3 research outputs found

    Supervision of Nonlinear Networked Control Systems Under Network Constraints

    Get PDF
    International audienceThe remote supervision for a class of nonlinear systems in the presence of additive disturbances and measurement noises is considered in this paper. The communication network may introduce time delays while exchanging data among sites connected to the network medium (i.e., the data acquisition site and the remote plant site). Two different approaches are presented in this paper. The first one uses a conventional estimator-based predictor when the uncertainties are supposed to be known. In the case of unknown but bounded uncertainties by known bounds, an interval estimation-based predictor evaluating the set of admissible values for the state is investigated. The state prediction techniques are used to compensate the effect of network-induced delays. Simulation results are introduced to illustrate the efficiency of the proposed techniques

    Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain

    Get PDF
    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer
    corecore