345 research outputs found

    Encoder and Decoder Side Global and Local Motion Estimation for Distributed Video Coding

    Get PDF
    International audienceIn this paper, we propose a new Distributed Video Coding (DVC) architecture where motion estimation is performed both at the encoder and decoder, effectively combining global and local motion models. We show that the proposed approach improves significantly the quality of Side Information (SI), especially for sequences with complex motion patterns. In turn, it leads to rate-distortion gains of up to 1 dB when compared to the state-of-the-art DISCOVER DVC codec

    Video Compression for Camera Networks: A Distributed Approach

    Get PDF
    The problem of finding efficient communications techniques to distribute multi-view video content across different devices and users in a network is receiving a great attention in the last years. Much interest in particular has been devoted recently to the so called field of Distributed Video Coding (DVC). After briefly reporting traditional approaches to multiview coding, this chapter will introduce the field of DVC for multi-camera systems. The theoretical background of Distributed Source Coding (DSC) is first concisely presented and the problem of the application of DSC principles to the case of video sources is then analyzed. The topic is presented discussing approaches to the problem of DVC in both single-view and in multi-view applications

    Motion Estimation at the Decoder

    Get PDF

    Depth-based Multi-View 3D Video Coding

    Get PDF

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    H. 264 Error Resilience Coding Based on Multihypothesis Motion Compensated Prediction

    Get PDF
    [[abstract]]In this paper, we propose efficient schemes for enhancing the error robustness of multi-hypothesis motion-compensate predictive (MHMCP) coder without sacrificing the coding efficiency significantly. The proposed schemes utilize the concept of reference picture interleaving and data partitioning to make the MHMCP-coded video more resilient to channel errors, especially for burst channel error. Besides, we also propose a scheme of integrating adaptive intra-refresh into the proposed MHMCP coder to further improve the error recovery speed. Extensive simulation results show that the proposed methods can effectively and quickly mitigate the error propagation and the penalty on coding efficiency for clean channels due to the inserted error resilience features is rather minor[[fileno]]2030144030009[[department]]é›»æ©Ÿć·„çš‹ć­ž
    • 

    corecore