23,567 research outputs found

    CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

    Full text link
    Robust face detection in the wild is one of the ultimate components to support various facial related problems, i.e. unconstrained face recognition, facial periocular recognition, facial landmarking and pose estimation, facial expression recognition, 3D facial model construction, etc. Although the face detection problem has been intensely studied for decades with various commercial applications, it still meets problems in some real-world scenarios due to numerous challenges, e.g. heavy facial occlusions, extremely low resolutions, strong illumination, exceptionally pose variations, image or video compression artifacts, etc. In this paper, we present a face detection approach named Contextual Multi-Scale Region-based Convolution Neural Network (CMS-RCNN) to robustly solve the problems mentioned above. Similar to the region-based CNNs, our proposed network consists of the region proposal component and the region-of-interest (RoI) detection component. However, far apart of that network, there are two main contributions in our proposed network that play a significant role to achieve the state-of-the-art performance in face detection. Firstly, the multi-scale information is grouped both in region proposal and RoI detection to deal with tiny face regions. Secondly, our proposed network allows explicit body contextual reasoning in the network inspired from the intuition of human vision system. The proposed approach is benchmarked on two recent challenging face detection databases, i.e. the WIDER FACE Dataset which contains high degree of variability, as well as the Face Detection Dataset and Benchmark (FDDB). The experimental results show that our proposed approach trained on WIDER FACE Dataset outperforms strong baselines on WIDER FACE Dataset by a large margin, and consistently achieves competitive results on FDDB against the recent state-of-the-art face detection methods

    Mode Variational LSTM Robust to Unseen Modes of Variation: Application to Facial Expression Recognition

    Full text link
    Spatio-temporal feature encoding is essential for encoding the dynamics in video sequences. Recurrent neural networks, particularly long short-term memory (LSTM) units, have been popular as an efficient tool for encoding spatio-temporal features in sequences. In this work, we investigate the effect of mode variations on the encoded spatio-temporal features using LSTMs. We show that the LSTM retains information related to the mode variation in the sequence, which is irrelevant to the task at hand (e.g. classification facial expressions). Actually, the LSTM forget mechanism is not robust enough to mode variations and preserves information that could negatively affect the encoded spatio-temporal features. We propose the mode variational LSTM to encode spatio-temporal features robust to unseen modes of variation. The mode variational LSTM modifies the original LSTM structure by adding an additional cell state that focuses on encoding the mode variation in the input sequence. To efficiently regulate what features should be stored in the additional cell state, additional gating functionality is also introduced. The effectiveness of the proposed mode variational LSTM is verified using the facial expression recognition task. Comparative experiments on publicly available datasets verified that the proposed mode variational LSTM outperforms existing methods. Moreover, a new dynamic facial expression dataset with different modes of variation, including various modes like pose and illumination variations, was collected to comprehensively evaluate the proposed mode variational LSTM. Experimental results verified that the proposed mode variational LSTM encodes spatio-temporal features robust to unseen modes of variation.Comment: Accepted in AAAI-1

    Gaussian processes for modeling of facial expressions

    Get PDF
    Automated analysis of facial expressions has been gaining significant attention over the past years. This stems from the fact that it constitutes the primal step toward developing some of the next-generation computer technologies that can make an impact in many domains, ranging from medical imaging and health assessment to marketing and education. No matter the target application, the need to deploy systems under demanding, real-world conditions that can generalize well across the population is urgent. Hence, careful consideration of numerous factors has to be taken prior to designing such a system. The work presented in this thesis focuses on tackling two important problems in automated analysis of facial expressions: (i) view-invariant facial expression analysis; (ii) modeling of the structural patterns in the face, in terms of well coordinated facial muscle movements. Driven by the necessity for efficient and accurate inference mechanisms we explore machine learning techniques based on the probabilistic framework of Gaussian processes (GPs). Our ultimate goal is to design powerful models that can efficiently handle imagery with spontaneously displayed facial expressions, and explain in detail the complex configurations behind the human face in real-world situations. To effectively decouple the head pose and expression in the presence of large out-of-plane head rotations we introduce a manifold learning approach based on multi-view learning strategies. Contrary to the majority of existing methods that typically treat the numerous poses as individual problems, in this model we first learn a discriminative manifold shared by multiple views of a facial expression. Subsequently, we perform facial expression classification in the expression manifold. Hence, the pose normalization problem is solved by aligning the facial expressions from different poses in a common latent space. We demonstrate that the recovered manifold can efficiently generalize to various poses and expressions even from a small amount of training data, while also being largely robust to corrupted image features due to illumination variations. State-of-the-art performance is achieved in the task of facial expression classification of basic emotions. The methods that we propose for learning the structure in the configuration of the muscle movements represent some of the first attempts in the field of analysis and intensity estimation of facial expressions. In these models, we extend our multi-view approach to exploit relationships not only in the input features but also in the multi-output labels. The structure of the outputs is imposed into the recovered manifold either from heuristically defined hard constraints, or in an auto-encoded manner, where the structure is learned automatically from the input data. The resulting models are proven to be robust to data with imbalanced expression categories, due to our proposed Bayesian learning of the target manifold. We also propose a novel regression approach based on product of GP experts where we take into account people's individual expressiveness in order to adapt the learned models on each subject. We demonstrate the superior performance of our proposed models on the task of facial expression recognition and intensity estimation.Open Acces

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    End-to-end 3D face reconstruction with deep neural networks

    Full text link
    Monocular 3D facial shape reconstruction from a single 2D facial image has been an active research area due to its wide applications. Inspired by the success of deep neural networks (DNN), we propose a DNN-based approach for End-to-End 3D FAce Reconstruction (UH-E2FAR) from a single 2D image. Different from recent works that reconstruct and refine the 3D face in an iterative manner using both an RGB image and an initial 3D facial shape rendering, our DNN model is end-to-end, and thus the complicated 3D rendering process can be avoided. Moreover, we integrate in the DNN architecture two components, namely a multi-task loss function and a fusion convolutional neural network (CNN) to improve facial expression reconstruction. With the multi-task loss function, 3D face reconstruction is divided into neutral 3D facial shape reconstruction and expressive 3D facial shape reconstruction. The neutral 3D facial shape is class-specific. Therefore, higher layer features are useful. In comparison, the expressive 3D facial shape favors lower or intermediate layer features. With the fusion-CNN, features from different intermediate layers are fused and transformed for predicting the 3D expressive facial shape. Through extensive experiments, we demonstrate the superiority of our end-to-end framework in improving the accuracy of 3D face reconstruction.Comment: Accepted to CVPR1
    • …
    corecore