5,717 research outputs found

    UWB Pulse Radar for Human Imaging and Doppler Detection Applications

    Get PDF
    We were motivated to develop new technologies capable of identifying human life through walls. Our goal is to pinpoint multiple people at a time, which could pay dividends during military operations, disaster rescue efforts, or assisted-living. Such system requires the combination of two features in one platform: seeing-through wall localization and vital signs Doppler detection. Ultra-wideband (UWB) radar technology has been used due to its distinct advantages, such as ultra-low power, fine imaging resolution, good penetrating through wall characteristics, and high performance in noisy environment. Not only being widely used in imaging systems and ground penetrating detection, UWB radar also targets Doppler sensing, precise positioning and tracking, communications and measurement, and etc. A robust UWB pulse radar prototype has been developed and is presented here. The UWB pulse radar prototype integrates seeing-through imaging and Doppler detection features in one platform. Many challenges existing in implementing such a radar have been addressed extensively in this dissertation. Two Vivaldi antenna arrays have been designed and fabricated to cover 1.5-4.5 GHz and 1.5-10 GHz, respectively. A carrier-based pulse radar transceiver has been implemented to achieve a high dynamic range of 65dB. A 100 GSPS data acquisition module is prototyped using the off-the-shelf field-programmable gate array (FPGA) and analog-to-digital converter (ADC) based on a low cost solution: equivalent time sampling scheme. Ptolemy and transient simulation tools are used to accurately emulate the linear and nonlinear components in the comprehensive simulation platform, incorporated with electromagnetic theory to account for through wall effect and radar scattering. Imaging and Doppler detection examples have been given to demonstrate that such a “Biometrics-at-a-glance” would have a great impact on the security, rescuing, and biomedical applications in the future

    Mitigation of Through-Wall Distortions of Frontal Radar Images using Denoising Autoencoders

    Full text link
    Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction and multipath clutter in indoor through-wall environments. While several methods have been proposed for removing target independent static and dynamic clutter, there still remain considerable challenges in mitigating target dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this work we focus on mitigating wall effects using a machine learning based solution -- denoising autoencoders -- that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with two-dimensional array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with two-dimensional array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images

    Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform

    Get PDF
    Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI) algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT). Real data used in the experimental results are provided to verify the proposed method

    Fuzzy Logic and Singular Value Decomposition based Through Wall Image Enhancement

    Get PDF
    Singular value decomposition based through wall image enhancement is proposed which is capable of discriminating target, noise and clutter signals. The overlapping boundaries of clutter, noise and target signals are separated using fuzzy logic. Fuzzy inference engine is used to assign weights to different spectral components. K-means clustering is used for suitable selection of fuzzy parameters. Proposed scheme significantly works well for extracting multiple targets in heavy cluttered through wall images. Simulation results are compared on the basis of mean square error, peak signal to noise ratio and visual inspection

    Robust Detection of Moving Human Target Behind Wall via Impulse through-Wall Radar

    Get PDF
    Through-wall human target detection is highly desired in military applications. We have developed an impulse through-wall radar (TWR) to address this problem. In order to obtain a robust detection performance, firstly we adopt the exponential average background subtraction (EABS) method to mitigate clutters and improve the signal-to-clutter ratio (SCR). Then, different from the conventional constant false alarm rate (CFAR) methods that are applied along the fast-time dimension, we propose a new CFAR method along the slow-time dimension to resist the residual clutters in the clutter mitigation output because of timing jitters, based on the presence of a larger relative variation of human target moving in and out in comparison with that of residual clutters in the slow-time dimension. The proposed method effectively solves the false alarm issue caused by residual clutters in the conventional CFAR methods, and obtains robust detection performance. Finally, different through-wall experiments are provided to verify the proposed method.Defence Science Journal, 2013, 63(6), pp.636-642, DOI:http://dx.doi.org/10.14429/dsj.63.576

    Effect and Compensation of Timing Jitter in Through-Wall Human Indication via Impulse Through-Wall Radar

    Get PDF
    Impulse through-wall radar (TWR) is considered as one of preferred choices for through-wall human indication due to its good penetration and high range resolution. Large bandwidth available for impulse TWR results in high range resolution, but also brings an atypical adversity issue not substantial in narrowband radars — high timing jitter effect, caused by the non-ideal sampling clock at the receiver. The fact that impulse TWR employs very narrow pulses makes little jitter inaccuracy large enough to destroy the signal correlation property and then degrade clutter suppression performance. In this paper, we focus on the timing jitter impact on clutter suppression in through-wall human indication via impulse TWR. We setup a simple timing jitter model and propose a criterion namely average range profile (ARP) contrast is to evaluate the jitter level. To combat timing jitter, we also develop an effective compensation method based on local ARP contrast maximization. The proposed method can be implemented pulse by pulse followed by exponential average background subtraction algorithm to mitigate clutters. Through-wall experiments demonstrate that the proposed method can dramatically improve through-wall human indication performance

    A Centralized Processing Framework for Foliage Penetration Human Tracking in Multistatic Radar

    Get PDF
    A complete centralized processing framework is proposed for human tracking using multistatic radar in the foliage-penetration environment. The configuration of the multistatic radar system is described. Primary attention is devoted to time of arrival (TOA) estimation and target localization. An improved approach that takes the geometrical center as the TOA estimation of the human target is given. The minimum mean square error paring (MMSEP) approach is introduced for multi-target localization in the multistatic radar system. An improved MMSEP algorithm is proposed using the maximum velocity limitation and the global nearest neighbor criterion, efficiently decreasing the computational cost of MMSEP. The experimental results verify the effectiveness of the centralized processing framework
    corecore