8 research outputs found

    Offline Uncertainty Sampling in Data-driven Stochastic MPC

    Full text link
    In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require any prior model identification. The approximation of chance constraints using uncertainty sampling leads to efficient constraint tightening. Under mild assumptions, robust recursive feasibility and closed-loop constraint satisfaction is shown. In a simulation example, we provide evidence for the improved control performance of the proposed control scheme in comparison to a purely robust data-driven predictive control approach.Comment: This work has been accepted for presentation at IFAC World Congress 202

    Controller design for robust invariance from noisy data

    Full text link
    For an unknown linear system, starting from noisy open-loop input-state data collected during a finite-length experiment, we directly design a linear feedback controller that guarantees robust invariance of a given polyhedral set of the state in the presence of disturbances. The main result is a necessary and sufficient condition for the existence of such a controller, and amounts to the solution of a linear program. The benefits of large and rich data sets for the solution of the problem are discussed. A numerical example about a simplified platoon of two vehicles illustrates the method

    A novel constraint-tightening approach for robust data-driven predictive control

    Get PDF
    In this paper, we present a data-driven model predictive control (MPC) scheme that is capable of stabilizing unknown linear time-invariant systems under the influence of process disturbances. To this end, Willems' lemma is used to predict the future behavior of the system. This allows the entire scheme to be set up using only a priori measured data and knowledge of an upper bound on the system order. First, we develop a state-feedback MPC scheme, based on input-state data, which guarantees closed-loop practical exponential stability and recursive feasibility as well as closed-loop constraint satisfaction. The scheme is extended by a suitable constraint tightening, which can also be constructed using only data. In order to control a priori unstable systems, the presented scheme contains a prestabilizing controller and an associated input constraint tightening. We first present the proposed data-driven MPC scheme for the case of full state measurements, and also provide extensions for obtaining similar closed-loop guarantees in case of output feedback. The presented scheme is applied to a numerical example

    Combining Prior Knowledge and Data for Robust Controller Design

    Full text link
    We present a framework for systematically combining data of an unknown linear time-invariant system with prior knowledge on the system matrices or on the uncertainty for robust controller design. Our approach leads to linear matrix inequality (LMI) based feasibility criteria which guarantee stability and performance robustly for all closed-loop systems consistent with the prior knowledge and the available data. The design procedures rely on a combination of multipliers inferred via prior knowledge and learnt from measured data, where for the latter a novel and unifying disturbance description is employed. While large parts of the paper focus on linear systems and input-state measurements, we also provide extensions to robust output-feedback design based on noisy input-output data and against nonlinear uncertainties. We illustrate through numerical examples that our approach provides a flexible framework for simultaneously leveraging prior knowledge and data, thereby reducing conservatism and improving performance significantly if compared to black-box approaches to data-driven control
    corecore