7,790 research outputs found

    Securing the Internet of Things: Leveraging Blockchain for Enhanced Trust and Data Integrity

    Get PDF
    The rapid proliferation of the Internet of Things (IoT) has transformed various sectors, enabling unprecedented connectivity and automation. However, this connectivity also introduces significant security challenges, as IoT devices often operate in decentralized and heterogeneous environments, making them vulnerable to various cyber threats. Traditional security measures fall short in addressing these challenges, necessitating innovative solutions to ensure the integrity, confidentiality, and authenticity of data within IoT networks. Blockchain technology, with its decentralized and immutable nature, offers a promising solution to enhance the security of IoT systems. By leveraging blockchain, IoT networks can achieve a higher level of trust and data integrity. The inherent features of blockchain, such as cryptographic security, consensus mechanisms, and decentralized ledger technology, provide robust protection against data tampering, unauthorized access, and other malicious activities. This paper explores the integration of blockchain technology into IoT security frameworks. We discuss the potential benefits of using blockchain for securing IoT devices, including improved transparency, traceability, and accountability. Furthermore, we analyze various blockchain-based IoT security models and architectures proposed in recent research, highlighting their strengths and limitations. In addition, this paper addresses the challenges associated with the implementation of blockchain in IoT environments, such as scalability, energy consumption, and latency. We propose potential solutions to these challenges and outline future research directions to enhance the synergy between blockchain and IoT. By leveraging blockchain technology, IoT systems can achieve enhanced security, fostering greater trust and reliability in interconnected devices. This paper aims to provide a comprehensive understanding of the intersection between blockchain and IoT, offering insights into how this integration can address current security concerns and pave the way for more secure and resilient IoT ecosystems

    Governance of a Blockchain-Enabled IoT Ecosystem:A Variable Geometry Approach

    Get PDF
    The proliferation of Internet of Things (IoT) applications is rapidly expanding, generating increased interest in the incorporation of blockchain technology within the IoT ecosystem. IoT applications enhance the efficiency of our daily lives, and when blockchain is integrated into the IoT ecosystem (commonly referred to as a blockchain-IoT system), it introduces crucial elements, like security, transparency, trust, and privacy, into IoT applications. Notably, potential domains where blockchain can empower IoT applications include smart logistics, smart health, and smart cities. However, a significant obstacle hindering the widespread adoption of blockchain-IoT systems in mainstream applications is the absence of a dedicated governance framework. In the absence of proper regulations and due to the inherently cryptic nature of blockchain technology, it can be exploited for nefarious purposes, such as ransomware, money laundering, fraud, and more. Furthermore, both blockchain and the IoT are relatively new technologies, and the absence of well-defined governance structures can erode confidence in their use. Consequently, to fully harness the potential of integrating blockchain-IoT systems and ensure responsible utilization, governance plays a pivotal role. The implementation of appropriate regulations and standardization is imperative to leverage the innovative features of blockchain-IoT systems and prevent misuse for malicious activities. This research focuses on elucidating the significance of blockchain within governance mechanisms, explores governance tailored to blockchain, and proposes a robust governance framework for the blockchain-enabled IoT ecosystem. Additionally, the practical application of our governance framework is showcased through a case study in the realm of smart logistics. We anticipate that our proposed governance framework will not only facilitate but also promote the integration of blockchain and the IoT in various application domains, fostering a more secure and trustworthy IoT landscape.</p

    Blockchain technology and internet of things: review, challenge and security concern

    Get PDF
    Blockchain (BC) has received high attention from many researchers recently because it has decentralization, trusted auditability, and transparency as its main properties. BC has contributed fundamentally to the development of applications like cryptocurrencies, health care, the internet of things (IoT), and so on. The IoT is envisioned to include billions of pervasive and mission-critical sensors and actuators connected to the internet. This network of smart devices is expected to generate and have access to vast amounts of information, creating unique opportunities for new applications, but significant security and privacy issues emerge concurrently because it does not contain robust security systems. BC provides many services like privacy, security, and provenance to the systems that depends on. This research includes analyzing and a comprehensive review of BC technologies. Moreover, the proposed solutions in academia with the methodologies that used to integrate blockchain with IoT are presented. Also, the types of attacks on blockchain are collected and classified. Furthermore, the main contributions and challenges that are included in the literature are explored, then the relevant recommendations for solving the explored challenges are proposed. In conclusion, the integration of BC with IoT could produce promising results in enhancing the security and privacy of IoT environment

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    On the Convergence of Blockchain and Internet of Things (IoT) Technologies

    Full text link
    The Internet of Things (IoT) technology will soon become an integral part of our daily lives to facilitate the control and monitoring of processes and objects and revolutionize the ways that human interacts with the physical world. For all features of IoT to become fully functional in practice, there are several obstacles on the way to be surmounted and critical challenges to be addressed. These include, but are not limited to cybersecurity, data privacy, energy consumption, and scalability. The Blockchain decentralized nature and its multi-faceted procedures offer a useful mechanism to tackle several of these IoT challenges. However, applying the Blockchain protocols to IoT without considering their tremendous computational loads, delays, and bandwidth overhead can let to a new set of problems. This review evaluates some of the main challenges we face in the integration of Blockchain and IoT technologies and provides insights and high-level solutions that can potentially handle the shortcomings and constraints of both IoT and Blockchain technologies.Comment: Includes 11 Pages, 3 Figures, To publish in Journal of Strategic Innovation and Sustainability for issue JSIS 14(1

    Towards practicalization of blockchain-based decentralized applications

    Get PDF
    Blockchain can be defined as an immutable ledger for recording transactions, maintained in a distributed network of mutually untrusting peers. Blockchain technology has been widely applied to various fields beyond its initial usage of cryptocurrency. However, blockchain itself is insufficient to meet all the desired security or efficiency requirements for diversified application scenarios. This dissertation focuses on two core functionalities that blockchain provides, i.e., robust storage and reliable computation. Three concrete application scenarios including Internet of Things (IoT), cybersecurity management (CSM), and peer-to-peer (P2P) content delivery network (CDN) are utilized to elaborate the general design principles for these two main functionalities. Among them, the IoT and CSM applications involve the design of blockchain-based robust storage and management while the P2P CDN requires reliable computation. Such general design principles derived from disparate application scenarios have the potential to realize practicalization of many other blockchain-enabled decentralized applications. In the IoT application, blockchain-based decentralized data management is capable of handling faulty nodes, as designed in the cybersecurity application. But an important issue lies in the interaction between external network and blockchain network, i.e., external clients must rely on a relay node to communicate with the full nodes in the blockchain. Compromization of such relay nodes may result in a security breach and even a blockage of IoT sensors from the network. Therefore, a censorship-resistant blockchain-based decentralized IoT management system is proposed. Experimental results from proof-of-concept implementation and deployment in a real distributed environment show the feasibility and effectiveness in achieving censorship resistance. The CSM application incorporates blockchain to provide robust storage of historical cybersecurity data so that with a certain level of cyber intelligence, a defender can determine if a network has been compromised and to what extent. The CSM functions can be categorized into three classes: Network-centric (N-CSM), Tools-centric (T-CSM) and Application-centric (A-CSM). The cyber intelligence identifies new attackers, victims, or defense capabilities. Moreover, a decentralized storage network (DSN) is integrated to reduce on-chain storage costs without undermining its robustness. Experiments with the prototype implementation and real-world cyber datasets show that the blockchain-based CSM solution is effective and efficient. The P2P CDN application explores and utilizes the functionality of reliable computation that blockchain empowers. Particularly, P2P CDN is promising to provide benefits including cost-saving and scalable peak-demand handling compared with centralized CDNs. However, reliable P2P delivery requires proper enforcement of delivery fairness. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc P2P setting. To address this issue, an expressive security requirement for desired fair P2P content delivery is defined and two efficient approaches based on blockchain for P2P downloading and P2P streaming are proposed. The proposed system guarantees the fairness for each party even when all others collude to arbitrarily misbehave and achieves asymptotically optimal on-chain costs and optimal delivery communication
    • …
    corecore