4 research outputs found

    Stabilizing Highly Dynamic Locomotion in Planar Bipedal Robots with Dimension Reducing Control.

    Full text link
    In the field of robotic locomotion, the method of hybrid zero dynamics (HZD) proposed by Westervelt, Grizzle, and Koditschek provided a new solution to the canonical problem of stabilizing walking in planar bipeds. Original walking experiments on the French biped RABBIT were very successful, with gaits that were robust to external disturbances and to parameter mismatch. Initial running experiments on RABBIT were cut short before a stable gait could be achieved, but helped to identify performance limiting aspects of both the physical hardware of RABBIT and the method of hybrid zero dynamics. To improve upon RABBIT, a new robot called MABEL was designed and constructed in collaboration between the University of Michigan and Carnegie Mellon University. In light of experiments on RABBIT and in preparation for experiments on MABEL, this thesis provides a theoretical foundation that extends the method of hybrid zero dynamics to address walking in a class of robots with series compliance. Extensive new design tools address two main performance limiting aspects of previous HZD controllers: the dependence on non-Lipschitz finite time convergence and the lack of a constructive procedure for achieving impact invariance when outputs have relative degree greater than two. An analytically rigorous set of solutions - an arbitrarily smooth stabilizing controller and a constructive parameter update scheme - is derived using the method of Poincare sections. Additional contributions of this thesis include the development of sample-based virtual constraints, analysis of walking on a slope, and identification of dynamic singularities that can arise from poorly chosen virtual constraints.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58477/1/morrisbj_1.pd

    Towards energy-efficient limit-cycle walking in biped service robots: design analysis, modeling and experimental study of biped robot actuated by linear motors

    Get PDF
    Researchers have been studying biped robots for many years, and, while many advances in the field have been accomplished, there still remain the challenge to transfer the existing solutions into real applications. The main issues are related to mobility and autonomy. In mobility, biped robots have evolved greatly, nevertheless they are still far from what a human can do in the work-site. Similarly, autonomy of biped platforms has been tackled on several different grounds, but its core problem still remains, and it is associated to energy issues. Because of these energy issues, lately the main attention has been redirected to the long term autonomy of the biped robotics platforms. For that, much effort has been made to develop new more energy-efficient biped robots. The GIMBiped project in Aalto University was established to tackle the previous issues in energy efficiency and mobility, through the study and implementation of dynamic and energy-efficient bipedal robotic waking. This thesis falls into the first studies needed to achieve the previous goal using the GIMBiped testbed, starting with a detailed analysis of the nonlinear dynamics of the target system, using a modeling and simulation tools. This work also presents an assessment of different control techniques based on Limit Cycle walking, carried out on a two-dimensional kneed bipedal simulator. Furthermore, a numerical continuation analysis of the mechanical parameters of the first GIMBiped prototype was performed, using the same approximated planar kneed biped model. This study is done to analyze the effect that such variations in the mechanical design parameters produce in the stability and energy-efficiency of the system.Finally, experiments were performed in the GIMBiped testbed. These experiments show the results of a hybrid control technique proposed by the author, which combines traditional ZMP-based walking approach with a Limit Cycle trajectory-following control. Furthermore the results of a pure ZMP-based type of control are also presented.

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    corecore