8 research outputs found

    Robust Deep Sensing Through Transfer Learning in Cognitive Radio

    Full text link
    We propose a robust spectrum sensing framework based on deep learning. The received signals at the secondary user's receiver are filtered, sampled and then directly fed into a convolutional neural network. Although this deep sensing is effective when operating in the same scenario as the collected training data, the sensing performance is degraded when it is applied in a different scenario with different wireless signals and propagation. We incorporate transfer learning into the framework to improve the robustness. Results validate the effectiveness as well as the robustness of the proposed deep spectrum sensing framework

    Spectrum Sensing in Cognitive Radio Using CNN-RNN and Transfer Learning

    Get PDF
    Cognitive radio has been proposed to improve spectrum utilization in wireless communication. Spectrum sensing is an essential component of cognitive radio. The traditional methods of spectrum sensing are based on feature extraction of a received signal at a given point. The development in artificial intelligence and deep learning have given an opportunity to improve the accuracy of spectrum sensing by using cooperative spectrum sensing and analyzing the radio scene. This research proposed a hybrid model of convolution and recurrent neural network for spectrum sensing. The research further enhances the accuracy of sensing for low SNR signals through transfer learning. The results of modelling show improvement in spectrum sensing using CNN-RNN compared to other models studied in this field. The complexity of an algorithm is analyzed to show an improvement in the performance of the algorithm.publishedVersio

    Robust Deep Sensing Through Transfer Learning in Cognitive Radio

    No full text
    corecore