16 research outputs found

    Convex Optimisation for Communication Systems

    No full text
    In this thesis new robust methods for the efficient sharing of the radio spectrum for underlay cognitive radio (CR) systems are developed. These methods provide robustness against uncertainties in the channel state information (CSI) that is available to the cognitive radios. A stochastic approach is taken and the robust spectrum sharing methods are formulated as convex optimisation problems. Three efficient spectrum sharing methods; power control, cooperative beamforming and conventional beamforming are studied in detail. The CR power control problem is formulated as a sum rate maximisation problem and transformed into a convex optimisation problem. A robust power control method under the assumption of partial CSI is developed and also transformed into a convex optimisation problem. A novel method of detecting and removing infeasible constraints from the power allocation problem is presented that results in considerably improved performance. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. The concept of cooperative beamforming for spectrum sharing is applied to an underlay CR relay network. Distributed single antenna relay nodes are utilised to form a virtual antenna array that provides increased gains in capacity through cooperative beamforming. It is shown that the cooperative beamforming problems can be transformed into convex optimisation problems. New robust cooperative beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. Conventional beamforming to allow efficient spectrum sharing in an underlay CR system is studied. The beamforming problems are formulated and transformed into convex optimisation problems. New robust beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    Linear Matrix Inequality Formulation of Spectral Mask Constraints With Applications to FIR Filter Design

    Get PDF
    Abstract-The design of a finite impulse response (FIR) filter often involves a spectral "mask" that the magnitude spectrum must satisfy. The mask specifies upper and lower bounds at each frequency and, hence, yields an infinite number of constraints. In current practice, spectral masks are often approximated by discretization, but in this paper, we will derive a result that allows us to precisely enforce piecewise constant and piecewise trigonometric polynomial masks in a finite and convex manner via linear matrix inequalities. While this result is theoretically satisfying in that it allows us to avoid the heuristic approximations involved in discretization techniques, it is also of practical interest because it generates competitive design algorithms (based on interior point methods) for a diverse class of FIR filtering and narrowband beamforming problems. The examples we provide include the design of standard linear and nonlinear phase FIR filters, robust "chip" waveforms for wireless communications, and narrowband beamformers for linear antenna arrays. Our main result also provides a contribution to system theory, as it is an extension of the wellknown Positive-Real and Bounded-Real Lemmas

    Robust Beamforming for Two-Way Relay Systems

    Get PDF
    In wireless communication systems, relays are widely used to extend coverage. Over the past years, relays have evolved from simple repeaters to more sophisticated units that perform signal processing to improve signal to interference plus noise ratio (SINR) or throughput (or both) at the destination receiver. There are various types of relays such as amplify and forward (AF), decode and forward (DF), and compress and forward (CF) (or estimate and forward (EF)) relays. In addition, recently there has been a growing interest in two-way relays (TWR). By utilizing the concept of analog network coding (ANC), TWRs can improve the throughput of a wireless sys- tem by reducing the number of time slots needed to complete a bi-directional message exchange between two destination nodes. It’s well known that the performance of a TWR system greatly depends on its ability to apply signal processing techniques to effectively mitigate the self-interference and noise accumulation, thereby improving the SINR. We study a TWR system that is equipped with multiple antennas at the relay node and a single antenna at the two destination nodes. Different from traditional work on TWR, we focus on the case with imperfect knowledge of channel state information (CSI). For such a TWR, we formulate a robust optimization problem that takes into ac- count norm-bounded estimation errors in CSI and designs an optimal beamforming matrix. Realizing the fact that this problem is extremely hard to solve globally, we derive two different methods to obtain either optimal or efficient suboptimal beam- forming matrix solutions. The first method involves solving the robust optimization problem using the S-procedure and semidefinite programming (SDP) with rank-one relaxation. This method provides an optimal solution when the rank-one relaxation condition for the SDP is satisfied. In cases where the rank-one condition cannot be satisfied, it’s necessary to resort to sub-optimal techniques. The second approach presented here reformulates the robust non-convex quadratically constrained quadratic programming (QCQP) into a robust linear programming (LP) problem by using first-order perturbation of the optimal non-robust beamforming solution (which assumes no channel estimation error). Finally, we view the TWR robust beamforming problem from a practical standpoint and develop a set of iterative algorithms based on Newton’s method or the steepest descent method that are practical for hardware implementation

    Mathematical optimisation and signal processing techniques in wireless relay networks

    Get PDF
    With the growth of wireless networks such as sensor networks and mesh networks, the challenges of sustaining higher data rates and coverage, coupled with requirement for high quality of services, need to be addressed. The use of spatial diversity proves to be an attractive option due to its ability to significantly enhance network performance without additional bandwidth or transmission power. This thesis proposes the use of cooperative wireless relays to improvise spatial diversity in wireless sensor networks and wireless mesh networks. Cooperation in this context implies that the signals are exchanged between relays for optimal performance. The network gains realised using the proposed cooperative relays for signal forwarding are significantly large, advocating the utilisation of cooperation amongst relays. The work begins with proposing a minimum mean square error (MMSE) based relaying strategy that provides improvement in bit error rate. A simplified algorithm has been developed to calculate the roots of a polynomial equation. Following this work, a novel signal forwarding technique based on convex optimisation techniques is proposed which attains specific quality of services for end users with minimal transmission power at the relays. Quantisation of signals passed between relays has been considered in the optimisation framework. Finally, a reduced complexity scheme together with a more realistic algorithm incorporating per relay node power constraints is proposed. This optimisation framework is extended to a cognitive radio environment where relays in a secondary network forward signals without causing harmful interferences to primary network users.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Near-capacity MIMOs using iterative detection

    No full text
    In this thesis, Multiple-Input Multiple-Output (MIMO) techniques designed for transmission over narrowband Rayleigh fading channels are investigated. Specifically, in order to providea diversity gain while eliminating the complexity of MIMO channel estimation, a Differential Space-Time Spreading (DSTS) scheme is designed that employs non-coherent detection. Additionally, in order to maximise the coding advantage of DSTS, it is combined with Sphere Packing (SP) modulation. The related capacity analysis shows that the DSTS-SP scheme exhibits a higher capacity than its counterpart dispensing with SP. Furthermore, in order to attain additional performance gains, the DSTS system invokes iterative detection, where the outer code is constituted by a Recursive Systematic Convolutional (RSC) code, while the inner code is a SP demapper in one of the prototype systems investigated, while the other scheme employs a Unity Rate Code (URC) as its inner code in order to eliminate the error floor exhibited by the system dispensing with URC. EXIT charts are used to analyse the convergence behaviour of the iteratively detected schemes and a novel technique is proposed for computing the maximum achievable rate of the system based on EXIT charts. Explicitly, the four-antenna-aided DSTSSP system employing no URC precoding attains a coding gain of 12 dB at a BER of 10-5 and performs within 1.82 dB from the maximum achievable rate limit. By contrast, the URC aidedprecoded system operates within 0.92 dB from the same limit.On the other hand, in order to maximise the DSTS system’s throughput, an adaptive DSTSSP scheme is proposed that exploits the advantages of differential encoding, iterative decoding as well as SP modulation. The achievable integrity and bit rate enhancements of the system are determined by the following factors: the specific MIMO configuration used for transmitting data from the four antennas, the spreading factor used and the RSC encoder’s code rate.Additionally, multi-functional MIMO techniques are designed to provide diversity gains, multiplexing gains and beamforming gains by combining the benefits of space-time codes, VBLASTand beamforming. First, a system employing Nt=4 transmit Antenna Arrays (AA) with LAA number of elements per AA and Nr=4 receive antennas is proposed, which is referred to as a Layered Steered Space-Time Code (LSSTC). Three iteratively detected near-capacity LSSTC-SP receiver structures are proposed, which differ in the number of inner iterations employed between the inner decoder and the SP demapper as well as in the choice of the outer code, which is either an RSC code or an Irregular Convolutional Code (IrCC). The three systems are capable of operating within 0.9, 0.4 and 0.6 dB from the maximum achievable rate limit of the system. A comparison between the three iteratively-detected schemes reveals that a carefully designed two-stage iterative detection scheme is capable of operating sufficiently close to capacity at a lower complexity, when compared to a three-stage system employing a RSC or a two-stage system using an IrCC as an outer code. On the other hand, in order to allow the LSSTC scheme to employ less receive antennas than transmit antennas, while still accommodating multiple users, a Layered Steered Space-Time Spreading (LSSTS) scheme is proposed that combines the benefits of space-time spreading, V-BLAST, beamforming and generalised MC DS-CDMA. Furthermore, iteratively detected LSSTS schemes are presented and an LLR post-processing technique is proposed in order to improve the attainable performance of the iteratively detected LSSTS system.Finally, a distributed turbo coding scheme is proposed that combines the benefits of turbo coding and cooperative communication, where iterative detection is employed by exchanging extrinsic information between the decoders of different single-antenna-aided users. Specifically, the effect of the errors induced in the first phase of cooperation, where the two users exchange their data, on the performance of the uplink in studied, while considering different fading channel characteristics

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin
    corecore