72 research outputs found

    Spectral Signatures in Backdoor Attacks

    Full text link
    A recent line of work has uncovered a new form of data poisoning: so-called \emph{backdoor} attacks. These attacks are particularly dangerous because they do not affect a network's behavior on typical, benign data. Rather, the network only deviates from its expected output when triggered by a perturbation planted by an adversary. In this paper, we identify a new property of all known backdoor attacks, which we call \emph{spectral signatures}. This property allows us to utilize tools from robust statistics to thwart the attacks. We demonstrate the efficacy of these signatures in detecting and removing poisoned examples on real image sets and state of the art neural network architectures. We believe that understanding spectral signatures is a crucial first step towards designing ML systems secure against such backdoor attacksComment: 16 pages, accepted to NIPS 201

    Byzantine Stochastic Gradient Descent

    Full text link
    This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the mm machines which allegedly compute stochastic gradients every iteration, an α\alpha-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds ε\varepsilon-approximate minimizers of convex functions in T=O~(1ε2m+α2ε2)T = \tilde{O}\big( \frac{1}{\varepsilon^2 m} + \frac{\alpha^2}{\varepsilon^2} \big) iterations. In contrast, traditional mini-batch SGD needs T=O(1ε2m)T = O\big( \frac{1}{\varepsilon^2 m} \big) iterations, but cannot tolerate Byzantine failures. Further, we provide a lower bound showing that, up to logarithmic factors, our algorithm is information-theoretically optimal both in terms of sampling complexity and time complexity

    The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure

    Full text link
    Many modern machine learning classifiers are shown to be vulnerable to adversarial perturbations of the instances. Despite a massive amount of work focusing on making classifiers robust, the task seems quite challenging. In this work, through a theoretical study, we investigate the adversarial risk and robustness of classifiers and draw a connection to the well-known phenomenon of concentration of measure in metric measure spaces. We show that if the metric probability space of the test instance is concentrated, any classifier with some initial constant error is inherently vulnerable to adversarial perturbations. One class of concentrated metric probability spaces are the so-called Levy families that include many natural distributions. In this special case, our attacks only need to perturb the test instance by at most O(n)O(\sqrt n) to make it misclassified, where nn is the data dimension. Using our general result about Levy instance spaces, we first recover as special case some of the previously proved results about the existence of adversarial examples. However, many more Levy families are known (e.g., product distribution under the Hamming distance) for which we immediately obtain new attacks that find adversarial examples of distance O(n)O(\sqrt n). Finally, we show that concentration of measure for product spaces implies the existence of forms of "poisoning" attacks in which the adversary tampers with the training data with the goal of degrading the classifier. In particular, we show that for any learning algorithm that uses mm training examples, there is an adversary who can increase the probability of any "bad property" (e.g., failing on a particular test instance) that initially happens with non-negligible probability to ≈1\approx 1 by substituting only O~(m)\tilde{O}(\sqrt m) of the examples with other (still correctly labeled) examples
    • …
    corecore