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Robust Network Routing under Cascading Failures
Ketan Savla Giacomo Como Munther A. Dahleh

Abstract—We propose a dynamical model for cascading fail-
ures in single-commodity network flows. In the proposed model,
the network state consists of flows and activation status of the
links. Network dynamics is determined by a, possibly state-
dependent and adversarial, disturbance process that reduces
flow capacity on the links, and routing policies at the nodes
that have access to the network state, but are oblivious to the
presence of disturbance. Under the proposed dynamics, a link
becomes irreversibly inactive either due to overload condition on
itself or on all of its immediate downstream links. The coupling
between link activation and flow dynamics implies that links
to become inactive successively are not necessarily adjacent to
each other, and hence the pattern of cascading failure under our
model is qualitatively different than standard cascade models.
The magnitude of a disturbance process is defined as the sum
of cumulative capacity reductions across time and links of the
network, and the margin of resilience of the network is defined
as the infimum over the magnitude of all disturbance processes
under which the links at the origin node become inactive. We
propose an algorithm to compute an upper bound on the margin
of resilience for the setting where the routing policy only has
access to information about the local state of the network. For
the limiting case when the routing policies update their action
as fast as network dynamics, we identify sufficient conditions on
network parameters under which the upper bound is tight under
an appropriate routing policy. Our analysis relies on making
connections between network parameters and monotonicity in
network state evolution under proposed dynamics.

I. INTRODUCTION

Resilience is becoming a key consideration in the design and
operation of many critical infrastructure systems such as trans-
portation, power, water, gas, and data networks. Due to their
increasing scale and interconnectedness, these systems tend to
exhibit complex behaviors that pose several new challenges
in their design and operation. In particular, while exhibiting
good performance in terms of both efficiency and robustness
to fluctuations in nominal operating conditions, such systems
can be fragile to unexpected local disruptions that may give
rise to cascading failures with potentially systemic effects. The
problem is further exacerbated by the fact that local actions
aimed at mitigating disruptions can increase vulnerability of
the other parts of the system.

Models for cascading phenomena in infrastructure networks
have been proposed in the statistical physics literature and
studied mainly through numerical simulations, e.g., see [1],
[2], [3], [4], [5]. Simpler models, based on percolation and
other interacting particle systems describing the activation sta-
tus of nodes and links as dependent on the activation status of
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their neighbors in the network, have lend themselves to more
analytical studies, [6], [7], [8]. While largely used to model
the spread of epidemics and rumors in social and economic
networks, cascading failures in financial networks and in wire-
less networks [9], [10], [11], [12], the applicability of the latter
models to the design and control of actual physical networks
is severely limited because of their simplistic description of
the causal relationship between failures of successive nodes
and links. In particular, an inherent characteristic of such
percolation- and interacting particles-based models is that the
successive nodes and links to fail are constrained to be adjacent
to each other, which is typically not the case in infrastructure
networks (see, e.g., [13]). In particular, there is extensive
work on studying cascading failures in power networks using
physics-based models, e.g., see [14] for a recent overview.
Recently, some of these models have also been analyzed from
a control perspective, e.g., see [15], [16].

This paper is concerned with dynamical model for cascading
failures in single-commodity flow networks, and with the
characterization of maximally resilient routing policies. The
modeling framework is inspired by transportation and data
networks. When considering dynamical models for cascading
failures in physical infrastructure networks, there are several
possibilities for time scale separation between link inactivation
dynamics under overload, flow dynamics and reaction time
of routing (control) policies that can simplify the analysis.
The rate of information propagation among geographically
distributed routing policies relative to the dynamics can add
further complexity. In this paper, we focus our analysis on
the limiting case when the rate of information propagation
is slow (i.e., routing policies are distributed), and the link
inactivation and flow dynamics under routing policies evolve at
the same and much faster time scale. Our ability to analyze the
dynamical model relies on identifying conditions under which
the network state evolves monotonically. Irreversibility in link
inactivation in our model naturally implies monotonicity in
the link activation status. However, monotonicity in the link
flows requires additional restrictions on the routing policy.
We study these restrictions under flow monotonicity and link
monotonicity which refer to the sensitivity of the action of a
distributed routing policy with respect to changes in inflow
(due to changes in the upstream part of the network) and
activation status of outgoing links, respectively.

The contributions of the paper are as follows. First, we
propose a dynamical model for cascading failures in network
flows and formally state the problem of designing maximally
resilient routing policies. Second, we propose a backward
propagation algorithm for computing an upper bound on the
margin of resilience and to motivate the design of a maximally
resilient routing policy. Third, we introduce the properties of
flow and link monotonicity for distributed routing policies, and
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show that these are sufficient conditions for the upper bound to
be tight. Finally, we identify sufficient conditions on network
parameters under which these monotonicity conditions are
satisfied.

The paper is organized as follows. In Section II, we present
our dynamical model for cascading failures in network flow
under routing policies. Section III contains main results of
this paper in terms of upper bound computation, monotonicity
conditions on the routing policies and sufficient conditions on
network parameters to guarantee these monotonicity proper-
ties. The proofs of the main results are collected in Section IV.
Section V provides concluding remarks. The appendix con-
tains a technical lemma which is used heavily in the proofs in
Section IV.

Before proceeding, we define some preliminary notations to
be used throughout the paper. Let R be the set of real numbers,
R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real num-
bers, and N be the set of natural numbers. When A is a finite
set, |A| will denote the cardinality of A, RA (respectively, RA+)
will stay for the space of real-valued (nonnegative-real-valued)
vectors whose components are indexed by elements of A. For
x ∈ RA and y ∈ RB, x′ stands for the transpose of x, and
x ≤ y means that xi ≤ yi for all i ∈ A ∩ B. When A = B,
x′y stands for the dot product of x and y. The all-one and
all-zero vectors will be denoted by 1 and 0, respectively, their
size being clear from the context. A directed multigraph is the
pair (V, E) of a finite set V of nodes, and of a multiset E of
links consisting of ordered pairs of nodes (i.e., we allow for
parallel links between a pair of nodes). If e = (v, w) ∈ E is
a link, where v, w ∈ V , we shall write σe = v and τe = w
for its tail and head node, respectively. The sets of outgoing
and incoming links of a node v ∈ V will be denoted by
E+v := {e ∈ E : σe = v} and E−v := {e ∈ E : τe = v},
respectively. For x ∈ R, we shall use the notation [x]+ to
mean max{0, x}.

II. DYNAMICAL MODEL FOR NETWORK FLOWS AND
PROBLEM FORMULATION

In this section, we propose a dynamical model for cascading
failure in network flows under distributed routing policies. We
model network flows as finite weighted directed multi-graphs
N = (V, E , C), where V and E stand for the sets of nodes and
links, respectively, and C ∈ RE is the vector of link capacities,
all assumed to be strictly positive. We refer to nodes with no
incoming links as origin nodes and to those with no outgoing
links as destination nodes. The set of destination nodes is
denoted by D. Nodes which are neither origin nor destination
are referred to as intermediate nodes and are assumed to lie
on a path from some origin to some destination.

Let an external inflow λo ≥ 0 be associated to every
origin node o ∈ V , and, by convention, put λv = 0 for
every other node v. Then, the max-flow min-cut theorem,
e.g., see [17], implies that a necessary and sufficient condi-
tion for the existence of a feasible equilibrium flow is that
the capacity of every cut in the network is larger than the
aggregate inflow associated to the non-destination side of
the cut. Here, a feasible equilibrium flow refers to a vector

f ∈ RE+ satisfying capacity constraints fe < Ce on every link
e ∈ E , and mass conservation at every non-destination node,
i.e, λv +

∑
e∈E−v fe =

∑
e∈E+v fe for all v ∈ V \ D. On the

other hand, a cut refers to a subset of non-destination nodes
U ⊆ V \ D , with CU :=

∑
e∈E:σe∈U,τe∈V\U Ce standing for

its capacity and λU :=
∑
v∈U λv for the associated aggregate

external inflow. Then, the necessary and sufficient condition
for the existence of a feasible equilibrium flow is

max
U
{λU − CU} < 0, (1)

with the index U running over all possible cuts.
We now describe network flow dynamics, evolving in dis-

crete time. Let N = (V, E , C) be a network as above, with
inflows λo at the origin nodes satisfying condition (1). At
every time t = 0, 1, . . ., the state of the system is described
by a tuple (V(t), E(t), f(t), C(t)) where: V(t) ⊆ V \ D and
E(t) ⊆ E are the subsets of active non-destination nodes, and
links, respectively; f(t) ∈ RE+ is the vector of link flows; and
C(t) ∈ RE , with 0 ≤ Ce(t) ≤ Ce, is the vector of residual
link capacities. The initial condition (V(0), E(0), C(0), f(0))
is such that V(0) = V \ D, E(0) = E , i.e., all non-destination
nodes and all links start active, C(0) = C, and f(0) is a
feasible equilibrium flow for N .

Given its current state (V(t), E(t), f(t), C(t)) at time t =
0, 1, 2, . . ., the network evolves as follows. All currently active
links which become overloaded, i.e., whose current flow
exceeds the current residual capacity, along with all those
whose head node is currently inactive, become irreversibly
inactive, i.e.,

E(t+1) = E(t)\{e ∈ E(t) : fe(t) ≥ Ce(t)}\{e ∈ E(t) : τe(t) /∈ V(t)} .
(2)

All currently active nodes v that have no active outgoing link
become irreversibly inactive, i.e.,

V(t+ 1) = V(t) \ {v ∈ V(t) : E+v (t) = ∅} . (3)

At every currently active node v ∈ V(t), a routing policy
determines how to split the current inflow λv(t) := λv +∑
e∈E−v (t) fe(t) among the set E+v (t) of its currently active

outgoing links, so that

fe(t+ 1) = Ge
(
E+v (t), λv(t)

)
, e ∈ E+v (t) . (4)

Finally, the residual capacity vector is reduced by a disturbance
δ(t) ∈ RE+ so that

Ce(t+ 1) = Ce(t)− δe(t+ 1) , e ∈ E(t). (5)

The sequence (δ(1), δ(2), . . .) ⊆ RE+ of incremental flow
capacity reductions is meant to represent an external, possibly
adversarial and network state dependent, process that, without
any loss of generality, will be assumed to satisfy

∆(t) :=
∑

1≤s≤t

δ(s) ≤ C , ∀t ≥ 1 . (6)

Observe that, in writing (4), we have assumed that the
routing at node v is determined only by the local observation
of the current inflow λv(t) and the currently active set of
outgoing links E+v (t). In particular, the routing policies have
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no information about the residual link capacities, or equiva-
lently about the disturbance process. The formal definition of
distributed oblivious routing policies is as follows.

Definition 1. Given a network N = (V, E , C), a distributed
oblivious routing policy G is a family of functions

Gv(J , · ) : R+ → RJ+ , v ∈ V \ D , ∅ 6= J ⊆ E+v ,

such that, for every µ ≥ 0,
∑
e∈J G

v
e(J , µ) = µ, and, for all

K ⊆ J ⊆ E+v ,
Gv(J , µ) ≤ Gv(K, µ). (7)

In reading (7), recall our notation established at the end
of Section I that, for x ∈ RA and y ∈ RB, x ≤ y means
xi ≤ yi for all i ∈ A ∩ B. Definition 1 implicitly implies
that Gve(J , µ) = 0 for all e ∈ E+v \ J . Moreover, we will
assume throughout that the initial equilibrium flow f(0) is
consistent with the given distributed oblivious routing policy,
i.e., Gve(E+v , λv(0)) = fe(0) for all e ∈ E+v , v ∈ V \ D.
In other words, the initial equilibrium flow is specified by
the routing policy and, as long as there is no perturbation,
i.e., δ(t) = 0, the network state does not change. The term
oblivious in distributed routing policies is meant to emphasize
that routing policies have no information about the disturbance
process. Hereafter, unless explicitly stated otherwise, we shall
refer to a routing policy satisfying Definition 1 simply as a
distributed routing policy. Equation (7) implies that, at every
node, for a fixed inflow, shrinking of the set of active links
results in increase in flow assigned to each of the remain-
ing active outgoing links. We shall refer to (7) as the link
monotonicity property. While (7) represents a natural condition
for distributed routing policies, the maximally resilient routing
policies designed in this paper have been found to satisfy it.
Alternately, one could regard the results in this paper to be
optimal within this class of distributed routing policies. We
provide additional comments on this aspect in Remark 7.

Remark 1. Condition (7) is satisfied by any routing policy at
a node v if |E+v | ≤ 2.

A simple example of a distributed routing policy is the
proportional policy: for every ∅ 6= J ⊆ E+v , v ∈ V \ D,
µ ≥ 0:

Gve(J , µ) =

{ (
Ce/

∑
j∈J Cj

)
µ if e ∈ J ,

0 if e /∈ J .
(8)

The model in (2)-(5) has several salient features worth
emphasizing. First, note that the transition from active to
inactive status of a link is irreversible. Second, note that a
link could become inactive either because it is overloaded or
because its downstream node becomes inactive. The mismatch
between flow and residual capacity of a link, which gives rise
to overload condition, depends on the disturbance process and
the action of a distributed routing policy. Therefore, the links
to fail successively are not necessarily adjacent to each other.
Finally, note that in our model, the routing policy updates its
action at the same time scale as flow and link inactivation
dynamics. An implication of this is that the flow vector f
may not be an equilibrium flow at all time instants because of

violation of flow conservation at some nodes. It is possible to
extend (2)-(5) to model scenarios representing a combination
of centralized and non-oblivious routing, link recovery after
finite time and long range coupling between failure of links.
However, the analysis presented in this paper is restricted to
the model in (2)-(5).

The following example illustrates cascading failure under
the dynamics in (2)-(5).

Example 1. Consider the graph topology depicted in Figure 1,
where the flow capacities are given by C1 = 4 C2 = 4,
C3 = 1.5, C4 = 2.5, C5 = 1, C6 = 1, C7 = 1 and C8 = 1.
Let the arrival rate at the origin be λ = 4. We consider
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Figure 1. A simple graph for the illustration of cascading failure under the
proposed network dynamics.

proportional routing policies, specified in (8), at all the nodes,
under which the initial flow on all links is given by f1(0) = 2,
f2(0) = 2, f3(0) = 3/4, f4(0) = 5/4, f5(0) = 3/8,
f6(0) = 3/8, f7(0) = 5/8 and f8(0) = 5/8. Consider
the network dynamics under a disturbance process for which
δ3(1) = 0.75, δ3(t) = 0 for all t ≥ 2 and δi(t) ≡ 0 for all
i ∈ {1, . . . , 8}\{3}. Since C3(1) = 1.5−0.75 = 0.75 = f3(1),
e3 /∈ E(2). Therefore, f4(3) = 2, f7(4) = 1 and f8(4) = 1.
Since C7(4) = C8(4) = 1, e7 /∈ E(5) and e8 /∈ E(5). By
continuing along these lines, the order of links to become
inactivate is e3, e7 = e8, e4, e1, e2. In particular, the link to
fail after e3 is e7, demonstrating non-adjacency in successive
link failures under our proposed network dynamics.

Remark 2. The model in (2)-(5) is to be contrasted with
the dynamical flow network formulation in our previous
work [18], [19] where every link has infinite buffer capacity,
and hence there are no cascading effects under link overload.
These features are relaxed in our subsequent work [20], where
the links are modeled to have finite buffer capacity, and the
control policy at every node implements routing as well as
flow control under information about the densities and the
disturbances on the links incoming and outgoing from that
node. Such a framework allows for backward propagation
effects, which were proven to increase the resilience of the
network with respect to the framework in [18], [19]. Such
control policies were also shown to exhibit graceful collapse,
i.e., when the inflow to the network exceed its capacity, then all
the critical links saturate simultaneously. In this paper, we con-
strain the actions of the control policies to only routing, and
under no information about the disturbance. We emphasize
that, although the routing policies have no explicit information
about disturbance on the links, they have information about its
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effect on the activation status on the local links. On the other
hand, due to cascade effects, the change in the activation status
of a link may not be exclusively due to disturbance on that
link.

A. Problem Formulation

In this paper, the performance criterion of interest is the
ability of a network to transfer flow from the origin nodes
to the destination nodes, under a wide range of disturbance
processes. We formalize this notion as follows.

Definition 2. Let N be a network, λ a vector of inflows at
the origin nodes, G a distributed routing policy, and (δ(t))t≥1
a disturbance process. Then, the associated network flow
dynamics in (2)-(5) is said to be transferring if

lim
t→+∞

∑
d∈D

∑
e∈E−d

fe(t) =
∑
v

λv , (9)

where the summation in v is over the origin nodes.

Observe that, since f(0) is assumed to be a feasible equilib-
rium flow, one has that, at time 0, the aggregate outflow from,
and inflow to, the network match, i.e.,

∑
d∈D

∑
e∈E−d

fe(0) =
λ. Definition 2 requires that, for a network N and a distributed
routing policy G to be transferring under a disturbance process
(δ(t))t≥1, aggregate inflow to, and outflow from the network
also match asymptotically. For disturbance processes that are
active only over finite time, (9) can be rephrased to require
the inflow and the outflow to match at all times with the
possible exception of a finite transient. We shall use this latter
formulation in Section III, where the setup allows to focus only
on finite time disturbance processes without loss of generality.

The magnitude of a disturbance process δ is defined as (see
(6)):

D(δ) :=
∑
e∈E
4e(∞).

Definition 3. Let N be a network, λ a vector of inflows at the
origin nodes, and G a distributed routing policy. The margin of
resilience of the network, denoted as R(N , λ,G), is defined as
the infimum of the magnitude of disturbance processes under
which the associated dynamics is not transferring, i.e.,

R(N , λ,G) := inf
δ
{D(δ) | network flow dynamics in (2)-(5) for N , λ,G, δ is not transferring}.

We are now ready to formally state the problem. Our
objective in this paper is to (i) compute the margin of resilience
under distributed routing policies; and (ii) identify maximally
resilient distributed routing policies. Formally, we consider the
following optimization problem:

R∗(N , λ) = sup
G
R(N , λ,G), (10)

where the supremum is over the class of distributed routing
policies. A distributed routing policy G is called maximally
resilient if R(N , λ,G) = R∗(N , λ).

III. MAIN RESULTS

In this section, we present our main results addressing
problem (10). From now on, we will be restricted to networks
N = (V, E , C) with a single origin destination pair. We will
identify the node set V with the integer set {0, 1, . . . , n}, with
0 and n associated with the unique origin and destination
nodes, respectively. Moreover, let λ > 0 be the constant
inflow at the unique origin node. While extensions to multiple
destinations are straightforward, extensions to multiple origin
nodes is not trivial. We start by giving simple bounds on the
margin of resilience.

A. Simple Bounds

It is straightforward to obtain the following upper and lower
bounds on the margin of resilience, valid for every routing
policy G

min
e∈E
{Ce − fe(0)} ≤ R(N , λ,G) ≤ min

U
CU − λ , (11)

where the minimization in the upper bound is over all the
cuts in N . The lower bound in (11) is due to the fact that
at least one link needs to become inactive to ensure non
transferring of the network, possibly under cascading failure,
and mine∈E {Ce − fe(0)}, which is the minimum among all
link residual capacities, corresponds to the disturbance process
with minimum magnitude that can cause a link to become
inactive. The upper bound in (11), which is usually referred
to as the network residual capacity, is obtained by noting that
the network is non-transferring under a disturbance process
that removes residual capacity at t = 1 from the links that
constitute a min cut of N . As it may be expected, the gap
between the upper and lower bounds can be arbitrarily large
in general networks. As an illustration, in Example 1, the
minimum link residual capacity is 3/18, corresponding to
links e7 and e8, and the network residual capacity is 4,
corresponding to, e.g., the cut {1, 2}. However the example
also constructs a disturbance process of magnitude 0.75 under
which the network is not transferring (under proportional
routing policy).

We now describe a recursive procedure to compute a sharper
upper bound. The quantity computed by this procedure can
be intuitively related to the margin of resilience when there
is a clear time-scale separation between the flow dynamics
(fastest), speed of control action (intermediate) and the link
inactivation dynamics (slowest), and the routing policy is
centralized but oblivious to disturbance. In our current setup,
it will provide an upper bound. Let X (J , λ) be the set of
equilibrium flow vectors when the inflow at the origin node
is λ and the set of active links is J ⊆ E , i.e., X (J , λ) is the
set of f ∈ RJ+ satisfying fe < Ce on every link e ∈ J ,∑
e∈E+0 ∩J

fe = λ and
∑
e∈E+v ∩J fe =

∑
e∈E−v ∩J fe for

all v ∈ V \ {n}. Let S(J , λ) correspond to the margin of
resilience when the network starts with active link set J ⊆ E .
The computation of S(E , λ), which corresponds to margin of
resilience of interest, is based on values of S(J , λ) for all
J ⊆ E as follows. Starting with sets J ⊆ E of size one, i.e.,
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|J | = 1, and then increasing in size, perform the following
recursion: if X (J , λ) = ∅, then S(J , λ) = 0, else

S(J , λ) := max
x∈X (J ,λ)

min
e∈J

(
Ce−xe +S (J \ {e}, λ)

)
. (12)

In (12), Ce−xe is the difference between the original capacity
of link e and the flow on it under control action x by
a (centralized) routing policy. Therefore, it represents the
minimum disturbance on link e that will make it inactive. Since
S (J \ {e}, λ) represents the margin of resilience once link e
is removed, the whole term inside the minimum in (12) is the
magnitude of the smallest disturbance required to make the
network with J links to become non-transferring staring with
removal of link e. The minimization in (12) over all e ∈ J
searches for the initial link e whose inactivation will minimize
the disturbance required to make the network non-transferring.
The outer maximization over the feasible action set of the
(centralized) routing policy maximizes the magnitude of the
worst-case disturbance process that will make the network
non-transferring. The next results states the the output of the
iterations in (12) is indeed an upper bound on the margin of
resilience under any distributed routing policy.

Proposition 1. Let N = (V, E , C) be a network with λ >
0 a constant total inflow at the origin node. Then, for any
distributed routing policy, there exists a disturbance process
(δ(t))t≥1 with D(δ) ≤ S(E , λ) under which the associated
network flow dynamics (2)-(5) is not transferring.

Remark 3. (i) It is easy to prove that S(E , λ) is a tighter
upper bound than the one in (11).

(ii) The computation of S(E , λ) involves recursion over all
sets J in 2E . However, for each e ∈ J ⊆ E and λ ≥
0, the term inside the minimization in (12) is affine in
x ∈ X (J , λ). Hence, computing S(J , λ) is a convex
optimization problem.

For Example 1, by simulations, we find that S(E , λ) ≈ 1.75,
which is less than 4, the value corresponding to the upper
bound in (11). However, it is still greater than 0.75, the
magnitude of disturbance in Example 1, under which the
network is not transferring. This conservatism is because the
recursions in (12) implicitly assume centralized routing, and
do not take into account the possibility of link inactivation
due to the inactivation of the corresponding head node. In
Section III-C, we propose an algorithm, the Backward Propa-
gation Algorithm (BPA), that addresses these limitations to
provide a tighter upper bound, and we identify conditions
under which this upper bound is provably tight. The BPA
is designed for network topologies satisfying the following
acyclicity assumption.

Assumption 1. (V, E) contains no cycles.

A consequence of Assumption 1, the oblivious property of
routing policies and the finiteness of V and E is that, we can
assume without loss of generality that, for every e ∈ E , there
exists at most one te ≥ 0 such that δe(te) > 0, and that
δ(t) = 0 after some finite time. Therefore, it is sufficient to
restrict our attention to disturbance processes δ that are non-
zero only for a finite time, and hence there exists a finite

time after which (V(t), E(t), f(t), C(t)) comes to a steady
state under any such disturbance process δ. Let T denote that
finite termination time. In this case, Definition 2 simplifies as:
network flow dynamics is transferring if λn(T ) = λ.

The formulation and analysis of the BPA implicitly relies on
the following simple result showing an equivalence between
a network being transferring and its origin node being active
all the time.

Proposition 2. Let N be a network satisfying Assumption 1
with λ a constant inflow at the origin node, G a routing policy,
and (δ(t))t≥1 a disturbance process. Then, the associated
network flow dynamics (2)-(5) is transferring if and only if
0 ∈ V(T ). Moreover, λn(T ) ∈ {0, λ}.
Remark 4. The analyses of conventional models for cascading
failure focus primarily on the connectivity of the residual
graph (V(T ), E(T )). For the setting of this paper, the proof
of Proposition 2 can be used to easily show that there exists
a directed path from 0 to n in (V(T ), E(T )) if and only if the
associated network flow dynamics is transferring.

B. Simple settings
Before describing the BPA, we present results for the

maximal margin of resilience and the maximally resilient
routing policy in simple settings. We use these calculations
merely to motivate the key steps in the construction of BPA,
and refer to Theorems 1 and 2 for their rigorous justification.
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Figure 2. Illustrative simple network topologies.

Let N1 denote the flow network illustrated in Figure 2(a),
with E1 = {e1, e2}, maximum link flow capacities Ci, i = 1, 2.
The routing policy at node 0 is completely specified by any
vector x ∈ X (E1, λ). Considering all the possible outcomes
of the disturbance process, the margin of resilience is given
by:

R(λ,N1, x) = min
{

[C1 − x1]+ + [C2 − λ]+, [C2 − x2]+ + [C1 − λ]+, [C1 − x1]+ + [C2 − x2]+
}

(13)

= min
{

[C1 − x1]+ + [C2 − λ]+, [C2 − x2]+ + [C1 − λ]+
}
,

where first term inside the min in the right hand side of
(13) corresponds to the inactivation of link e1 at t = 2
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under δ(1) = [[C1 − x1]+ 0]
′ followed by inactivation of

e2 at t = 3 under δ(2) = [0 [C2 − λ]+]
′, the second

term corresponds to inactivation of e2 at t = 2 followed
by inactivation of e1 at t = 3, and the third term corre-
sponds to the simultaneous inactivation of links e1 and e2
at t = 2 under δ(1) = [[C1 − x1]+ [C2 − x2]+]

′. Therefore,
the maximum possible margin of resilience, and the corre-
sponding maximally resilient routing policy are, respectively,
given by R∗(N1, λ) = maxx∈X (E1,λ)R(N1, λ, x) and x∗ =
argmaxx∈X (E1,λ)R(N1, λ, x), which, using simple algebra,
can be computed as (see Figure 3 (a) for an illustration):

R∗(N1, λ) =


C1 + C2 − 3λ/2 if λ ∈ [0,C] ,
C/2 + C̄ − λ if λ ∈

[
C, C̄

]
,

(C1 + C2)/2− λ/2 if λ ∈
[
C̄, C1 + C2

]
,

0 if λ ≥ C1 + C2 ,
(14)

where C := min {C1, C2} and C̄ := max {C1, C2}, and (see
Figure 3 (b) for an illustration)

x∗1(λ) =


λ/2 if λ ∈ [0,C]
C1/2 + (λ− (C1 + C2) /2) 1C1>C2 if λ ∈

[
C, C̄

]
λ/2 + (C1 − C2) /2 if λ ∈

[
C̄, C1 + C2

]
.

(15)fig 31
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Figure 3. Illustrations of (a) R∗(N1, λ) and (b) x∗1(λ) for C1 = 10 and
C2 = 14; and (c) R∗(N2, λ) for C3 = 20, C1 = 10 and C2 = 14.

Figure 3 (b) illustrates that proportional routing policies
(e.g., see (8)) where the proportionality constants are in-
dependent of the arrival rate are in general not maximally
resilient. For N1, comparing (13) and (12), we see that
R∗(N1, λ) = S(E1, λ).

Let N2 denote the flow network illustrated in Figure 2(b),
with maximum link flow capacities Ci, i = 1, 2, 3. Following
the dynamics in (2)-(5), link e3 can become inactivate because
of saturation of link e3 or because of inactivation of node
τe3 = 1. Accordingly, the maximum margin of resilience is the
minimum of [C3−λ]+ and the maximum margin of resilience
of the sub-network rooted at node 1 when the inflow at node 1
is λ. From our analysis of N1, the latter is equal to R∗(N1, λ),
and hence the maximally resilient routing policy at node 1 is
the same as in (15). An illustration of R∗(N2, λ) is given
in Figure 3 (c). In this case, S(E , λ) from (12) is in general
not equal to R∗(N2, λ). This is because (12) does not take

into account the possibility of e3 becoming inactive due to
inactivation of node 1.

Before proceeding with our next example, we define feasible
flow vectors over active local links at node v. This will be the
set of feasible control actions for the routing policy at node
v. For J ⊆ E+v , r ∈ RE

+
v

+ , v ∈ V \ {n} and µ ≥ 0, let

Xv(J , r, µ) :=
{
x ∈ RJ+ : r ≤ x ≤ C; 1′x = µ

}
. (16)

(16) is a local version of the set X (J , λ) used in (12) with two
exceptions. First, (16) is defined for a generic inflow µ, since
the inflow at v is time-varying. Second, as will become clear in
the construction of BPA, the presence of element-wise lower
bound r allows one to impose the link monotonicity property
defined in (7).

Let N3 denote the flow network illustrated in Figure 2(c),
with maximum link flow capacities Ci, i = 1, 2, 3. Let
S(J , r, λ) be the margin of resilience when the set of active
links at node v is J ⊆ E+v , and when the action of routing
policy is constrained to be element-wise greater than r. For
all e ∈ E+v , S(e, r, λ) = 0 if λ < re or λ ≥ Ce, and
S(e, r, λ) = Ce − λ otherwise. For |J | ≥ 2 in N3, one can
write the following recursion:

S(J , r, λ) = max
x∈X0(J ,r,µ)

min
e∈J

(
Ce − xe + S(J \ {e}, x, λ)

)
.

(17)
Inside the minimization in (17), the term Ce − xe is the
difference between the capacity of link e when the flow
on it is xe, and hence represents the minimal disturbance
required to make link e inactive under routing action x. The
term S(J \ {e}, x, λ) is the magnitude of disturbance that is
sufficient to make the network non-transferring after link e has
become inactive, under the constraint that the flows on links in
J \{e} can not be element-wise less than the flow x on them
when e was active. The margin of resilience for N3 is then
S(E ,0, λ). The ability of (17) to incorporate link monotonicity
constraints yields a sharper upper bound in comparison to (12).

The recursion in (17) can be used to derive margin of
resilience for a network with arbitrary number of links between
nodes 0 and 1 in Figure 2 (c). However, in order to handle
networks with arbitrary number of links between nodes 1 and 2
in Figure 2 (b), we need to include the effect of inactivation of
downstream nodes into (17). This is the basis of the Backward
Propagation Algorithm, which we describe next.

C. The Backward Propagation Algorithm (BPA)

We now describe the Backward Propagation Algorithm
(BPA) to compute a tighter upper bound on the margin of
resilience in comparison to Proposition 1. The same algorithm
will also motivate the design of BPA routing which will
be proven to be maximally resilient under certain sufficient
conditions.

Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V = {0, . . . , n}
(see, e.g., [21]). We shall assume to have fixed one such
ordering in such a way that E−v ⊆ ⋃

0≤u<v E+u for all
v = 1, . . . , n. We recall that the depth of a graph (V, E)
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satisfying Assumption 1 is the length of the longest directed
path in (V, E).

Algorithm 1: The Backward Propagation Algorithm
(BPA)

1: S(E+n , r, µ) := +∞ for all r ∈ RE
+
n

+ and µ ≥ 0
{destination node}

2: for v = n− 1, n− 2, . . . , 0 do {construct a series of
intermediate functions for every node starting with
n− 1, and going backward up to the origin}

3: for all r ∈ RE
+
v

+ and µ ≥ 0,

S(∅, r, µ) = 0

S(J , r, µ) := 0 if Xv(J , r, µ) = ∅, ∀ ∅ 6= J ⊆ E+v ,

Se(µ) = S(e, r, µ) := min
{
Ce−µ, S(E+τe ,0, µ)

}
∀ e ∈ E+v .

(18)
4: iteratively compute S(J , r, µ) for J ⊆ E+v of

increasing size, starting with sets of size 2:

S(J , r, µ) := max
x∈Xv(J ,r,µ)

min
e∈J

(
Se(xe)+S

(
J \{e}, x, µ

))
(19)

5: end for

Note that r appears only in the constraint set in the right
hand side of (19). The fundamental difference between the
recursions in (19) and (17) is in the first term inside the
minimization in (19). This term represents the minimum
magnitude of disturbance required to make a link inactive.
While it was sufficient to consider the disturbance on link e for
this purpose in N3, for general networks, (18) implies that the
minimal disturbance could correspond to making the down-
stream node inactive. Therefore, the recursive computations at
node v depend on the outcome of the computations done for
nodes downstream to v. The Backward Propagation Algorithm
derives its name from the central feature of the algorithm,
where an intermediate node collects S(E+v , r, µ) functions
from its downstream nodes, performs updates with respect to
local network parameters, and transmits it to upstream nodes.
As such, the BPA can be executed in a distributed fashion.

Complementary to the maximization in (19) is the set of
corresponding maximizers:

g (J , r, µ) := argmax
x∈Xv(J ,r,µ)

min
e∈J

(
Se(xe)+S (J \ {e}, x, µ)

)
.

(20)
A simple implication of (20) which is used heavily in the paper
is:

z ∈ g (J , r, µ) =⇒ z ≥ r. (21)

D. Upper bound on the margin of resilience

The quantity S(E+0 ,0, λ) computed by BPA is next shown
to be an upper bound on the margin of resilience under
any distributed routing policy. For brevity in notation, we let
S∗(N , λ) := S(E+0 ,0, λ).

Theorem 1. Let N be a network satisfying Assumption 1 and
with λ a constant inflow at the origin node. Then, for any

distributed routing policy G, there exists a disturbance process
(δ(t))t≥1 with D(δ) ≤ S∗(N , λ) under which the associated
network flow dynamics (2)-(5) is not transferring.

Remark 5. (i) Theorem 1 implies that R(N , λ,G) ≤
S∗(N , λ) for all distributed routing policies G, and
hence R∗(N , λ) ≤ S∗(N , λ).

(ii) While the statement of Theorem 1 merely suggests the
existence of a worst-case disturbance process, its proof
in Section IV-D explicitly constructs one such distur-
bance process. Therefore, in scenarios when the upper
bound in Theorem 1 is tight, this constructive procedure
can also be used to identify the most vulnerable links of
the network for adversarial setting.

(iii) The computational complexity of BPA has tradeoffs in
comparison to (12). On one hand, while the recursion
in (12) involves all elements in 2E , BPA involves all
elements only in ∪v2E

+
v , which is much smaller in

comparison, especially when |V| is large. On the other
hand, (12) involves computation only for a fixed λ,
whereas BPA involves computations, in general, for all
µ ∈ [0, λ] and r ∈ Xv(J ,0, µ). Moreover, whereas
each recursion in (12) is a convex optimization problem
(see Remark 3 (ii)), BPA does not enjoy this property
in general. This is because, under (18), the expression
inside the minimization in (19) is in general not affine
in x, e.g., see Figure 3 (c) for an illustration.

E. BPA routing and lower bound on the margin of resilience

In this section, we develop lower bounds for R∗(N , λ).
This will be done by analyzing a specific distributed routing
policy, called BPA-routing, whose construction is inspired by
the Backward Propagation Algorithm. BPA routing is a routing
policy that satisfies the following for all v ∈ V \ {n}, µ ≥ 0:

r∗ := Gv(E+v , µ) ∈ g
(
E+v ,0, µ

)
,

Gv (J , µ) ∈ g (J , r∗, µ) , J ⊂ E+v .
(22)

BPA routing derives its name from the fact that it relies on
the function g(J , r, µ) from (20), which is directly related
to the central computation in the BPA. However, note that
the lower bound r∗ in (22) is independent of J and µ, and is
always equal to the action of the routing policy under the same
inflow µ, when all local links are active, and with no lower
bound constraint. Following (21), Gv(J , µ) ≥ Gv(E+v , µ) for
all J ⊆ E+v and µ ≥ 0. The following lemma formally
states conditions under which BPA routing satisfies the link
monotonicity in (7).

Lemma 1. Let N be a network satisfying Assumption 1 with
|E+v | ≤ 3 for all v ∈ V \ {n}. Then BPA routing defined in
(22) and (20) satisfies (7), and hence is a distributed routing
policy as per Definition 1.

Proof. The only non-trivial case to prove is that, for every
j ∈ J ⊆ E+v , µ ≥ 0, BPA routing satisfies:

Gv(E+v , µ) ≤ Gv(E+v \ {j}, µ).

This is straightforward since (21) implies Gv(E+v \ {j}, µ) ≥
r∗ = Gv(E+v , µ).



8

In general, BPA routing is not readily maximally resilient
for general networks. This is because if a non-destination node
v has multiple incoming links, then inactivation of v results
in inactivation of all the incoming links. However, the BPA
algorithm does not take into account such correlations between
link inactivations and hence the upper bound in Theorem 1
is conservative for networks which are not trees. While it is
possible to modify BPA algorithm to reduce this conservatism,
this comes with additional computational complexity and ad-
ditional difficulty in formulating the corresponding maximally
resilient routing policy. Therefore, we make the following
directed tree assumption in this paper for deriving lower bound
on the margin of resilience.

Assumption 2. (V \ {n}, E \ E−n ) is a directed tree1.

We emphasize that Assumption 2 puts a tree-like assumption
on the original graph minus the destination node n, and
the set of links E−n incoming to the destination node. In
particular, under Assumption 2, the destination node n is
allowed to have multiple incoming links. For example, the
graph topology illustrated in Figure 1 satisfies Assumption 2.
However, with a slight abuse of terminology, we refer to N
satisfying Assumption 2 as a tree. Note that, N satisfying
Assumption 2 is a tree rooted at the unique origin node.

Remark 6. For a network satisfying Assumption 2, if λ is less
than the min cut capacity, then f(0) under BPA routing is an
equilibrium flow. Recall that the max flow min cut theorem
implies that this is also a necessary condition for the existence
of an equilibrium flow.

BPA routing is maximally resilient on flow networks which
are trees and symmetric. Recall that a weighted rooted tree of
depth one is called symmetric if all the links outgoing from
the root node have equal weights. A weighted rooted tree of
depth greater than one is called symmetric if all the sub-trees
rooted at the children2 nodes are symmetric, and identical to
each other.

Proposition 3. Let N be a symmetric network satisfying
Assumption 2 with λ > 0 a constant inflow at the origin node
and BPA routing policy. Then, the associated network flow
dynamics (2)-(5) is transferring for every disturbance process
(δ(t))t≥1 with D(δ) < S∗(N , λ).

The tree assumption is not sufficient for BPA routing to
match the upper bound S∗(N , λ) given by the BPA for net-
works which are not symmetric, as illustrated in the following
example.

Example 2. Consider the graph topology from Figure 1, with
λ = 2, C1 = 2.5, C2 = 0.17, C3 = 0.6, C4 = 2, C5 = 2,
C6 = 2, C7 = 0.6 and C8 = 1.5.

The plot of x∗3(µ) := Ge3(E+1 (0), µ) vs. µ under BPA
routing for these values is given in Figure 4, which shows
that x∗3(µ) is decreasing in µ over [1.9, 2]. Also, for these

1Recall that (V, E) is a directed tree if the undirected graph underlying
(V, E) is a tree.

2In a directed tree (V, E), u ∈ V is called a children node of v ∈ V if
E−
u ∩ E+

v 6= ∅.
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Figure 4. Plot of x∗3(µ) := Ge3 (E
+
1 (0), µ) vs. µ.

values, S∗(N , λ) = 0.3. Consider a disturbance process
such that δ2(1) = 0.07, δ3(1) = 0.2, δi(1) = 0 for
i ∈ {1, . . . , 8} \ {2, 3} and δ(t) ≡ 0 for all t ≥ 2. The
magnitude of such a disturbance process is 0.27, which is
strictly less than S∗(N , λ) = 0.3. We now describe how
such a disturbance process makes the associated network flow
dynamics (2)-(5) not transferring.

Under BPA routing, f(0) is such that: 2−f2(0) = f1(0) =
1.9. Figure 4 then implies that 1.9 − f4(0) = f3(0) = 0.4.
Since C2(1) = 0.1 = f2(1) and C3(1) = 0.4 = f3(1),
{e2, e3} /∈ E(2). Hence f1(3) = 2 and f4(4) = 2 = C4.
This implies that e4 /∈ E(5), and hence e1 /∈ E(7), which
leads to the dynamics being not-transferring.

On the other hand, it is easy to see that the dynamics
would be transferring under this disturbance process if the
routing policy at node 1 is such that f3(0) < 0.4, and
f3(0) = x∗3(2) = 0.35 (see Figure 4) in particular. This would
correspond to the routing policy at node 1 anticipating its
inflow in advance, which is not feasible under the oblivious
and distributed setting for routing policies.

Example 2 suggests that the non-monotonicity in the con-
trol action of BPA routing, and hence in the evolution of
flows on the links, under point-wise (with respect to inflow)
optimization could lead to its sub optimality. This motivates
consideration of the following additional constraint.

Definition 4. A distributed routing policy G is called flow-
monotone at node v ∈ V \ {n} if, for every J ⊆ E+v :

0 ≤ µ1 ≤ µ2 =⇒ Gv(J , µ1) ≤ Gv(J , µ2), (23)

Under a flow-monotone routing policy, if the inflow at a
node increases, then the flow assigned to every active outgoing
link from that node does not decrease. A routing policy which
is flow monotone over all v ∈ V \ {0, n}, is said to be flow
monotone over N . We exclude the origin node because the
inflow λ at the origin node is fixed.

Remark 7. Note that, unlike the link monotonicity condition
in (7), we did not include the flow monotonicity condition in
(23) as part of the definition of distributed routing policies.
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This is because, while Example 2 illustrates that BPA routing
is not necessarily flow monotone, we have not been able to
find an example where link monotonicity is violated by BPA
routing with r∗ = 0 in (22). However, a mathematical proof
to support this observation is lacking at this point.

Under a flow monotone distributed routing policy, the
network dynamics can be easily shown to possess the fol-
lowing simple property (which we state without proof), which
simplifies the analysis considerably.

Lemma 2. Let N be a network with |E+v | ≤ 3 for all v ∈
V\{n} and satisfying Assumption 2, λ > 0 a constant inflow at
the origin node and BPA routing policy that is flow monotone.
Then,

t1 ≤ t2 =⇒ fe(t1) ≤ fe(t2) ∀ e ∈ E(t2).

The following is a key result, which, along with Theorem 1,
identifies conditions under which BPA routing is maximally
resilient.

Theorem 2. Let N be a network with |E+v | ≤ 3 for all
v ∈ V \ {n} and satisfying Assumption 2, λ > 0 a constant
inflow at the origin node and BPA routing policy that is flow
monotone. Then, the associated network flow dynamics (2)-(5)
is transferring for every disturbance process (δ(t))t≥1 with
D(δ) < S∗(N , λ).

Since BPA routing is completely specified by network
parameters (V, E , C), flow monotonicity is a condition on
the network parameters. BPA routing is flow monotone at v
trivially if |E+v | = 1. One could perform extensive (offline)
numerical tests to check flow-monotonicity of BPA routing
over a given flow network N . However, it is possible to
identify a few flow networks over which BPA routing is prov-
ably flow-monotone. In order to characterize such networks in
Proposition 4 and Remark 8 below, we need the concept of d-
expansion of a network: given N , its d-expanded version N d

is obtained by creating multiple copies of the destination node
in N , one for each incoming link. For example, the network in
Figure 5(a) is d-expanded version of the network in Figure 2
(a). It is easy to recover the original flow network from its
d-expanded version.

Proposition 4. Let N be a network satisfying Assumption 2
with λ > 0 a constant inflow at the origin node. Then, BPA
routing is flow-monotone at v ∈ V if the the sub-tree in the
d-expanded version N d rooted at v is either (a), or (b) with
Ce2 ≥ Ce1 or (c) with Ce1 = Ce2 in Figure 5.

Remark 8. Let N̄ d denote the set of d-expanded versions
of “simple” flow networks over which BPA routing is known
to be flow monotone, either from explicit analysis as in
Proposition 4, or through extensive simulations. One can use
N̄ d as a basis to form arbitrarily large networks over which
BPA routing is flow monotone, using an iterative procedure
as follows. Initialize N d to be an element of N̄ d. At each
iteration, execute the following concatenation step. Take any
destination node in N d, say v, with a single incoming link
E−v = {e} and a member N̄ d

i from N̄ d whose origin node is
v0,i. If [Ce − µ]+ ≤ S(E+v0,i ,0, µ) for all µ ∈ [0, Ce], then

fig2
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Figure 5. d-expanded flow networks that induce flow-monotonicity of BPA
routing at the root node v0.

concatenate N̄ d
i to N d at v, i.e., v = v0,i and the the sub-

network downstream of v is N̄ d
i . BPA routing on the flow

network obtained at the end of every iteration of this procedure
is guaranteed to be flow monotone, because (18) implies that
Se(µ) is equal to [Ce−µ]+ even in the concatenated network.

Flow monotonicity of BPA routing over a given network N
is maintained even after replacing any link, say e = (u, v), in
N d (at any iteration) with a non-branching chain e1, . . . , ek
such that σe1 = u, τem = v and mini∈{1,...,m} Cei = Ce.

One can also devise a procedure which is counterpart to
the expansion procedure described above to check if the d-
expanded version of a given network N d can be decomposed
into elements of N̄ d, in which case the BPA routing over N d

is flow monotone. As one keeps enriching the basis N̄ d, these
procedures allow to construct or to verify large networks over
which BPA routing is flow monotone, and hence maximally
resilient by Theorem 2.

IV. PROOFS OF THE MAIN RESULTS

In this section, we provide proofs of the main results
presented in Section III. Some of the proofs rely on certain
analytical properties of S(J , r, µ) defined in (19), which we
state first.

A. Technical Lemma

Lemma 3. Consider two networks N 1 = (V, E1, C1) and
N 2 = (V, E2, C2), each satisfying Assumption 1. Let S1 and
S2 be the functions computed by the Backward Propagation
Algorithm for N 1 and N 2 respectively. For any v ∈ V \ {n},
let J be any subset of links outgoing from v and common to
N 1 and N 2. Then,

0 ≤ µ2 ≤ µ1, 0 ≤ r2 ≤ r1, E1 ⊆ E2 and C1 ≤ C2 =⇒ S1(K, r1, µ1) ≤ S2(J , r2, µ2),

where K := {e ∈ J | S1
e (r1e) > 0}.

Proof. We split the lemma as follows:
(i) S1(K, r1, µ1) = S1(J , r1, µ1);

(ii) S1(J , r1, µ1) ≤ S2(J , r1, µ1);
(iii) S2(J , r1, µ1) ≤ S2(J , r1, µ2); and
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(iv) S2(J , r1, µ2) ≤ S2(J , r2, µ2).
Out of these, (iv) is trivial, and hence we omit its proof. We
prove (i)-(iii) by double induction, on the number of nodes
n+1 and the cardinality of J . It is immediate to verify that the
claim holds true for n = 1 and |J | = 1, since with J = {e},
Si(e, r, µ) = Sie(µ) = [Cie − µ]+ for all r, i = 1, 2. Assume
that the claim is true for |V| = n + 1 and for |J | ≤ k.
Consider a J of cardinality k + 1. (19) and (20) imply that,
for all z ∈ g(K ∪ {j}, r1, µ1), j ∈ J \ K:

S1(K∪{j}, r1, µ1) ≤ S1
j (zj)+S1(K, z, µ1) ≤ S1(K, r1, µ1),

(24)
where the second inequality follows from the fact that z ≥
r1 implies 0 ≤ S1

j (zj) ≤ S1
j (r1j ) = 0, and using (iv) from

induction. On the other hand, consider y ∈ Xn+1(J , r1, µ1)
such that ye = r1e for all e ∈ K and yj = µ1−

∑
e∈K r

1
e ≥ r1j ,

where the inequality follows from the feasibility of y. For such
a y, (19) implies that there exists i ∈ K ∪ {j} such that

S1(K∪{j}, r1, µ1) ≥ S1
i (yi)+S1(K∪{j}\{i}, y, µ1) (25)

Consider (25) under two cases. (a) i = j. In this case, since
S1
j (yj) = 0, (25) gives S1(K ∪ {j}, r1, µ1) ≥ S1(K ∪ {j} \
{j}, y, µ1) = S1(K, r1, µ1), where the last equality follows
from the fact that the components of r1 and y along K are
the same. (b) i 6= j. In this case, recalling that ye = r1e for all
e ∈ K, and applying (i) from induction to the second term in
(25), we get that

S1(K∪{j}, r1, µ1) ≥ S1
i (r1i )+S

1(K\{i}, y, µ1) = S1
i (r1i )+S

1(K\{i}, r1, µ1).
(26)

For every z ∈ g(K, r1, µ1), we have

S1
i (r1i )+S

1(K\{i}, r1, µ1) ≥ S1
i (zi)+S

1(K\{i}, z, µ1) ≥ S1(K, r1, µ1),
(27)

where the first inequality follows from z ≥ r1 and (iv) from
induction. Combining (26) and (27), we arrive at the same
conclusion as case (a), i.e.,

S1(K ∪ {j}, r1, µ1) ≥ S1(K, r1, µ1). (28)

Combining (24) and (28), we establish (i) when |J \ K| = 1.
The proof for arbitrary |J \ K| follows from repetitive appli-
cation of this procedure.

The proof for (ii) easily follows from induction since, for
every x, and e ∈ J ,

S1
e (xe) + S1(J \ {e}, x, µ1) ≤ S2

e (xe) + S2(J \ {e}, x, µ1).

In order to prove (iii), using the fact that S2
e (µ) is non-

increasing in µ and S2(J \{e}, r, µ) non-increasing in r from
induction, one gets that, for all r1 such that 1′r1 ≤ µ2,

max
x≥r1

1′x≥µ2

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ2)

}
= max

x≥r1
1′x=µ2

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ2)

}
= S2(J , r1, µ2) .

Specifically, to see why the first equality above holds true,
let the maximum in the rightmost side be achieved in some
x ≥ r1 such that 1′x ≥ µ2, and let θ ∈ [0, 1] be such that
(1 − θ)1′x + θ1′r1 = µ2 (such θ exists since 1′x ≥ µ2 and
1′r1 ≤ µ2). Then, y := (1− θ)x+ θr1 satisfies x ≥ y ≥ r1,

1′y = µ2, and S2
e (ye)+S2(J \{e}, y, µ2) ≥ S2

e (xe)+S2(J \
{e}, x, µ2) for all e. Then, for µ1 ≥ µ2,

S2(J , r1, µ1) = max
x≥r1

1′x=µ1

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ1)

}
≤ max

x≥r1
1′x≥µ2

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ2)

}
= S2(J , r1, µ2) .

This concludes the proof for |V| = n+ 1 and |J | ≤ k+ 1.
A similar argument allows one to extend the validity of the
result to |V| = n + 2 with |J | = 1. The lemma then follows
by induction.

B. Proof of Proposition 1

We first show that, for any λ ≥ 0, K ⊆ J ⊆ E ,

S(K, λ) ≤ S(J , λ). (29)

It suffices to show that S(J \ {e}, λ) ≤ S(J , λ) for all e ∈
J . It is trivially true for |J | = 1. Assume it to be true for
all |J | ≤ k for some k ≥ 1. (12) implies that, for all x ∈
X (J , λ):

S(J , λ) ≥ min
j∈J

(
Cj − xj + S(J \ {j}, λ)

)
= min

(
Ce − xe + S(J \ {e}, λ), min

j∈J\{e}

(
Cj − xj + S(J \ {j}, λ)

))
≥ min

(
S(J \ {e}, λ), min

j∈J\{e}

(
Cj − xj + S(J \ {j}, λ)

))
≥ min

(
S(J \ {e}, λ), min

j∈J\{e}

(
Cj − xj + S(J \ {j, e}, λ)

))
,

(30)

where the second inequality follows the fact that
xe ≤ Ce, whereas the third inequality follows
from the inductive argument on J \ {i}. For x ∈
argmaxz∈X (J\{e},λ) minj∈J\{e}

(
Cj−zj +S(J \{j, e}, λ)

)
we get S(J \{e}, λ) = minj∈J\{e}

(
Cj−xj+S(J \{j, e}, λ),

which when used in (30), finishes the proof for |J | = k + 1.
By induction, (29) is then true for all J ⊆ E .

We now prove the proposition by induction on |J |. When
J = {e}, (12) implies that S(J , λ) ≤ [Ce − λ]+. It
is easy to see that under a disturbance process δe(1) =
[Ce − λ]+ and δe(t) = 0 for all t ≥ 1, the associated
network dynamics will be non-transferring. Assume that the
proposition is true for all J ⊆ E with |J | ≤ k for
some k ≥ 1. Let E(0) = J , with |J | = k + 1. Pick
e ∈ argminj∈J (Cj − fj(0) + S(J \ {j}, λ)). Therefore,

S(J , λ) ≥ Ce − fe(0) + S(J \ {e}, λ). (31)

Consider a disturbance process such that δe(1) = Ce−fe(0)
and δj(1) = 0 for all j ∈ J \{e}. Under this disturbance, link
e becomes inactive, followed by a possible cascading failure.
Let the network state come to a steady state after a finite time
T1. Since, |E(T1)| ≤ k, one can use induction to extend δ after
T1 to ensure that the network dynamics is not transferring. By
induction, the total magnitude of δ is then upper bounded as
D(δ) ≤ δe(1) + S(E(T1), λ). Since E(T1) ( J , using (29),
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this can be further upper bounded as D(δ) ≤ δe(1) + S(J \
{e}, λ) = Ce − fe(0) + S(J \ {e}, λ), which combined with
(31) implies that D(δ) ≤ S(J , λ).

C. Proof of Proposition 2
If 0 /∈ V(T ), then the flow across links outgoing from every

cut U in (V(T ), E(T )), and V(T ) \ {n} in particular, is zero
at T . This implies that λn(T ) = 0. This also proves that
λn(T ) ∈ {0, λ}.

If 0 ∈ V(T ), then J := E(T ) ∩ E+0 is non-empty, and∑
e∈J fe(T ) = λ. Let U = 0 ∪ {v ∈ V(T ) : (0, v) ∈ J }.

It is clear that U ⊆ V(T ), and that U is in fact a cut in
(V(T ), E(T )). Since f(T ) is an equilibrium flow, the total
flow across the links outgoing from U is λ. One can continue
along these lines to claim that the flow across links outgoing
from any cut in (V(T ), E(T )), and V(T ) \ {n} in particular,
is equal to λ. That is, λn(T ) = λ.

D. Proof of Theorem 1
Theorem 1 is a corollary of the following lemma, where we

allow the possibility that (V(0), E(0)) 6= (V, E).

Lemma 4. Consider a node v in a network N with initial
condition (V(0), E(0)) ⊆ (V, E), satisfying Assumption 1, with
a constant inflow µ ≥ 0, and operating under a distributed
routing policy satisfying Gv(E+v (0), µ) ≥ r for some r ∈ RE

+
v

+ .
Then, for any h ∈ N, there exists a finite Tv ≥ h, and a distur-
bance process (δv(t))t≥h satisfying D(δv) ≤ S(E+v (0), r, µ),
under which v /∈ V(Tv).
Proof. It is sufficient to prove the lemma for h = 1. For
brevity in notation, we let f(t) := Gv(E+v (t), µ) be the
action of the control policy at t ≥ 0. By assumption and the
link monotonicity property of routing policy in (7), f(t2) ≥
f(t1) ≥ r for all t2 ≥ t1 ≥ 0. We follow the convention that,
unless specified otherwise, δve (t) = 0 for all e ∈ E and t ≥ 1.

The proof is by double induction, on the number of nodes
n + 1 and the cardinality of |E+v (0)|. The proof is easy to
verify when n = 1 and |E+v (0)| = 1, since in that case, with
E+v (0) = {e}, Se(µ) = [Ce − µ]+, and therefore, one can
apply δve (1) = [Ce−µ]+, under which v /∈ V(2) and D(δv) =
[Ce − µ]+. Assume the lemma to be true for arbitrary acyclic
networks with n+ 1 nodes and |E+v (0)| ≤ k for some k ≥ 1.

For |E+v (0)| = k + 1, pick e in argminj∈E+v (0)

(
[Cj −

fj(0)]+ +S (E+v (0) \ {j}, y, µ)
)
. Consider a disturbance pro-

cess δv such that δve (1) = [Ce − fe(0)]+, in which case

S(E+v (0), r, µ) ≥ [Ce−ye]+ +S(E+v (0)\{e}, f(0), µ). (32)

Let the times at which links fail simultaneously be 2 = t1 ≤
. . . ≤ tm. Let St(J , r, µ) denote the functions computed by
the BPA in (19) for the residual graph (V(t), E(t), C(t)) at
t ≥ 0. By convention, we set S0 ≡ S. Since links in E+v (ti−1)\
E+v (ti) fail simultaneously at ti, Sti−1j (fj(ti− 1)) = 0 for all
j ∈ E+v (ti−1) \ E+v (ti). Therefore, using Lemma 3, for all
i ∈ {2, . . . ,m}:
Sti(E+v (ti), f(ti), µ) ≤ Sti(E+v (ti), f(ti − 1), µ) ≤ Sti−1(E+v (ti), f(ti − 1), µ)

= Sti−1(E+v (ti − 1), f(ti − 1), µ) ≤ Sti−1(E+v (ti−1), f(ti−1), µ),
(33)

where we have used the fact that f(ti) ≥ f(ti− 1) = f(ti−1)
and E(ti − 1) ⊆ E(ti−1). Using the same arguments, since
S1
e (f1(1)) = 0, we have that

St1
(
E+v (t1), f(t1), µ

)
≤ S1

(
E+v (1), f(1), µ

)
= S1

(
E+v (0)\{e}, f(1), µ

)
≤ S

(
E+v (0)\{e}, r, µ

)
.

(34)
Combining (33) and (34), we get that

Stm
(
E+v (tm), f(tm), µ

)
≤ S

(
E+v (0) \ {e}, r, µ

)
. (35)

Using induction on the residual graph at t = tm, where
|E+v (tm)| < |E+v (0)|, one can construct a disturbance process
(δ̃v(t))t≥tm such that v /∈ V(T ), and

D(δ̃v) ≤ Stm
(
E+v (tm), f(tm), µ

)
. (36)

Augmenting δv with δ̃v , i.e., (δv(t))t≥tm = (δ̃v(t))t≥tm , and
applying (32), (35) and (36), we get that

D(δv) = [Ce−fe(0)]++D(δ̃v) ≤ S(E+v (0), f(0), µ) ≤ S(E+v (0), r, µ),

which proves the lemma for acyclic networks with n+1 nodes
and |E+v (0)| = k + 1. The proof can be easily extended to
acyclic networks with n + 2 nodes and |E+v (0)| = k, after
which the lemma follows from induction.

Theorem 1 follows by combining Lemma 4 for v = 0, h =
1, µ = λ, r = 0 and (V(0), E(0)) = (V, E) with Proposition 2.

E. Proof of Proposition 3 and Theorem 2

Proposition 3 follows from Theorem 2 by recalling that,
for symmetric flow networks that are directed trees, BPA
routing satisfies flow monotonicity. Theorem 2 follows from
the following lemmas. The following simple property of the
functions S(J , r, µ) computed in (19) will be useful in the
proofs in this subsection. We recall the definition of g(J , r, µ)
from (20).

Lemma 5. For any x ∈ g(J , r, µ), J ⊆ E+v , r ∈ RE
+
v

+ ,
v ∈ V \ {n} and µ ≥ 0,

S(J , r, µ) ≤
∑
e∈K

Se(xe) + S(J \ K, x, µ) ∀K ⊆ J .

Proof. The lemma is trivially true from (19) and (20) for |K| =
1. Assume it to be true for all K ⊂ J with |K| ≤ k for some
k ≥ 1. Consider the case |K| = k+ 1. Induction implies that,
for any j ∈ K:

S(J , r, µ) ≤
∑

e∈K\{j}

Se(xe) + S(J ∪ {j} \ K, x, µ). (37)

Applying induction to the second term in (37), for every z ∈
g(J ∪ {j} \ K, x, µ) we get

S(J ∪ {j} \ K, x, µ) ≤ Sj(zj) + S(J \ K, z, µ). (38)

z ∈ g(J ∪{j}\K, x, µ) implies z ≥ x, which in turn implies
Sj(zj) ≤ Sj(xj) and S(J \ K, z, µ) ≤ S(J \ K, x, µ) by
Lemma 3. Combining this with (37) and (38) establishes the
lemma for |K| = k+1, and hence for all K ⊆ J by induction.
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For the next lemma, we again allow the possibility that
(V(0), E(0)) 6= (V, E).

Lemma 6. Consider a node v ∈ V \ {n} with |E+v | ≤ 3
in a flow network N with initial condition (V(0), E(0)) ⊆
(V, E), satisfying Assumption 2, and operating under BPA
routing. Let the inflow λv(t) be non-decreasing and satisfy
maxt≥0 λv(t) = µ ≥ 0. If λv(t) ≡ µ , or if BPA routing at v is
flow monotone, then v ∈ V(T ) under any disturbance process
δv satisfying D(δv) < S(E+v (0), r∗, µ), with r∗ = Gv(E+v , µ).

Proof. Let E+v = {e1, e2, e3} and f∗i := Gvei(E+v (0), µ) for
all ei ∈ E+v (0). We consider three possible scenarios for
|E+v (0)| separately. We prove by backward induction on v in
{0, . . . , n−1}. First consider v = n−1. When E+v (0) = {e1},
(18) implies that Se1(µ) = C1−µ ≤ C1−λv(t). Therefore, for
all t ≥ 0, 4e1(t) ≤ 4e1(T ) ≤ D(δv) < Se1(µ) = C1 − µ ≤
C1 − λv(t). That is, fe1(t) = λv(t) < C1 −4e1(t) = C1(t)
for all t ≥ 0, and hence v ∈ V(T ).

When E+v (0) = {e1, e2}, let t1 := min{t ≥ 0 | E+v (t) 6=
E+v (0)}. To avoid triviality, assume t1 < ∞, and let K :=
E+v (0) \ E+v (t1) be the set of links to become inactive simul-
taneously at t1. Then, necessarily 4e(t1) ≥ [Ce− fe(t1)]+ ≥
[Ce−f∗e ]+ for all e ∈ K, where the second inequality follows
from flow monotonicity. Therefore,∑

e∈K
4e(T ) ≥

∑
e∈K
4e(t1) ≥

∑
e∈K

[Ce − f∗e ]+. (39)

Let δ̃K be such that δ̃Ke (t) ≡ 0 for all e ∈ K and δ̃Ke (t) ≡ δve (t)
for all e ∈ E+v (t1). Therefore,

D(δv) = D(δ̃K) +
∑
e∈K
4e(T ). (40)

Combining (39) with Lemma 4, where we note that f∗ :=
Gv(E+v (0), µ) ∈ g(E+v (0), r∗, µ) (from (22)), we get

S(E+v (0), r∗, µ) ≤
∑
e∈K
4e(T ) + S(E+v (t1), f∗, µ) (41)

Combining (41) and (40) with D(δv) < S(E+v (0), r∗, µ),
we get

D(δ̃K) < S(E+v (t1), f∗, µ). (42)

If |E+v (t1)| = 0, then (42) is a contradiction, and if |E+v (t1)| =
1, the proof is then completed by using the |E+v (0)| = 1 case
since S(E+v (t1), f∗, µ) = S(E+v (t1),0, µ).

For E+v (0) = {e1, e2, e3}, one follows the same argument
as before to arrive at (42). If |E+v (t1)| ≤ 1, then we use the
same arguments as before. If |E+v (t1)| = 2, then necessarily
E+v (0) = E+v , in which case f∗ = r∗. Therefore, one can
continue with the |E+v (0)| = 2 case to complete the proof.
This proves the lemma for v = n− 1.

Assume that the lemma is true for all v ≥ ` for some ` ≥ 1.
Let v = `− 1. We recall Lemma 2 for monotonicity of fi(t).
As for the v = n−1, we consider three cases depending on the
value of |E+v (0)| and provide proof using similar arguments.
We provide a few details only for E+v (0) = E+v = {e1, e2, e3}.
Lemma 2 implies that fi(t) ≤ f∗i = Gvi (E+v , µ) for all
i = 1, 2, 3. Let δv =

∑3
i=0 δ

v
i , where, for i = 1, 2, 3, δvi

is the component of δv on links consisting of ei and the sub-
tree rooted at τei , and δv0 is the component on the rest of

the links in the network. Let 4i(t), i = 0, 1, 2, 3, be defined
accordingly. Let t1 := min{t ≥ 0 | E+v (t) 6= E+v }. To avoid
triviality, assume t1 < ∞, and let K := E+v \ E+v (t1) be the
set of links to become inactive simultaneously at t1. Then,
necessarily 4e(t1) ≥ Se(fe(t1)) ≥ Se(f

∗
e ) for all e ∈ K,

where the second inequality follows from Lemma 3. Following
similar arguments as before, we arrive at (42), after which we
use the relevant case depending on the value of |E+v (t1)| ≤ 2.
This establishes the proof for v = `−1, and hence by backward
induction for all v ∈ {0, . . . , n− 1}.

Theorem 2 is obtained from Lemma 6 by substituting
v = 0, (V(0), E(0)) = (V, E), λv(t) ≡ λ, and noting that
S(E+0 , r∗, λ) = S(E+0 ,0, λ) = S∗(N , λ).

F. Proof of Proposition 4

The BPA routing for case (a) is explicitly computed in (15),
which readily implies flow-monotonicity. The proof for case
(c) follows from the constructs used in the proof of case (b).
Therefore, we provide details only for case (b).

For brevity in notation, let y(µ) ≡ Gv0(E+v0 , µ) be the flow
under BPA routing. For brevity in notation, and since the lower
bound constraints imposed by r are redundant in this case, we
drop the dependence of S(., r, .) on r. Following Figure 3(b),
the general relationship between Se1(µ) and S(E+v1 , µ) can be
written as:

Se1(µ) =

{
S(E+v1 , µ) if µ ∈ [µ̄1, µ̄2],

[C1 − µ]
+ if µ ∈ [0, µ̄1] ∪ [µ̄2, C1] ,

(43)
where µ̄1 = 2 (C3 + C4 − C1), µ̄2 = 2C1 − (C3 + C4) and
one can write an expression for S(E+v1 , µ) similar to (14). We
prove flow-monotonicity by showing that d

dµy(µ) ≥ 0. Let
Γi = sup{µ : Sei(µ) > 0} for i = 1, 2 be the effective
flow capacity of link ei. When y(µ) is on the boundary of the
feasible set Xv0(E+v0 , µ), without loss of generality, assume that
y1(µ) = [µ−Γ2]+ and y2(µ) = min{µ,Γ2}, which is trivially
flow-monotone. When y(µ) is in the interior of the feasible
set, y2 satisfies Se2(y2) + Se1(µ) = Se1(µ − y2) + Se2(µ).
Therefore, by the implicit function theorem,3 we have that

d

dµ
y2(µ) =

S′e2(µ) + S′e1(µ− y2)− S′e1(µ)

S′e2(y2) + S′e1(µ− y2)
, (44)

where S′ei(y) ≡ d
dySei(y), i = 1, 2. The strictly decreasing

property of Sei , i = 1, 2 from Lemma 3 implies that the
denominator of (44) is negative for all µ ∈ (0,Γ1 + Γ2).
(14) and (43) imply that S′e1(µ − y2) − S′e1(µ) ≤ 1/2 if
µ < C1 and equal to zero if µ > C1. This combined with
Se2(µ) ≡ [C2−µ]+ and the assumption that C2 ≥ C1 implies
that the numerator of (44) is non positive for all µ < Γ1 +Γ2.
Hence, d

dµy2(µ) ≥ 0. The proof for d
dµy1(µ) ≥ 0 follows

along similar lines.

3Se1 (µ) and Se2 (µ) are continuous piecewise linear functions, e.g., see
Figure 3 (c). Therefore, one can find analytic functions that can approximate
Se1 (µ) and Se2 (µ), as well as their derivatives arbitrarily closely at almost
all points. We implicitly assume that Se1 (µ) and Se2 (µ) are replaced with
such analytic approximations.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamical model for cas-
cading failures in single-commodity network flows, where
the network dynamics is governed by a deterministic and
possibly adversarial disturbance process which incrementally
reduces flow capacity on the links, and distributed oblivious
routing policies that have information only about the local
inflow and active status of outgoing links, and in particular no
information about the disturbance process. The salient feature
of this model is to couple the flow dynamics with the link and
node inactivation dynamics. An immediate outcome of this
coupling is that, links and nodes to fail successively are not
necessarily adjacent to each other. We quantified margin of
resilience to be the minimum cumulative capacity reductions
across time and links of the network, under which the network
looses its transferring property. We presented an algorithm
that provides an upper bound on the margin of resilience
for directed acyclic graphs between a single origin-destination
pair. The same algorithm motivates a routing policy which
provably matches the upper bound for networks which are
tree like, have out-degree at most 3, and induce monotonicity
in the flow dynamics.

In future, we plan to extend our analysis to networks
with general graph topologies, multi-commodity flows, non-
oblivious routing policies with possibly multi hop information,
stochastic disturbance processes, reversible link activation dy-
namics under finite time link recovery, and exogenous coupling
between failure and recovery of distant links due to coupling
between the given network and other exogeneous networks.
We also plan to investigate computationally efficient, and pos-
sibly distributed, algorithms for (approximate) computation of
the margin of resilience. Finally, we plan to develop distributed
robust control strategies suitable for physics of other physical
infrastructure networks such as power, gas, water and supply
chains.
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