3 research outputs found

    A Localization Method Avoiding Flip Ambiguities for micro-UAVs with Bounded Distance Measurement Errors

    Full text link
    Localization is a fundamental function in cooperative control of micro unmanned aerial vehicles (UAVs), but is easily affected by flip ambiguities because of measurement errors and flying motions. This study proposes a localization method that can avoid the occurrence of flip ambiguities in bounded distance measurement errors and constrained flying motions; to demonstrate its efficacy, the method is implemented on bilateration and trilateration. For bilateration, an improved bi-boundary model based on the unit disk graph model is created to compensate for the shortage of distance constraints, and two boundaries are estimated as the communication range constraint. The characteristic of the intersections of the communication range and distance constraints is studied to present a unique localization criterion which can avoid the occurrence of flip ambiguities. Similarly, for trilateration, another unique localization criterion for avoiding flip ambiguities is proposed according to the characteristic of the intersections of three distance constraints. The theoretical proof shows that these proposed criteria are correct. A localization algorithm is constructed based on these two criteria. The algorithm is validated using simulations for different scenarios and parameters, and the proposed method is shown to provide excellent localization performance in terms of average estimated error. Our code can be found at: https://github.com/QingbeiGuo/AFALA.git.Comment: 14 pages, 8 figures, IEEE Transactions on Mobile Computing(Accepted

    Robust distributed sensor network localization based on analysis of flip ambiguities

    Full text link
    A major problem in wireless sensor network localization is erroneous local geometric realizations in some parts of the network due to the sensitivity to certain distance measurement errors, which may in turn affect the reliability of the localization of the whole or a major portion of the sensor network. This phenomenon is well-described using the notion of "flip ambiguity" in rigid graph theory. In a recent study by the coauthors, an initial formal geometric analysis of flip ambiguity problems has been provided. The ultimate aim of that study was to quantify the likelihood of flip ambiguities in arbitrary sensor neighborhood geometries. In this paper we propose a more general robustness criterion to detect flip ambiguities in arbitrary sensor neighborhood geometries in planar sensor networks. This criterion enhances the recent study by the coauthors by removing the assumptions of accurately knowing some inter- sensor distances. The established robustness criterion is found to be useful in two aspects: (a) Analyzing the effects of flip ambiguity and (b) Enhancing the reliability of the location estimates of the prevailing localization algorithms by incorporating this robustness criterion to eliminate neighborhoods with flip ambiguity from being included in the localization process. © 2008 IEEE
    corecore