6,283 research outputs found

    Generalized Proportional Allocation Policies for Robust Control of Dynamical Flow Networks

    Get PDF
    We study a robust control problem for dynamical flow networks. In the considered dynamical models, traffic flows along the links of a transportation network --modeled as a capacited multigraph-- and queues up at the nodes, whereby control policies determine which incoming queues at a node are to be allocated service simultaneously, within some predetermined scheduling constraints. We first prove a fundamental performance limitation by showing that for a dynamical flow network to be stabilizable by some control policy it is necessary that the exogenous inflows belong to a certain stability region, that is determined by the network topology, link capacities, and scheduling constraints. Then, we introduce a family of distributed controls, referred to as Generalized Proportional Allocation (GPA) policies, and prove that they stabilize a dynamical transportation network whenever the exogenous inflows belong to such stability region. The proposed GPA control policies are decentralized and fully scalable as they rely on local feedback information only. Differently from previously studied maximally stabilizing control strategies, the GPA control policies do not require any global information about the network topology, the exogenous inflows, or the routing, which makes them robust to demand variations and unpredicted changes in the link capacities or the routing decisions. Moreover, the proposed GPA control policies also take into account the overhead time while switching between services. Our theoretical results find one application in the control of urban traffic networks with signalized intersections, where vehicles have to queue up at junctions and the traffic signal controls determine the green light allocation to the different incoming lanes

    On resilient control of dynamical flow networks

    Full text link
    Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201

    Optimal pricing control in distribution networks with time-varying supply and demand

    Full text link
    This paper studies the problem of optimal flow control in dynamic inventory systems. A dynamic optimal distribution problem, including time-varying supply and demand, capacity constraints on the transportation lines, and convex flow cost functions of Legendre-type, is formalized and solved. The time-varying optimal flow is characterized in terms of the time-varying dual variables of a corresponding network optimization problem. A dynamic feedback controller is proposed that regulates the flows asymptotically to the optimal flows and achieves in addition a balancing of all storage levels.Comment: Submitted to 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS) in December 201

    Robust Network Routing under Cascading Failures

    Get PDF
    We propose a dynamical model for cascading failures in single-commodity network flows. In the proposed model, the network state consists of flows and activation status of the links. Network dynamics is determined by a, possibly state-dependent and adversarial, disturbance process that reduces flow capacity on the links, and routing policies at the nodes that have access to the network state, but are oblivious to the presence of disturbance. Under the proposed dynamics, a link becomes irreversibly inactive either due to overload condition on itself or on all of its immediate downstream links. The coupling between link activation and flow dynamics implies that links to become inactive successively are not necessarily adjacent to each other, and hence the pattern of cascading failure under our model is qualitatively different than standard cascade models. The magnitude of a disturbance process is defined as the sum of cumulative capacity reductions across time and links of the network, and the margin of resilience of the network is defined as the infimum over the magnitude of all disturbance processes under which the links at the origin node become inactive. We propose an algorithm to compute an upper bound on the margin of resilience for the setting where the routing policy only has access to information about the local state of the network. For the limiting case when the routing policies update their action as fast as network dynamics, we identify sufficient conditions on network parameters under which the upper bound is tight under an appropriate routing policy. Our analysis relies on making connections between network parameters and monotonicity in network state evolution under proposed dynamics

    Robust Distributed Routing in Dynamical Flow Networks - Part I: Locally Responsive Policies and Weak Resilience

    Full text link
    Robustness of distributed routing policies is studied for dynamical flow networks, with respect to adversarial disturbances that reduce the link flow capacities. A dynamical flow network is modeled as a system of ordinary differential equations derived from mass conservation laws on a directed acyclic graph with a single origin-destination pair and a constant inflow at the origin. Routing policies regulate the way the inflow at a non-destination node gets split among its outgoing links as a function of the current particle density, while the outflow of a link is modeled to depend on the current particle density on that link through a flow function. The dynamical flow network is called partially transferring if the total inflow at the destination node is asymptotically bounded away from zero, and its weak resilience is measured as the minimum sum of the link-wise magnitude of all disturbances that make it not partially transferring. The weak resilience of a dynamical flow network with arbitrary routing policy is shown to be upper-bounded by the network's min-cut capacity, independently of the initial flow conditions. Moreover, a class of distributed routing policies that rely exclusively on local information on the particle densities, and are locally responsive to that, is shown to yield such maximal weak resilience. These results imply that locality constraints on the information available to the routing policies do not cause loss of weak resilience. Some fundamental properties of dynamical flow networks driven by locally responsive distributed policies are analyzed in detail, including global convergence to a unique limit flow.Comment: 32 pages, 5 figures, journal submissio

    Discrete analogue computing with rotor-routers

    Full text link
    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogues of continuous linear systems and deterministic analogues of stochastic processes.Comment: To appear in Chaos Special Focus Issue on Intrinsic and Designed Computatio

    Resilience of Locally Routed Network Flows: More Capacity is Not Always Better

    Full text link
    In this paper, we are concerned with the resilience of locally routed network flows with finite link capacities. In this setting, an external inflow is injected to the so-called origin nodes. The total inflow arriving at each node is routed locally such that none of the outgoing links are overloaded unless the node receives an inflow greater than its total outgoing capacity. A link irreversibly fails if it is overloaded or if there is no operational link in its immediate downstream to carry its flow. For such systems, resilience is defined as the minimum amount of reduction in the link capacities that would result in the failure of all the outgoing links of an origin node. We show that such networks do not necessarily become more resilient as additional capacity is built in the network. Moreover, when the external inflow does not exceed the network capacity, selective reductions of capacity at certain links can actually help averting the cascading failures, without requiring any change in the local routing policies. This is an attractive feature as it is often easier in practice to reduce the available capacity of some critical links than to add physical capacity or to alter routing policies, e.g., when such policies are determined by social behavior, as in the case of road traffic networks. The results can thus be used for real-time monitoring of distance-to-failure in such networks and devising a feasible course of actions to avert systemic failures.Comment: Accepted to the IEEE Conference on Decision and Control (CDC), 201

    Convexity and Robustness of Dynamic Traffic Assignment and Freeway Network Control

    Get PDF
    We study the use of the System Optimum (SO) Dynamic Traffic Assignment (DTA) problem to design optimal traffic flow controls for freeway networks as modeled by the Cell Transmission Model, using variable speed limit, ramp metering, and routing. We consider two optimal control problems: the DTA problem, where turning ratios are part of the control inputs, and the Freeway Network Control (FNC), where turning ratios are instead assigned exogenous parameters. It is known that relaxation of the supply and demand constraints in the cell-based formulations of the DTA problem results in a linear program. However, solutions to the relaxed problem can be infeasible with respect to traffic dynamics. Previous work has shown that such solutions can be made feasible by proper choice of ramp metering and variable speed limit control for specific traffic networks. We extend this procedure to arbitrary networks and provide insight into the structure and robustness of the proposed optimal controllers. For a network consisting only of ordinary, merge, and diverge junctions, where the cells have linear demand functions and affine supply functions with identical slopes, and the cost is the total traffic volume, we show, using the maximum principle, that variable speed limits are not needed in order to achieve optimality in the FNC problem, and ramp metering is sufficient. We also prove bounds on perturbation of the controlled system trajectory in terms of perturbations in initial traffic volume and exogenous inflows. These bounds, which leverage monotonicity properties of the controlled trajectory, are shown to be in close agreement with numerical simulation results
    • …
    corecore