8 research outputs found

    Secure Massive MIMO Communication with Low-resolution DACs

    Full text link
    In this paper, we investigate secure transmission in a massive multiple-input multiple-output (MIMO) system adopting low-resolution digital-to-analog converters (DACs). Artificial noise (AN) is deliberately transmitted simultaneously with the confidential signals to degrade the eavesdropper's channel quality. By applying the Bussgang theorem, a DAC quantization model is developed which facilitates the analysis of the asymptotic achievable secrecy rate. Interestingly, for a fixed power allocation factor Ď•\phi, low-resolution DACs typically result in a secrecy rate loss, but in certain cases they provide superior performance, e.g., at low signal-to-noise ratio (SNR). Specifically, we derive a closed-form SNR threshold which determines whether low-resolution or high-resolution DACs are preferable for improving the secrecy rate. Furthermore, a closed-form expression for the optimal Ď•\phi is derived. With AN generated in the null-space of the user channel and the optimal Ď•\phi, low-resolution DACs inevitably cause secrecy rate loss. On the other hand, for random AN with the optimal Ď•\phi, the secrecy rate is hardly affected by the DAC resolution because the negative impact of the quantization noise can be compensated for by reducing the AN power. All the derived analytical results are verified by numerical simulations.Comment: 14 pages, 10 figure

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    PHYSICAL LAYER SECURITY IN THE 5G HETEROGENEOUS WIRELESS SYSTEM WITH IMPERFECT CSI

    Get PDF
    5G is expected to serve completely heterogeneous scenarios where devices with low or high software and hardware complexity will coexist. This entails a security challenge because low complexity devices such as IoT sensors must still have secrecy in their communications. This project proposes tools to maximize the secrecy rate in a scenario with legitimate users and eavesdroppers considering: i) the limitation that low complexity users have in computational power and ii) the eavesdroppers? unwillingness to provide their channel state information to the base station. The tools have been designed based on the physical layer security field and solve the resource allocation from two different approaches that are suitable in different use cases: i) using convex optimization theory or ii) using classification neural networks. Results show that, while the convex approach provides the best secrecy performance, the learning approach is a good alternative for dynamic scenarios or when wanting to save transmitting power
    corecore