13,086 research outputs found

    A Nonconvex Projection Method for Robust PCA

    Full text link
    Robust principal component analysis (RPCA) is a well-studied problem with the goal of decomposing a matrix into the sum of low-rank and sparse components. In this paper, we propose a nonconvex feasibility reformulation of RPCA problem and apply an alternating projection method to solve it. To the best of our knowledge, we are the first to propose a method that solves RPCA problem without considering any objective function, convex relaxation, or surrogate convex constraints. We demonstrate through extensive numerical experiments on a variety of applications, including shadow removal, background estimation, face detection, and galaxy evolution, that our approach matches and often significantly outperforms current state-of-the-art in various ways.Comment: In the proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Guaranteed Rank Minimization via Singular Value Projection

    Full text link
    Minimizing the rank of a matrix subject to affine constraints is a fundamental problem with many important applications in machine learning and statistics. In this paper we propose a simple and fast algorithm SVP (Singular Value Projection) for rank minimization with affine constraints (ARMP) and show that SVP recovers the minimum rank solution for affine constraints that satisfy the "restricted isometry property" and show robustness of our method to noise. Our results improve upon a recent breakthrough by Recht, Fazel and Parillo (RFP07) and Lee and Bresler (LB09) in three significant ways: 1) our method (SVP) is significantly simpler to analyze and easier to implement, 2) we give recovery guarantees under strictly weaker isometry assumptions 3) we give geometric convergence guarantees for SVP even in presense of noise and, as demonstrated empirically, SVP is significantly faster on real-world and synthetic problems. In addition, we address the practically important problem of low-rank matrix completion (MCP), which can be seen as a special case of ARMP. We empirically demonstrate that our algorithm recovers low-rank incoherent matrices from an almost optimal number of uniformly sampled entries. We make partial progress towards proving exact recovery and provide some intuition for the strong performance of SVP applied to matrix completion by showing a more restricted isometry property. Our algorithm outperforms existing methods, such as those of \cite{RFP07,CR08,CT09,CCS08,KOM09,LB09}, for ARMP and the matrix-completion problem by an order of magnitude and is also significantly more robust to noise.Comment: An earlier version of this paper was submitted to NIPS-2009 on June 5, 200
    • …
    corecore