach can uniquely identify all links in the network. Similarly, WVC returns a set of

nodes for which every link is adjacent to at least a node in that set. As a result, both

approaches achieve full coverage and incur a null inference error.

Experiment II. In this set of experiments, we allow cameras to be placed only at a subset

of intersection V ′ ⊆ V , and we study the performance upon increasing the size of V ′. The

intersections in V ′ are chosen randomly, and again we assume no errors are present.

Figure 5(b) and (c) show the coverage and the cost of camera deployment versus

the size of V ′, expressed as the percentage of nodes in V where cameras can be placed.

Remarkably, our approach is able to provide higher coverage at a smaller cost compared

to WTC by exploiting end-to-end measurements. As a numerical example, our approach

provides a coverage higher than 90% coverage of the network, with θ = 1.2, when having

only 30% of intersections in V ′ and incurring a cost less than 75. On the contrary, WTC

requires at least 70% of intersection available to achieve a similar coverage, and it incurs a

cost of about 150.

The lower coverage also has an impact on the quality of the inference, as shown in

Figure 5(d). Our approach incurs a very low error for all settings of θ, again highlighting

the inference capabilities of network tomography when applied to vehicular networks.

Conversely, WTC results in an error which is significantly higher than our approach.

Experiment III. In the third and final set of experiments, we focus on the effect of noisy

measurements. For this purpose, we consider the end-to-end measurements to be affected

by a random noise e ∈ [0, 1], and we study the performance by increasing the value of e.

Specifically, depending on e we alter the ground truth bi value for the delay of path pi in
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Eq. 4, with a random value in the interval [(1 − e) × bi, (1 + e) × bi]. This makes the linear

system likely to have no solution. Therefore a value of ∆ > 0 is necessary to satisfy all the

constraints given the noisy measurements. In these experiments we allow cameras to be

potentially deployed at all of the intersections.

Figure 5(e) shows the values of ∆ corresponding to increasing values for the error

parameter for network topologies of size 10, 30, and 50 nodes. As expected, a higher value

of ∆ is required as the noise increases, and also a higher value is necessary to satisfy the

constraints for bigger topologies. Intuitively, the bigger the topology, the higher the number

of paths, the higher the impact of noise on the feasibility of the linear system. Figure 5 (f)

shows the inference error under different magnitude of noise. The error increases with the

amount of noise and the size of the network. This increase is due to the higher values of ∆,

that result in larger polyhedrons, and consequently to larger inference errors. Nevertheless,

it is worth noting that although the error increases, our approach is effectively able to achieve

a small inference error in all the considered settings.

5.4. REAL NETWORKS. We now describe the results obtained using the road

network of downtown San Francisco, CA. We performed similar experiments with respect

to the synthetic networks.

Experiment I. Figure 6(a) shows the cost of deploying cameras at selected intersections

as a function of the network size. The results confirm the outcome obtained for synthetic

networks, and also, in this case, our approach outperformsWTC incurring a lower cost. The

advantage becomes more evident as the network size increases since the effect of exploiting

end-to-end measurements is more prominent.

Experiment II. We now consider the performance when increasing the size of the set V ′

where cameras can be placed. As figures 6(b), (c) and (d) show,WVC reveals its weaknesses

in real settings too, achieving lower coverage, at a higher cost, which results in a higher

inference error for the link delays. Note that the higher values of the MSE compared to the
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synthetic networks are due to the higher delays of the links in this dataset, in the interval

[10, 300] as obtained by the script based on the Google APIs. Conversely, the delays for the

synthetic networks are in the interval [3, 10].

Experiment III. In the final set of experiments, we added noise to the measurements as

discussed for the case of synthetic networks. Figure 6(e) and (f) show the value of ∆ and

the inference error as a function of the magnitude of added noise. Similarly to the synthetic

network case, a higher ∆ and a higher error occur as we increase the noise and the size of

the network. Nevertheless, even in this case, our approach shows great tolerance to noisy

measurements, as the MSE, which is a quadratic error, increases only linearly with the

noise.

5.5. ASSIGNING MEASUREMENTS TO PATHS. In this set of experiments,

we aim to evaluate the performance of the algorithm presented in Section 4.4 whose goal

is to assign the measurements Ts,d collected between two intersections ms and md , to the

paths Ps,d between them. We assume that each path pi ∈ Ps,d has a ground truth average

delay µi and that the traveling times over pi follow a Gaussian distribution < µi, σ >. The

value of µi is picked randomly in the interval [1,100], while σ is set to 3. We additionally

assume that the driver preference for the available paths follows a geometric distribution

with parameter λ ∈ [0, 1], meaning that path pi ∈ Ps,d is picked with probability (1 − λ)i.

This distribution models the real-life scenario in which most drivers tend to concentrate

over few paths.

Using these assumptions, we simulate 800 cars traveling from ms to md . Each car

picks a path pi in Ps,d according to the geometric distribution. Then, we add a measurement

in the set Ts,d as realization of the Gaussian distributed random variable with parameters

< µi, σ >.
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Figure 6. Real Networks: Cost vs. size of the network (a), Coverage (b), MSE (c) and Cost
(d) vs. % of nodes where cameras can be placed, ∆ (e), MSE (f) vs. % of noise.
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We run our algorithm to partition the set Ts,d into T1,T2, . . . , where Ti contains the

measurements assigned to the path pi. The estimated average traveling time for pi is µ̂i,

obtained averaging the measurements in Ti. We use the Mean Square Error (MSE) between

the actual averages and the estimated averages to evaluate the accuracy of our approach,

specifically MSE = 1
|Ps,d |

∑
pi∈Ps,d

(µ̂i − µi)
2.

We compare our approach with the clustering algorithm K-means [25]. This algo-

rithm starts from K randomly assigned centroids, where for us K = |Ps,d |, and it assigns

the measurement in Ts,d to the closest centroid. At each subsequent iteration, centroids are

updated based on the previous measurement assignment, and measurements are assigned

again to the closest updated centroid. The process is repeated until a convergence criterion

is met. We refer the reader to [25] for more details about K-means.
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Figure 7. Assigning measurements to paths, with (a) perfect and (b) inaccurate knowledge
of the driver preference distribution.

We initially assume that the parameter λ of the geometric distribution of the driver

preference is known. Figure 7(a) shows the results increasing the number of paths in

Ts,d . As expected, the availability of a larger number of paths makes the problem harder.

Nevertheless, our approach incurs in a small error, and it outperforms K-Means by providing

a more accurate estimation of the traveling times in all settings.
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Next, we relax the assumption on perfect knowledge of the driver preference dis-

tribution. Specifically, we set λ = 0.5 but run the algorithm assuming a distribution with

parameter λ + ∆λ, where ∆λ represents the amount of knowledge inaccuracy. Figure 7 (b)

shows the MSE for 4 paths increasing the value of ∆λ. K-Means is not affected by ∆λ,

since it does not make use of the underlying driver preference distribution. Our approach

shows very high robustness as it is able to provide better accuracy than K-means, even under

severe inaccurate knowledge.

6. CONCLUSIONS

This paper addressed the issue of vehicular traffic monitoring in a smart city. We

described a method for inferring the traveling times on each road segment of the city

while requiring just a minimum number of monitoring devices to be deployed at selected

intersections. The theoretical grounds for our method are provided by the Network To-

mography approach. We formulated an optimization problem for the optimal placement

of monitoring cameras and exploited linear algebra to propose an efficient greedy solution.

We additionally adapted the classical network tomography approach by allowing for noisy

measurements and unpredictability of vehicles paths. Experimental results on real and

synthetic networks show that our approach provides a cost-efficient deployment of cameras

that allows achieving full coverage of the road network and a very low inference error.
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SECTION

2. SUMMARY AND CONCLUSIONS

This thesis discussed a traffic monitoring approach which benefits urban planners

of smart cities. In summary, an optimal camera placement strategy is addressed and tested

on real and synthetic road network topologies. It is done by not only applying the concept

of network tomography but also including noise handling and measurements assigning as

complementary. The approach is made to fit challenges existed in road networks and vehicle

probing.

Specifically, linear algebra tools, such as linear programming, has been used to

define an optimization problem that identifies the set of intersections that would provide

maximum coverage, minimum inference error, and minimum cost. The problem is analyzed

as an instance of the minimization of a sub-modular function over a matroid constraint, and

a greedy algorithm is defined to solve it. The experimental results are compared with a

weighted vertex cover approach regarding coverage, error, and cost. In the measurements

assigning algorithm, each measurement is matched to its potential path according to perfect

or inaccurate knowledge on driver preference distributions. This approach outperforms

K-means in all performed experiments.
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