5,621 research outputs found

    Robust Cooperative Spectrum Sensing Scheduling Optimization in Multi-Channel Dynamic Spectrum Access Networks

    Full text link
    Dynamic spectrum access (DSA) enables secondary networks to find and efficiently exploit spectrum opportunities. A key factor to design a DSA network is the spectrum sensing algorithms for multiple channels with multiple users. Multi-user cooperative channel sensing reduces the sensing time, and thus it increases transmission throughput. However, in a multi-channel system, the problem becomes more complex since the benefits of assigning users to sense channels in parallel must also be considered. A sensing schedule, indicating to each user the channel that it should sense at different sensing moments, must be thus created to optimize system performance. In this paper, we formulate the general sensing scheduling optimization problem and then propose several sensing strategies to schedule the users according to network parameters with homogeneous sensors. Later on we extend the results to heterogeneous sensors and propose a robust scheduling design when we have traffic and channel uncertainty. We propose three sensing strategies, and, within each one of them, several solutions, striking a balance between throughput performance and computational complexity, are proposed. In addition, we show that a sequential channel sensing strategy is the one to be preferred when the sensing time is small, the number of channels is large, and the number of users is small. For all the other cases, a parallel channel sensing strategy is recommended in terms of throughput performance. We also show that a proposed hybrid sequential-parallel channel sensing strategy achieves the best performance in all scenarios at the cost of extra memory and computation complexity

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore