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Abstract: Model predictive control (MPC) is an effective control method to improve the energy
conversion efficiency of wave energy converters (WECs). However, the current developed WEC MPC
has not reached commercial viability since the control performance is significantly dependent on the
WEC model fidelity. To overcome the plant-model mismatch issue in the WEC MPC control problem,
this paper proposes a robust tube-based MPC method to bound plant states within disturbance invariant
sets centered around the noise-free model trajectory. The invariant sets are also utilized for tightening the
nominal model’s constraints that robustly enable constraint satisfaction. Yet overly conservative invariant
sets can narrow the feasible region of the states and control inputs, and hence a data-driven quantile
recurrent neural network (QRNN) is proposed in this work to form a learning-based adaptive tube
with reduced conservatism by quantifying WEC model uncertainties. The theoretical root is that time-
dependent historical data can offer valuable insight into the future behaviour of uncertainties. Numerical
simulations have validated that the proposed method can improve the energy capture rate compared to
the TMPC approach, by synthesizing the QRNN-based tube with MPC.

Keywords: Control applications in marine renewable energy, Ocean renewable energy, Adaptive and
robust control in marine systems

1. INTRODUCTION

Ocean waves contain tremendous clean and renewable energy,
which have the potential to supply a great magnitude of elec-
tricity and help reduce the world’s reliance on fossil fuels.
Compared to other renewable sources such as solar and wind,
wave power is more consistent and of higher density. Yet wave
energy converters (WECs) have not been commercialized since
harnessing irregular reciprocating wave motions is a challeng-
ing engineering problem. Control methods are thereby pro-
posed to improve the economic return of WECs, e.g., latching
control by adjusting the WEC frequency to wave frequencies
(Budal et al. (1980)), impedance matching control by tuning
dynamical parameters of the device (Babarit et al. (2009)), etc.
The optimization-based model predictive control (MPC) strat-
egy can improve wave energy conversion efficiency of these
conventional methods and simultaneously maintain the safe
operation of WECs (Li and Belmont (2014)). The controller
can incorporate short-term wave predictions to further increase
the extracted wave energy.

The performance of the established WEC MPC is dependent on
WEC model fidelity. Less complicated and sufficiently accurate
models are preferable in the control scheme. However, distur-
bances inevitably exist in real-world scenarios that contribute to
WEC model uncertainties, e.g., imprecise estimations of WEC

? The authors acknowledge the support of Wave Energy Control Systems
Programme in part by Innovate UK Energy Catalyst Round 8 project: Sea Wave
Energy Powered Microgrid for Remote Islands and Rural Coasts (No. 86116),
and in part by EPSRC projects with grant numbers EP/P023002/1.

hydrodynamic parameters, wave prediction errors. The usage of
the exact same WEC model for control design and performance
evaluation hence may obtain misleading results. In this context,
various strategies have recently been developed to enhance the
robustness of WEC MPC, such as (i) pre-stabilized feedback
robust MPC (RMPC) of WEC (Zhan et al. (2019b)), which
utilizes an unconstrained optimization to maximize the nominal
system’s energy output and applies a feedback portion to cope
with uncertainties; (ii) Laguerre-polynomial-based robust WEC
MPC, which augments the standard MPC with feedback and
adopts the Laguerre polynomial to alleviate the computational
burden (Jama et al. (2018)). A powerful alternative is the robust
tube-based MPC (TMPC) law that explicitly deals with uncer-
tainties by bounding possible disturbances in a bundle/tube of
disturbance invariant sets centered around the nominal system
trajectory. Here the invariant sets are defined as the tube cross-
sections. Accordingly, constraint satisfaction for the uncertain
states can be guaranteed by tightening system constraints with
the tube. Note that the tube is constructed offline without influ-
encing the online computational complexity.

However, the tube employed in the traditional TMPC algorithm
might be overly conservative that narrows the feasible region
of the states and control inputs. When a constraint is active or
near-saturated, shrinking the tube cross-section by uncertainty
parameterization at each sampling time can provide a larger
feasible set to improve WEC control performance. Inspired by
the reality that time-dependent historical data can offer valuable
insight into future uncertainty and capture the distribution of
the uncertain dynamics, a data-driven adaptive tube MPC is de-
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veloped to bound the tail of uncertainty distribution (Fan et al.
(2020)) and therefore reduce the conservatism of conventional
general inclusive invariant sets. The tube of WEC uncertainties
is computed by the quantile recurrent neural network (QRNN),
which utilizes a long short-term memory (LSTM) (Hochreiter
and Schmidhuber (1997)) type recurrent neural network (RNN)
(Yu et al. (2019)) trained with a quantile-regression-based loss
function (Yu et al. (2003)). Employment of the quantile loss
is to compute the uncertain trajectories’ probabilistic bounds;
adopting a relative high quantile can bound the majority of
uncertain WEC states. In addition, the utilization of LSTM is at-
tributed to its excellent performance in dealing with time-series
data, since the WECs’ uncertainty is a chronological sequence.
Therefore, robust and high-performance operations of WEC
systems can be achieved by synthesizing the QRNN-based tube
into the TMPC; online tractability of the WEC control problem
can be ensured as the network training is implemented offline.

The rest of the paper is organized as follows: Section 2 presents
the WEC modeling problem and the corresponding control ob-
jective. In Section 3, the LTMPC approach tailored for WECs is
discussed. Numerical simulation results are provided in Section
4, and the concluding remarks are summarized in Section 5.

2. PROBLEM SET-UP AND PRELIMINARIES

A point-absorber type WEC device for wave energy extraction
studied in this work is shown in Fig. 1, where a buoy floats on
the sea surface and an upright standing hydraulic cylinder is
fixed to a gravity base attached to the seabed. The heave mo-
tions of the buoy generate relative movements between a piston
and a hydraulic cylinder. Consequently, a liquid flow is gen-
erated by the relative motions. The flow drives the generator-
connected hydraulic motors of a power take-off (PTO) device
to convert wave energy into electricity through AC/DC/AC
converters. Control of the energy conversion process involves
exerting a manipulative force fu on the PTO system to man-
age the generator-side electric torque. The extracted power is
P = −fuv, where v is the velocity on the piston.

Fig. 1. Schematic diagram of the point absorber

Following the Newtonian mechanics, the dynamic model of the
buoy is formulated in (1).

msz̈v(t) = −fr(t) + fe(t)− fs(t)− fv(t) + fu(t) (1)
where fu is the exerted force on the piston as the control input.
fr denotes the radiation force (Torr (1984)). fe is the excitation
force (Nguyen and Tona (2017)) introduced by incident waves.
fs and fv represent the buoyant force (Jean and Fan (1992))

and viscous force (Wei et al. (2015)), respectively. Besides, we
employ the parameter ms to denote the buoy mass and zv to
denote the position of the floating buoy’s middle point such that
v = żv .

The radiation force fr(t) is given by

fr(t) = m1z̈v(t) +

Z 1

−1
hr(⌧)żv(t− ⌧)d⌧ (2)

Here m1 is the added mass on the float. hr denotes the
kernel of the radiation force that can be calculated by hydraulic
software such as WAMIT (Lee and Newman (2001)). The
convolutional term in (2) can be expressed through a state-space
model with an order of nr (Yu and Falnes (1995)).
ẋr(t) = Arxr(t) +Br żv(t) (3a)

fr(t) =Crxr(t)⇡
Z t

−1
hr(⌧)żv(t−⌧)d⌧⇡fr(t)−m1z̈v(t)

(3b)

in which xr 2 Rnr , and (Ar, Br, Cr, 0) denote its state-space
realization. Besides, the wave excitation force fe is calculated
in (5) following the work proposed by Yu and Falnes (1995).

fe(t) =

Z 1

−1
he(⌧)zw(t− ⌧)d⌧ (4)

ẋe(t) = Aexe(t) +Bezw(t) (5a)

fe(t) = Cexe(t) ⇡
Z t

−1
he(⌧)zw(t− ⌧)d⌧ (5b)

The state-space expression of fe relies on the excitation kernel
he. xe and (Ae, Be, Ce, 0) are the corresponding intermediate
state and the state-space realization.

In addition, the buoyancy is expressed as
fs(t) = ⇢gSzv(t) (6)

where ⇢ is water density. g denotes the standard gravity, and
S denotes the cross-sectional area of the float. If a hydrostatic
stiffness ks := ⇢gS is introduced, the buoyancy is given by
fs(t) = kszv(t).

The nonlinear viscous forces also exert on the buoy, and the
viscous force is formulated as (7), where Cd represents the drag
coefficient (Giorgi and Ringwood (2017)).

fv(t) =
1

2
⇢CdS|żv(t)|żv(t) (7)

The forces mentioned above altogether lead to the state-space
realization of the buoy’s dynamic model, given by

ẋc(t) = Acxc(t) +Bucuc(t) +Bwczw(t) + ✏(t) (8a)
z(t) = Czxc(t) (8b)

where (Ac, Buc, Bwc) denote the continuous-time state-space
expression of the forces on the floating buoy formulated in (9).
The output z is the heave velocity żv and Cz is the output ma-
trix. ✏ represents the modeling errors from the approximations
of radiation and excitation forces. In addition, the state of the
WEC model is chosen as xc = [zv, żv, xr, xe]

T with an order
of n, and the control input as uc=fu. The state and control are
bounded within compact constraint sets X and U, respectively.
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veloped to bound the tail of uncertainty distribution (Fan et al.
(2020)) and therefore reduce the conservatism of conventional
general inclusive invariant sets. The tube of WEC uncertainties
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data, since the WECs’ uncertainty is a chronological sequence.
Therefore, robust and high-performance operations of WEC
systems can be achieved by synthesizing the QRNN-based tube
into the TMPC; online tractability of the WEC control problem
can be ensured as the network training is implemented offline.

The rest of the paper is organized as follows: Section 2 presents
the WEC modeling problem and the corresponding control ob-
jective. In Section 3, the LTMPC approach tailored for WECs is
discussed. Numerical simulation results are provided in Section
4, and the concluding remarks are summarized in Section 5.
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age the generator-side electric torque. The extracted power is
P = −fuv, where v is the velocity on the piston.
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where ⇢ is water density. g denotes the standard gravity, and
S denotes the cross-sectional area of the float. If a hydrostatic
stiffness ks := ⇢gS is introduced, the buoyancy is given by
fs(t) = kszv(t).
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viscous force is formulated as (7), where Cd represents the drag
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realization of the buoy’s dynamic model, given by
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where (Ac, Buc, Bwc) denote the continuous-time state-space
expression of the forces on the floating buoy formulated in (9).
The output z is the heave velocity żv and Cz is the output ma-
trix. ✏ represents the modeling errors from the approximations
of radiation and excitation forces. In addition, the state of the
WEC model is chosen as xc = [zv, żv, xr, xe]
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Bwc = [0, 0, 0nr⇥1, Be]
T
, Cz =

⇥
0, 1, 01⇥(nr+ne)

⇤
(9)

In the above expressions, m equals the sum of the buoy mass
ms and added mass m1. Due to the presence of nonlinear
hydrodynamics in Ac of (9), the constructed model in (8) de-
scribes a nonlinear WEC system, which may be intractable for
online computation. Hence a linear WEC model f̄ is utilized to
approximate the intrinsically nonlinear WEC since the system
has only mild nonlinearity. The linear model f̄ is derived with
discretization and linearization of (8), and is supposed to be a
noise-free nominal model denoted by

x̄
+ = f̄(x) = Ax̄+Buū+Bwzw (10a)

z̄ = Czx̄ (10b)
where x̄ and ū denote the nominal state and input in the current
time. x̄+ is the successor state of x̄, and z̄v is the nominal
output. [A, Bu, Bw] are derived from the local linearization
of (8) using the Jacobian matrix.

In comparison, a sampled-data system of the nonlinear dynam-
ics (8) is defined as the uncertain model to approximate the
disturbed WEC system, and its dynamics is

x
+ = f(x) = Ax+Buu+Bwzw + w(x, u) (11a)

z = Czx (11b)

The above denotation w includes (i) the model uncertainties
from inaccurate radiation and excitation force approximations
when establishing their state-space models (8); (ii) the model
mismatches brought by the local linearization; (iii) errors in es-
timating parameters such as the drag coefficient. w is assumed
to be bounded that w 2 W ✓ X.

3. LEARNING-BASED TUBE MPC FORMULATION FOR
THE WEC CONTROL PROBLEM

3.1 Conventional tube MPC formulation for WECs

In this section, a robust TMPC strategy is developed accord-
ing to the WEC state-space model to maximize wave energy
extraction. The formulated control problem adopts an energy-
maximization objective function to optimize the nominal model
trajectories, and the uncertain trajectories are bounded around
the nominal states in a tube of disturbance invariant sets. The
boundedness essentially implies the controller’s inherent ro-
bustness as the TMPC always steers the uncertain trajectories
close to nominal.

Disturbance invariant set for uncertainty handling: To inves-
tigate the disturbance invariant set mentioned above, the model
discrepancy between the nominal state x̄ and the uncertain state
x is first studied. The discrepancy is denoted as e, and its
evolution can be formulated as

ek+1 = Aek +Bu(uk − ūk) + wk (12)

If e is penalized with a feedback component  to construct a
feedback controller u in the form of u = ū+(x−x̄) = ū+e,
the evolutionary trajectory of ek is

ek = A
k
e0 +

k−1X

j=0

A
k−j−1

Bu(uj − ūj) +

k−1X

j=0

A
k−j−1

wj (13)

Denote Ak , A+Bu. Since u = ū + e and w 2 W, the
set E that contains all possible uncertainties should yield Ek ,

A
k−1
k W ⊕ A

k−2
k W ⊕ ... ⊕ AkW ⊕ W at time k 2 N+. Ek

bounds all uncertainties in a tube to guarantee xk = x̄k ⊕ Ek
and uk 2 ūk ⊕ Ek, where the tube centers in the nominal
trajectories x̄ and ū (Mayne et al. (2005)). If k ! 1, a
rigid disturbance invariant set E can be computed to bound all
possible uncertainties, such that E =

P1
i=0 A

i
kW (⌃ denotes

the set addition). Given that Ak is Schur stable, the set E has
the form AkE ⊕W 2 E .

By assuming pre(E) is the pre-set of E that evolves into
the target set E in one step, the above statement equals to
guaranteeing E ✓ pre(E) or E

T
pre(E) = E considering

AkE ⊕ W is the posterior set of E (Zeilinger et al. (2014)).
If there exists a finite k to satisfy the above condition, the
computation of E can be simplified into a set addition in finite
time. But in practice, we adopt a finite set addition Ej =Pj

i=0 A
i
kW to approximate E even if E ✓ pre(E) cannot be

achieved in finite time.

With the determined E , given that the uncertain state trajecto-
ries, control inputs and disturbances are subject to the poly-
hedral constraint sets (X,U,W) , {x 2 Rn

, u 2 Rm
, w 2

Rn|Fx 6 g, Hu 6 i, Jw 6 q}, all nominal constraint
sets need to be tightened with E to guarantee the disturbed
states maintained within X and U, since x̄ ⊕ E ✓ X and
ū ⊕ E ✓ U. If the tightened nominal state set is denoted as
X̄ and the tightened nominal control set is Ū, it can be deduced
that X̄ , X  E and Ū , U  E , where (X̄, Ū) , {x̄ 2
Rn

, ū 2 R|F̄ x̄ 6 ḡ, H̄ū 6 ī}. The inequalities represent a set
projection of the polyhedra constraints onto each state, denoted
as Projectionx̄i

(X̄), where x̄i 2 R is a projected state to enable
Projectionx̄i

(X̄) = {8x̄i 2 R, 9ȳ 2 Rnsuch that
�
x̄, ȳ) 2 X̄

 
.

Tube MPC: Following the above uncertainty handling method,
we can determine the nominal control ū and state x̄ by solving
a constrained optimization problem. The formulated objective
can extract the maximum time average energy based on the
nominal model and enable the safety of operations. Assume the
prediction horizon is N , and the simulation horizon is Ht. The
optimization problem is given as

VN (x̄, ū)=min
u

N−1X

k=0

✓
1

2
kx̄(k)k2Q+z̄(k)ū(k)+

1

2
kū(k)k2R

◆

(14)
s.t. x̄(k + 1) = Ax̄(k) +Buū(k) +Bwzw(k) (14a)

z̄(k) = Czx̄(k) (14b)
x̄(k) + E 2 X, 8x̄(k) 2 X̄ ✓ X (14c)
ū(k) + E 2 U, 8ū(k) 2 Ū ✓ U (14d)
x(k+1) = Ax(k) +Buu(k) +Bwzw(k) +w(k),

8x(k)2X, 8u(k)2U, 8w(k)2W (14e)
X = X̄⊕ E , U = Ū⊕ E (14f)

The minimization of the term z̄ū is equivalent to the maximiza-
tion of the captured power Pk = −fu(k)żv(k). In practice,
the economic return requires to be maximized for guaranteeing
a high level of energy conversion efficiency and decrease the
consumed energy by actuators. We therefore penalize the con-
sumed energy in the control objective (14) such that kū(k)k2R.
Penalization of the term kx̄(k)k2Q enables the convexity of the
objective (14) and reduces risks of device damage brought by
stringent state responses (Li and Belmont (2014)). Note that the
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feasibility of (14) can be proved through imposing an invariant
set tightened by E to bound the terminal nominal states (Zhan
et al. (2019b)), where all state sequences will evolve into the
invariant set (Mayne et al. (2005)). Moreover, the input-to-
state stability method for stability analysis employed by this
type of MPC has been investigated in our recent WEC MPC
control work (Zhan et al. (2019a), Zhan et al. (2019b)), and
can be further extended for the robust stability analysis of the
learning-based TMPC. The proofs are omitted here due to the
page limitation.

To obtain the solution of the control problem, (14) can be
formulated into a standard QP form, where (14a) is rewritten
as

X̂ = Âx̄k|0 + B̂uÛ + B̂wẐw (15)

Here X̂=
⇥
x̄k|0 x̄k|1 ...x̄k|N−1

⇤T
, Û =

⇥
ūk|0 ūk|1 ...ūk|N−1

⇤T
,

Ẑw=
⇥
zw(k|0) zw(k|1) ...zw(k|N−1)

⇤T
. And the objective (14) is

reformulated as

VN (x̄, ū) =
1

2
X̂

T
Q̂X̂ + Û

T
ĈzX̂ +

1

2
Û

T
R̂Û (16)

By substituting (15) into (16), the objective (14) yields

VN (x̄, ū) =
1

2
Û

T
HÛ + f

T
Û + β (17)

H = R̂+ B̂
T
u Q̂B̂u + 2B̂T

u Ĉ
T
z (17a)

f = (B̂T
u Q̂+ Ĉz)(Âx̄k|0 + B̂wẐw) (17b)

β =
1

2
(Âx̄k|0 + B̂wẐw)

T
Q(Âx̄k|0 + B̂wẐw) (17c)

Note that though the solution of Û in (17) yields a control
sequences

⇥
ūk|0 ūk|1 ...ūk|N−1

⇤T
, only the first input {ūk|0 |

ūk|0 , ū(0)} is applied to the plant at each time.

To enhance the robustness, a feedback portion on the basis of
the nominal control ū is applied.

uk|0 = (xk|0 − x̄k|0) + ūk|0 (18)
where ūk|0 denotes the nominal control in the optimal input
sequence [ūk|0, ūk|1,..., ūk|N−1] solved from (14) using QP
reformulation.  denotes a feedback coefficient penalizing the
error e. Hence the term (xk|0 − x̄k|0) enhances robustness
of the nominal controller ū, which improves the wave energy
conversion efficiency. The choice of  should guarantee that all
eigenvalues of Ak are strictly inside the unit circle.

From the above discussion, we can summarize the conventional
tube-based MPC law as a synthesis of the tightened nominal
MPC (TNMPC) and the feedback. The feedback portion has
the potential to improve the wave energy extraction efficiency
of the conventional MPC with model uncertainties present.
Yet if the nominal constraints are active or near-saturated, the
constraints might be overly tightened by the tube, which is not
time or spacing varying that fails to capture the distribution
of uncertainties. To address this issue, the set-addition-based
rigid tube can be parameterized to be time-varying by utilizing
machine learning techniques. The method essentially shrinks
the tube cross-sections and provides a larger feasible set to
make WEC constraints less inclined to be saturated.

3.2 QRNN-based tube parameterization

As the WEC state data contains valuable information of future
uncertainties, the pattern of WEC uncertainty distribution can

be learned via training an data-driven neural network (NN)
model. Here the NN input associates with a sequence of his-
torical measurement data, including the wave predictions w̄

and ground truth data of the wave profile w, chronological
inputs (ū, u) and WEC states (x̄, x). The output is a quantile
description of the parameterized model mismatch fe to bound
the tail of fe distribution since the construction of a tube is
safety-critical. Denote fe as

fe(x) = max{kxi − x̄ik/Projectionxi
(E), i 2 n} (19)

where Projectionxi
(E) is the projection of the rigid disturbance

invariant set E onto a specific state xi. (xi − x̄i) is the WEC
plant-model mismatch for a certain state.

The NN output is assumed to be ↵-th probabilistic quantile
bound of the resulting parameterized WEC model mismatches
fe. If the NN output is denoted as µ↵ (µ↵ 2 Y), and the
input is I = {w̄, w, ū, u, x̄, x}, selection of ↵ determines the
conservativeness of the probabilistic tube bound, such that

↵=P (Y  µ↵(I)) ⌘ fY(µ↵) (20)
where P stands for probability. Note that (20) can be satisfied
by training a quantile neural network which provides a proba-
bilistic bound of fe. The network adopts a check loss function
(21) following Koenker and Bassett Jr (1978).

L
↵(fe(x), µ↵(x)) =

⇢
↵(fe(x)−µ↵(x)) fe(x)>µ↵(x)

(1−↵)(µ↵(x)−fe(x)) fe(x)µ↵(x)
(21)

Here the utilized network is the long short-term memory
(LSTM) network considering that LSTM has shown excel-
lent performance in analyzing the patterns in chronological
sequences. The training process starts from transforming the
LSTM input data into a sequential internal state and is later
deciphered to return a chronological sequence of future WEC
uncertainty prediction. The prediction is compared with µ↵ and
their discrepancy is utilized for back-propagation to update the
NN weights, where the check loss (21) is adopted for back-
propagation. Then the trained network is synthesized into the
conventional TMPC approach to propagate the WEC uncer-
tainties forward with the learned dynamics model. We name
the model as quantile LSTM (Q-LSTM), given that a quantile
probabilistic output is integrated into LSTM to parameterize
uncertainty distribution. To illustrate, a sequence of uncertain
data is shown in blue dots in Fig. 2 for testing the accuracy of
the trained neural network, 0.1, 0.5, 0.9 represents ↵ = 10%,
↵ = 50%, and ↵ = 90% respectively (↵ 2 (0, 1)), to parame-
terize a quantile probabilistic bound for uncertainties.

Fig. 2. Estimating quantile uncertainties with Q-LSTM
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feasibility of (14) can be proved through imposing an invariant
set tightened by E to bound the terminal nominal states (Zhan
et al. (2019b)), where all state sequences will evolve into the
invariant set (Mayne et al. (2005)). Moreover, the input-to-
state stability method for stability analysis employed by this
type of MPC has been investigated in our recent WEC MPC
control work (Zhan et al. (2019a), Zhan et al. (2019b)), and
can be further extended for the robust stability analysis of the
learning-based TMPC. The proofs are omitted here due to the
page limitation.
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R̂Û (16)

By substituting (15) into (16), the objective (14) yields

VN (x̄, ū) =
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To enhance the robustness, a feedback portion on the basis of
the nominal control ū is applied.

uk|0 = (xk|0 − x̄k|0) + ūk|0 (18)
where ūk|0 denotes the nominal control in the optimal input
sequence [ūk|0, ūk|1,..., ūk|N−1] solved from (14) using QP
reformulation.  denotes a feedback coefficient penalizing the
error e. Hence the term (xk|0 − x̄k|0) enhances robustness
of the nominal controller ū, which improves the wave energy
conversion efficiency. The choice of  should guarantee that all
eigenvalues of Ak are strictly inside the unit circle.

From the above discussion, we can summarize the conventional
tube-based MPC law as a synthesis of the tightened nominal
MPC (TNMPC) and the feedback. The feedback portion has
the potential to improve the wave energy extraction efficiency
of the conventional MPC with model uncertainties present.
Yet if the nominal constraints are active or near-saturated, the
constraints might be overly tightened by the tube, which is not
time or spacing varying that fails to capture the distribution
of uncertainties. To address this issue, the set-addition-based
rigid tube can be parameterized to be time-varying by utilizing
machine learning techniques. The method essentially shrinks
the tube cross-sections and provides a larger feasible set to
make WEC constraints less inclined to be saturated.

3.2 QRNN-based tube parameterization

As the WEC state data contains valuable information of future
uncertainties, the pattern of WEC uncertainty distribution can

be learned via training an data-driven neural network (NN)
model. Here the NN input associates with a sequence of his-
torical measurement data, including the wave predictions w̄

and ground truth data of the wave profile w, chronological
inputs (ū, u) and WEC states (x̄, x). The output is a quantile
description of the parameterized model mismatch fe to bound
the tail of fe distribution since the construction of a tube is
safety-critical. Denote fe as

fe(x) = max{kxi − x̄ik/Projectionxi
(E), i 2 n} (19)

where Projectionxi
(E) is the projection of the rigid disturbance

invariant set E onto a specific state xi. (xi − x̄i) is the WEC
plant-model mismatch for a certain state.

The NN output is assumed to be ↵-th probabilistic quantile
bound of the resulting parameterized WEC model mismatches
fe. If the NN output is denoted as µ↵ (µ↵ 2 Y), and the
input is I = {w̄, w, ū, u, x̄, x}, selection of ↵ determines the
conservativeness of the probabilistic tube bound, such that

↵=P (Y  µ↵(I)) ⌘ fY(µ↵) (20)
where P stands for probability. Note that (20) can be satisfied
by training a quantile neural network which provides a proba-
bilistic bound of fe. The network adopts a check loss function
(21) following Koenker and Bassett Jr (1978).

L
↵(fe(x), µ↵(x)) =

⇢
↵(fe(x)−µ↵(x)) fe(x)>µ↵(x)

(1−↵)(µ↵(x)−fe(x)) fe(x)µ↵(x)
(21)

Here the utilized network is the long short-term memory
(LSTM) network considering that LSTM has shown excel-
lent performance in analyzing the patterns in chronological
sequences. The training process starts from transforming the
LSTM input data into a sequential internal state and is later
deciphered to return a chronological sequence of future WEC
uncertainty prediction. The prediction is compared with µ↵ and
their discrepancy is utilized for back-propagation to update the
NN weights, where the check loss (21) is adopted for back-
propagation. Then the trained network is synthesized into the
conventional TMPC approach to propagate the WEC uncer-
tainties forward with the learned dynamics model. We name
the model as quantile LSTM (Q-LSTM), given that a quantile
probabilistic output is integrated into LSTM to parameterize
uncertainty distribution. To illustrate, a sequence of uncertain
data is shown in blue dots in Fig. 2 for testing the accuracy of
the trained neural network, 0.1, 0.5, 0.9 represents ↵ = 10%,
↵ = 50%, and ↵ = 90% respectively (↵ 2 (0, 1)), to parame-
terize a quantile probabilistic bound for uncertainties.

Fig. 2. Estimating quantile uncertainties with Q-LSTM

4. NUMERICAL RESULTS AND DISCUSSION

A set of wave predictions using the joint north sea wave
project (JONSWAP) spectrum (Hasselmann et al. (1973)) is
shown in Fig. 3 to demonstrate the efficacy of the proposed
controller. Sources of uncertainties utilized in this system in-
clude (i) the model mismatch between the nominal model
and the uncertain model caused by local linearization; (ii)
the inaccurate modeling of radiation and excitation forces;
(iii) the inaccurate estimation of the drag coefficient. Be-
sides, we assume the control input subject to the constraint
U =

�
u 2 R | −2.5⇥103  u  2.5⇥103

 
, which are the

main constraints in this problem. The uncertain state is re-
stricted by X = {x 2 Rn |

⇥
−2;−3;−Inf(nr+ne)⇥1

⇤
 x ⇥

2; 3; Inf(nr+ne)⇥1
⇤
}.

Fig. 3. 100-s period of wave profile in simulation.

The performance of the proposed learning-based tube MPC
(LTMPC) is compared with conventional TMPC, nominal MPC
and a well-tuned passive damper u = Kżv . The passive damper
is employed as a baseline controller for comparison purpose. By
the trim of its input, the control constraints are enforced not to
be violated. The nominal MPC is computed following a similar
implementation process of TMPC, but no error feedback is
applied and no constraint set is tightened. Both the conventional
TMPC and LTMPC employ the same control parameters Q, R
and the feedback coefficient , determined offline based on the
nominal model. Here Q is chosen as 0n⇥n and R is 4⇥10−4. 
is designed as [−6.5⇥103−2⇥102 01⇥(nr+ne)] to counteract the
plant-model mismatches. The constraint sets of conventional
TMPC are tightened with the tube constructed from set addition
while the tube for LTMPC is parameterized by QRNN. Note
that the state trajectories with both LTMPC and conventional
TMPC are required to evolve around the tightened nominal
MPC (TNMPC) trajectory and stay within the computed tube.

Fig. 4⇠Fig. 6 show the input, heave position, heave velocity
of the LTMPC (blue line), conventional TMPC (magenta line),
TNMPC (red line), and the passive damper (green line). The
states and controls of the LTMPC, TMPC and the passive
damper should be bounded by the exerted constraints (black
lines) to avoid potential WEC device damages. The trajectories
with TNMPC should be restricted by the tightened nominal
constraints X and U (grey lines) to impose a safe margin for
disturbance evolutions as stated in Section 3. From the figures,
the input constraints are active for all mentioned controllers
since these inputs are observed to be saturated at different
times, and the state constraints remain inactive over time. The
saturation of inputs implies a fair comparison between the
performance of these controllers. Besides, we especially note
that, by proposing a QRNN-based uncertainty set utilizing ↵ =
0.9, the LTMPC can roughly satisfy the constraint sets such
that u 2 Ū ⊕ µ↵ and x 2 X̄ ⊕ µ↵ as shown in Fig. 4⇠Fig.
6, where µ↵ and µ↵ are robust disturbance sets centered in
TNMPC trajectories.

Fig. 5. Heave positions with different controllers

Fig. 6. Heave velocities with different controllers

Fig. 7. Extracted wave power with LTMPC, TMPC, nominal
MPC, and passive damper.

Fig. 8. Extracted wave energy with LTMPC, TMPC, nominal
MPC, and passive damper.

Fig. 7 and Fig. 8 show the power and energy outputs with the
LTMPC, conventional TMPC, the Nominal MPC (dotted black
line), and the passive damper with the existence of model un-
certainties. Compared with MPC methods, the passive damper
captures less wave energy considering it is a non-optimization-
based control method. The nominal MPC outperforms the pas-
sive damper but has not converted as much wave energy as
TMPC controllers, given that the nominal controller is heavily
dependent on the WEC fidelity and the model mismatch issue
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Fig. 4. Control inputs for the LTMPC, tightened nominal MPC, nominal MPC and passive damper. Input constraints are active.

in this case degrades its overall performance. In contrast, the
TMPC is less susceptible to model uncertainties for its intrinsic
robustness brought by the error feedback portion, and hence
the energy extraction efficiency is observed to be improved. By
applying the quantile learning technique to synthesize a more
aggressive tube into TMPC, the proposed LTMPC strategy can
extract more energy as the feasible region of the WEC control
problem is enlarged compared with the conventional TMPC.
From the perspective of computational performance, given that
we determine the rigid tube and pre-train the QRNN offline, the
online computation of LTMPC is enabled since its complexity
approximately equals that of the conventional MPC.

5. CONCLUSION

In this paper, a control strategy based on LTMPC is developed
for the point absorber type WEC device to improve the captured
wave energy. The proposed controller parameterizes WEC un-
certainties with QRNN, where the tail of the uncertainty distri-
bution has been bounded so as to reduce the tube conservatism
in the conventional TMPC. Besides, the real-time tractability
of the proposed algorithm is guaranteed by training the QRNN
offline. In our future work, we will attempt to enable the adapt-
ability of the proposed LTMPC by including the change of sea
states in the investigated uncertainties.
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