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Abstract—The design of a finite impulse response (FIR) filter
often involves a spectral “mask” that the magnitude spectrum must
satisfy. The mask specifies upper and lower bounds at each fre-
quency and, hence, yields an infinite number of constraints. In
current practice, spectral masks are often approximated by dis-
cretization, but in this paper, we will derive a result that allows
us to precisely enforce piecewise constant and piecewise trigono-
metric polynomial masks in a finite and convex manner via linear
matrix inequalities. While this result is theoretically satisfying in
that it allows us to avoid the heuristic approximations involved in
discretization techniques, it is also of practical interest because it
generates competitive design algorithms (based on interior point
methods) for a diverse class of FIR filtering and narrowband beam-
forming problems. The examples we provide include the design
of standard linear and nonlinear phase FIR filters, robust “chip”
waveforms for wireless communications, and narrowband beam-
formers for linear antenna arrays. Our main result also provides
a contribution to system theory, as it is an extension of the well-
known Positive-Real and Bounded-Real Lemmas.

Index Terms—Beamforming, FIR digital filter design, optimiza-
tion, spectral masks.

I. INTRODUCTION

I N the design of finite impulse response (FIR) filters, one
often encounters a spectral mask constraint on the magnitude

of the frequency response of the filter (e.g., [1]–[4]). That is,
for given and , constrain the (possibly complex)
filter coefficients so that

for all (1)

or determine that the constraint cannot be satisfied. Here,
, and is the frequency response

of the filter. A spectral mask constraint can be rather awkward
to accommodate into general optimization-based filter design
techniques for two reasons. First, it is semi-infinite in the sense
that there are two inequality constraints for every .
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Second, the set of feasible filter coefficients is in general non-
convex due to the lower bound on . In order to effi-
ciently solve filter design problems employing such constraints,
we must find a way in which (1) can be represented in a finite
and convex manner.

There are two established approaches [1] to deal with the
problem of nonconvexity of (1). The first is to enforce additional
constraints on the parameters so that has “linear
phase.” In that case, becomes a linear function of ap-
proximately half the ’s (the rest are determined via the linear
phase constraint), and hence, (1) can be reduced to two semi-in-
finite linear (and hence convex) constraints. However, phase lin-
earity may be an excessively restrictive constraint in some ap-
plications [5]. The second approach to deal with nonconvexity
is to reformulate (1) in terms of the autocorrelation of the filter
[5]–[10]. In particular, if represents the au-
tocorrelation of the filter, then , and hence,
(1) is equivalent to

for all (2)

which amounts to two semi-infinite linear constraints on.
(Observe that , and hence, is real.) Hence,
by reformulating the mask constraint in terms of ,
, we obtain convex constraints. Note that the constraint that

is sufficient to ensure that a filter
can be extracted (although not uniquely) from a designed auto-
correlation via spectral factorization [9], [11].

The problem of representing (1) or (2) in a finite manner is
more challenging. [For simplicity, we will phrase our discussion
in terms of (2).] One standard, butad hoc, approach is to approxi-
mate the constraints by discretizing them uniformly in frequency
and enforcing the 2 linear constraints

for (3)

where and are chosen heuristically. For a fixed, one must
choose to be small enough so that the overconstraining of the
problem at frequencies does not result in significant perfor-
mance loss, yet one must chooseto be large enough for satis-
faction of (3) to guarantee satisfaction of (2) for all

. Unfortunately, as is increased so thatcan be reduced,
the resulting formulation can become prone to numerical diffi-
culties. In practice, and are usually chosen according to en-
gineering “rules of thumb” that depend on the design problem
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at hand. (Other discretization techniques are also available [12],
[13].) For certain design problems, algorithms of the exchange
type [1], [3], [4] offer an alternative to direct discretization tech-
niques.Thesemethodsemployanonuniformdiscretizationof (2)
at each stage of the algorithm, where the sample points are de-
termined by the stationary points of the current estimate of the
optimal and any points of discontinuity in the mask. (In
practice, the stationary points are often approximated using fine
uniform discretization [4].) At each stage of the algorithm, an op-
timization problem is solved subject to appropriate equality con-
straints derived from (2) at those sample points. Although ex-
change methods often work well for the design of lowpass filters,
substantial effort is required to guarantee the algorithm’s conver-
gence [4]. Furthermore, the algorithms may require substantial
“retailoring” in order to incorporate additional constraints on the
filter coefficients (e.g., [14]). Recently, a precise finite represen-
tation of (2) that does not require discretization was developed
using dual parameterization methods [15]. However, that repre-
sentation may result in nonconvex design problems.

In this paper, we derive a precise finite representation of a large
class of spectral mask constraints that results in convex design
problems. This representation provides a theoretically satisfying
characterization of the mask constraint that avoids the heuristic
approximation of discretization techniques, yet generates prac-
tically competitive design algorithms. Our development begins
with the derivation of a (finite) linear matrix inequality (LMI)
characterizationof thesetof trigonometricpolynomialsofagiven
order whose real part is positive over a given segment of the unit
circle(Theorem3).Althoughthatresult isacontributiontosystem
theory in itself (as outlined later), we also show that it allows us
to precisely enforce piecewise constant and piecewise trigono-
metric polynomial spectral masks in a convex and finite manner.
As a result, these masks can be incorporated, without approxi-
mation, into the diverse class of FIR filter and narrowband beam-
former design problems that can be efficiently solved using well-
established interior point methods (e.g., [8]–[10]). We will pro-
vide examples that show how our main result leads to effective al-
gorithms for peak-constrained weighted least-squares design of
linear-phase and nonlinear-phase FIR filters, for the design of ro-
bust “chip” waveforms for digital wireless communication sys-
tems based on code division multiple access and for the design of
narrowband beamformers for linear antenna arrays with uncer-
tain signal and interference directions.

Our main theoretical result (Theorem 3) provides an LMI
characterization of the set of trigonometric polynomials whose
real part is positive over a segment of the unit circle. When spe-
cialized to the case where the segment is the whole circle, this
result generates a new LMI formulation of the Positive Real
Lemma [16], [17] (and the closely related Kalman-Yakubovich-
Popov [KYP] Lemma) for FIR systems. This new formulation
states that for , , with ,

for all if and only if there exists an
positive semidefinite Hermitian matrix such that

tr and , for
. (For later notational convenience, we will index the el-

ements of vectors and matrices starting from zero.) However,
Theorem 3 generates LMI formulations of more general con-
straints of the form Re for all or

for all , where
is a trigonometric polynomial, and Redenotes the real part.
Since these LMI formulations apply to segments of the unit
circle and naturally incorporate nonconstant lower bounds, they
can be considered to be generalizations of the Positive Real
Lemma. Theorem 3 also generates LMI formulations of con-
straints of the form Re for all or
for all , which can be considered to be gen-
eralizations of the Bounded Real Lemma [18].

Our notational conventions are as follows: Vectors and
matrices will be represented by italicized bold lowercase and
uppercase letters, respectively. The elements of these structures
will be indexed starting from zero and will be denoted by
medium weight lowercase letters with appropriate subscripts;
e.g., and . Operators will be represented
by upright bold uppercase letters. In order to illuminate the
connections between the results for polynomials on the real line
and trigonometric polynomials on the unit circle, we define

(4)

where the superscript “” denotes the transpose (without con-
jugation). Thus, the components of form a basis of the
(real) function space of polynomials of degreeon the real line,
whereas the components of form a basis of the (com-
plex) function space of trigonometric polynomials of degree

on [0, 2 ). Consequently, an th-order polynomial
can be written as , where

. Similarly, if the sequence denotes the impulse response
of a causal FIR filter and if , then the frequency re-
sponse , where the su-
perscript “ ” denotes the Hermitian transpose. The (complex
valued) inner product between two complex matricesand
is defined as

tr (5)

We will denote by the set of positive semidefinite
(complex) Hermitian matrices and by the subset of
consisting of the real symmetric positive semidefinite matrices.
For a complex number , we denote the polar coordinates
as , i.e., , with

II. TRANSFORMATION OFPOLYNOMIAL BASIS

In this section, we establish a one-to-one correspondence be-
tween polynomials of degree 2on the real line and trigono-
metric polynomials of degree on (0, 2 ), where the coeffi-
cients of the trigonometric polynomials may be complex num-
bers. The main result of this section is stated in Theorem 1, but
we first state some intermediate results.

By a result from classical complex analysis [19], the complex
exponential function can be represented as a (complex) ra-
tional function of over the real line
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This mapping from to is one-to-one.
In fact, it is a conformal mapping and is closely related to the
“bilinear transform,” which is used to map the left half plane
to the unit disc in the standard transformation of analog filter
designs into the discrete-time domain [20]. This mapping pro-
vides the basis for relating the polynomials over the real line
with trigonometric polynomials over the unit circle. The fol-
lowing lemma further relates an arbitrary power of to a ra-
tional function of .

Lemma 1: Let and be related by

Then, for any positive integer , we have

Proof: This is a simple application of Newton’s binomial
formula.

Let us define a lower triangular matrix of size
whose ( )th entry is given by

for

for . (6)

Notice that the diagonal entries of are equal to 1; hence,
it is invertible. We will denote the columns of by ,

. In addition, for each , we define a
matrix whose ( )th entry is given

by

for

otherwise.
(7)

We will denote the th column of this matrix by . Ob-
viously, we have . We remark that

(8)

Based on (8), we can now restate Lemma 1 as follows.
Lemma 2: Let and be related by

Then

and

where

(9)

and

(10)

Proof: The proof follows directly from Lemma 1 and the
definitions of and .

Now, consider the elementary identities

which are valid for any . An immediate
consequence of the above identities and (7) is that

(11)

Alternatively, the above identity can be established from (8).
Since , a simple induction argument shows
that

span (12)

The following lemma further strengthens the above relation.
Lemma 3: It holds that

span
(13)

Proof: For a given , let .
We will prove the lemma by induction on. For , we have

; therefore, (13)
holds trivially. Consider now a , and make the
hypothesis that span .
We have
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By (12), we know that

span

Hence, if span , then
span . Since satisfies

(13), a simple induction argument completes the proof.
Now, we can substitute (13) into (9) and (10) to obtain the

following relations:

span

and

span

As a result, we have that

span span

for

and

span span

for

This implies that the matrices

and

must be invertible. In light of Lemma 2, this establishes a
one-to-one correspondence between polynomials of degree 2
on the real line and trigonometric polynomials of degreeon
(0, 2 ). We summarize the result in the following theorem.

Theorem 1: The mapping
is a bijection between and (0, 2 ). In particular, the inverse
function for is given by

Furthermore, for any vector , there exists a vector
such that

Re

for all

Conversely, for any vector , there exists a vector
such that

Re

for all

Proof: The bijectivity of follows from simple cal-
culus. The remaining part of the theorem is due to the invert-
ibility of and .

III. CHARACTERIZATION OF NON-NEGATIVE POLYNOMIALS

ON A SEGMENT

In this section, we characterize the set of trigonometric poly-
nomials that are non-negative over a segment of the unit circle.
The main result will be stated in Theorem 2, but first, we state
some preliminary results. We begin with a review of a well-
known characterization [21], [22] of non-negative polynomials
over a line segment in. We refer to Powers and Reznick [23]
for a recent survey on characterizations for polynomials that are
non-negative on an interval.

Proposition 1 (Markov-Lukacs):Let and
. Then

for all

if and only if there exist and such that

Moreover, it holds that

for all

if and only if there exist and such that

The following corollary of Proposition 1 provides a charac-
terization for polynomials that are non-negative over the com-
plement of a finite symmetric interval in.

Corollary 1: Let , and let be a given posi-
tive number. Then

for all

if and only if there exist and such that

Proof: Let for . Then, for
, we have

Since for all , it follows that

for all

if and only if

for all

By Proposition 1, the above relation holds if and only if there
exist and such that
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Letting

and for

proves the result.
The next corollary further extends Corollary 1 to the case

where the interval is nonsymmetric.
Corollary 2: Let and . Then

for all (14)

if and only if there exist and such that

(15)
Proof: It is obvious that (15) implies (14). Suppose now

that (14) holds. Let us define

It is clear (e.g., from Newton’s binomial formula) that there ex-
ists such that

Since , Corollary 1 implies that (15)
holds for some and .

The next lemma determines a simple trigonometric polyno-
mial that is non-negative over a given segment of the unit circle
but is nonpositive over its complement. In particular, given

, we define a vector as

if

if .

(16)
We remark that

(17)

and

(18)

Lemma 4: Let , and let
be defined as in (16). Then, the trigonometric polynomial
Re satisfies the following properties:

Re for all
Re for all .

Finally, we also need the following well-known representa-
tion result for trigonometric polynomials that are non-negative
over the entire unit circle.

Proposition 2 (Riesz-Féjer):Let . Then

Re for all

if and only if there exists such that

Re

We are now ready to establish the main result of this section.
Theorem 2: Let , , and let

be given by (16). Then

Re for all (19)

if and only if there exist and such
that

Re

Re (20)

Moreover

Re for all (21)

if and only if there exist and such
that

Re

Re (22)

Proof: In light of Lemma 4, it is obvious that (20) implies
(19), and similarly, (22) implies (21). We now establish the con-
verse relations. Fix some such that (19) holds. We
introduce a vector as

Re for
Im for

Using Theorem 1 and its notations, we have

Re for all (23)

Recall from Theorem 1 that
is a bijection between and (0, 2 ). For convenience, we let

to obtain a bijection between and [0,
2 ). Let and . Since is a bijection
between and [0, 2 ) and is a decreasing function, it
follows that

and for that

Since (19) holds, it follows from (23) that
for all . As a result, we may apply Proposition 1 to
conclude that for given and , there exist and

such that
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if , or

if . Due to Theorem 1 and Proposition 2, there must exist
a and a such that

and

Furthermore, we know from Theorem 1 that for givenand
, there must exist some such that

Re (24)

if , or

Re (25)

if . We have now shown that (19) implies the existence of
vectors , and such that

Re

Re

With an analogous argument, using Corollary 2, Theorem 1, and
Proposition 2, we can show that if (21) holds, then

Re

Re

It remains to show that is a positive multiple of .
Notice that

Re Re Re

Re

Re Im Re

Comparing this with (24), we obtain for that

Re Im Re

This implies that

For , we have to obtain from

Re Im Re

yielding and . It is easily verified that

for
for

We complete the proof by setting
for and for .

Theorem 2 provides a complete analytical characterization of
the set, say , of trigonometric polynomials that are non-nega-
tive over a segment of the unit circle. In particular, it shows that
any trigonometric polynomial in can be written as a (non-neg-
atively) weighted sum of two squared trigonometric polyno-
mials [see (20)–(22)]. This result will be used in the next section
to develop an LMI representation of the polynomials in.

IV. L INEAR MATRIX INEQUALITY FORMULATION

In this section, we will use a result of Nesterov [24] and The-
orem 2 of Section III to develop an LMI representation for,
which is the set of trigonometric polynomials that are non-neg-
ative over a segment of the unit circle.

In [24], Nesterov showed how to obtain an LMI representa-
tion for the cone of functions representable as a (weighted) sum
of squares of functions in a given linear functional space. In
our case, the linear functional space under consideration is
the space of all trigonometric polynomials of degree at most.
Clearly, the components of form a basis of . Below,
we paraphrase the representation result of Nesterov for our func-
tional space .

Proposition 3: Let be a given subset. Let there
be given trigonometric polynomials that are non-negative
over :

Re for all

where for each , , and
. Let be a linear oper-

ator such that

Re

Let and . Consider the cone

Re

Re

for some (26)

Then, we have the following alternative LMI description of:

for some
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where is the first column of the identity
matrix, and is the adjoint linear
operator of .

Consider now the set of (the real part of) trigonometric poly-
nomials of order , i.e., functions Re in ,
with coefficients . Given , we
define the sets

Re

for all (27)

and

Re

for all (28)

Thus, and describe the sets of (the real parts of)
trigonometric polynomials that are non-negative over a segment
of the unit circle. We also let

Re

for all (29)

describe the trigonometric polynomials that are non-negative on
the entire unit circle. We may interpret and as
convex cones in . Since (the real part of) a trigonometric
polynomial is non-negative on a closed segment if and only if it
is non-negative on the corresponding open segment, these cones
are invariant to the opening or closure of either end of the given
segment. This fact simplifies the application of the LMI descrip-
tions of these cones that we now develop. By Theorem 2, these
cones can be equivalently described as

Re

Re

for some and

(30)
and

Re

Re

for some and

(31)

where is given by (16). Notice that both and
are in the form of (26) since each element of

or can be written as a (non-negatively) weighted sum
of squares. Therefore, Proposition 3 implies that and

both possess an LMI description. To derive an explicit

form of these LMI representations, we need to make precise the
linear operators . This is what we do next.

We define the unit lower triangular Toeplitz
matrices as

if
otherwise,

with

(32)
Thus, and for all

. That is, is the sum of the elements on
the th lower off diagonal of . Let us define a linear operator

as

(33)

It can be checked that is lower triangular and

for all

(34)

To determine the adjoint operator , we note that

where the adjoint is given by

for
(35)

In addition, we need to define a family of operators
that are linear in and param-

eterized by . Let
be given by (16). Then

It can be checked that

Re

To determine the adjoint operator of, we fix any
and any and consider
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Thus, the adjoint is given by (36), shown at
the bottom of the page. Combining this with (30), (31) and (35)
and invoking Proposition 3, we obtain the following key result.

Theorem 3: Let . Suppose and
are given by (27) and (28). Let and be the adjoint

operators defined by (35) and (36). Then, the cones and
admit the following LMI description:

for some

(37)

and

for some

(38)

Moreover

(39)

Theorem 3 provides an equivalent LMI description for a
trigonometric polynomial that is non-negative over a given
segment [ ] (or its complement) of the unit circle. (Observe
that .) As mentioned in Section I, this LMI
formulation is of practical interest because it generates a precise
finite representation of the spectral mask constraints that are
often encountered in the design of digital filters. Furthermore,
the LMI formulation of the mask results in filter design prob-
lems that can be efficiently solved via well-established interior
point methods [25]. We will give some detailed examples in
Section V.

Equation (39) is a new formulation of the Posi-
tive Real Lemma [16], [17] (and the closely related
Kalman-Yakubovich-Popov [KYP] Lemma) for FIR sys-
tems (see also [24] and [26, Sec. 3.2]). The new formulation
is the dual of the standard formulation and states that for,

, with , for
all if and only if there exists an
such that tr and for

. Thus, Theorem 3 can be seen as an extension
of Positive Real Lemma for FIR systems.

Now, let us consider the special case of real trigonometric
polynomials of the form with coefficients

and segments of the form [ ]. Since and
the segment are symmetric with respect to , we need

only consider the subsegment [ ], and the LMI descriptions
in Theorem 3 can be simplified to

for all

for some (40)

(for non-negativity on [ ]) and

for all

for some (41)

(for non-negativity on [0, ]), where is given
by (36) with and simplified to be
[see (18)]

and

(42)

Notice that and in (40) [and (41)] are real symmetric, rather
than complex Hermitian. To see why we can restrict to real sym-
metric matrices, consider a Hermitian positive semidefinite ma-
trix Re Im given in the representation (37).
Since , for real , we have that

Re Im Re

Hence, Re . Moreover, Re
Re . Thus, if the imaginary parts of the coeffi-

cients are restricted to zero, then since and in (42)
are real, we can replace and [obtained from (37)] by
Re and Re with both Re and Re still being positive
semidefinite.

V. APPLICATIONS

We now show how the results of Section IV can be applied
to the design of FIR filters and to data-independent narrowband
beamformers.

A. FIR Filter Design

In optimization-based designs of (real-valued) FIR filters,
one often encounters a (relative) spectral mask constraint of the
form

for all (43)

for (36)

Authorized licensed use limited to: McMaster University. Downloaded on August 14,2010 at 19:57:24 UTC from IEEE Xplore.  Restrictions apply. 



2710 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002

where , and a normalization constraint either on the filter
coefficients or on . [We have used the “breve” notation to dis-
tinguish (43) from (1).] As discussed in the introduction, the
mask constraint can be made convex by constraining
to have “linear phase,” or by reformulating the constraint in
terms of the autocorrelation sequence as

. In both of these cases,
we can exploit the results of Section IV to precisely transform
the piecewise constant and piecewise trigonometric polynomial
portions of the mask into pairs of LMIs. The first step is to write

or in the form Re . To do so, we define
and such that

and (44)

where is the identity matrix, and is the
matrix with ones on the anti-diagonal and

zeros elsewhere. For a filter of length, if we define
such that , , then

Re

Similarly, for a filter of odd length that is symmetric and
centered at the origin, if we define such that ,

, then Re The
frequency response of other linear-phase filters can be written
in related ways, but for brevity, we will consider only the odd-
length symmetric case.

To further simplify our exposition, we will first consider the
design of a simple lowpass filter with a piecewise constant mask.
A natural extension to a piecewise trigonometric polynomial
mask is provided later in this section, and extensions to bandpass
and multiband filters are implicit in the design in Section V-B.
The simple piecewise constant lowpass spectral mask can be
written in the form of (43), where

and

(45)

with and denoting the normalized frequencies of the pass-
band and stopband edges, respectively, and

, , and . In the case of
linear-phase filters, we set and , whereas
for autocorrelation designs, we set . By observing
the common form of and and that
and , the spectral mask constraint can be rewritten in a
generic form as

and

(46)

where and when we design an odd-length sym-
metric filter and and for autocorrelation designs.

For autocorrelation designs, , and hence, the con-
straint is redundant.

The constraints in (46) define the set of feasible filters. The
question that remains is which of these filters is the “best.” A
large class of filter design objectives can be cast as the minimiza-
tion of a convex quadratic function of the parameters. This class
includes the weighted least-squares approximation of some de-
sired magnitude response [3], [4], [9]. Filter design problems in
this class take the following form: Given a positive semidefinite
matrix , a vector , and an integer , find achieving

(47)

subject to (46) and a linear normalization constraint on either
or or show that none exist. This generic design problem can be
solved by solving the following convex optimization problem.

Problem 1: Given from (46) and given , , , ,
, , , , and , find achieving

over , , , , , , ,
, and if , and

, subject to

(48)

(49)

(50)

(51)

and, if

(52)
and one of the normalizations or , for a given
vector , or show that none exist.

In Problem 1, (48), (49), and (52) enforce the lower bound
constraint of the spectral mask, and (50) and (51) enforce the
upper bound constraint. Problem 1 consists of a linear objec-
tive, linear equality constraints [(48)–(51) and (52) where appli-
cable], a linear inequality constraint on, positive semi-definite-
ness constraints on the variousand matrices, and the con-
straint . The set of vectors
that satisfy this last constraint can be transformed to the intersec-
tion of a “rotated” second-order cone in and a hyperplane
(e.g., [26]). Hence, Problem 1 is a convex symmetric cone pro-
gram [27], [28], which can be efficiently solved using well-es-
tablished interior point methods [29]. Furthermore, infeasibility
can be reliably detected. If represents the autocorrelation se-
quence of the filter, then an optimal filter can be obtained from
the solution of Problem 1 by spectral factorization [9], [11].

We now demonstrate the flexibility of this design method by
solving a number of filter design problems using small varia-
tions on Problem 1.

Example 1: Consider the design of a length 49
FIR filter which has the minimal “stopband energy”

, subject to the spectral
mask in (45), with , ,

, , , i.e., ,
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(a) (b) (c)

Fig. 1. Power spectra of length 49 filters from Example 1, along with the corresponding mask. In Fig. 1(c),� is the optimal value of� from Problem 1. (a)
Linear-phase filter minimizing stopband energy. (b) Nonlinear-phase filter minimizing stopband energy. (c) Nonlinear-phase filter minimizing proportion of energy
in the stopband.

, 1.5 dB passband ripple and 40 dB stopband
suppression. (The choice of this particular mask is explained in
Example 3.) For an odd-length symmetric filter, ,
where

sinc sinc sinc

sinc

for and sinc for

and 1 for . For a general filter, ,
where , and sinc for

. Therefore, optimal filters can be designed using
Problem 1 with the normalization constraint . For

, the power spectrum of the optimal linear-phase
filter is shown in Fig. 1(a), and that of an optimal nonlinear
phase filter is shown in Fig. 1(b). Each design problem was
solved using a Matlab-based general-purpose symmetric cone
program solver called SeDuMi [26]. The linear-phase case was
solved in 3.5 s on a 400 MHz Pentium II workstation, whereas
the nonlinear phase case required 24 s. The sharper cutoff and
improved high-frequency decay of the nonlinear-phase filter are
clear from these figures. Although these filters minimize the
stopband energy, they do not minimize the proportion of the
total energy of the filter in the stopband. A nonlinear-phase filter
that does so can be found by removing the constraint
from Problem 1 (and, hence, allowing the mask to “float”) and
replacing it with . The resulting optimal autocorrelation
was obtained in 25 s, and the power spectrum of an optimal filter
is shown in Fig. 1(c). Observe that the flatter passband response
in this case is achieved without greatly affecting the stopband
decay.

In some applications, one may wish to enforce a spectral mask
constraint that is not piecewise constant. For example, one may
wish to have a “roll-off” zone that provides a more gradual tran-
sition between the passband and stopband in Fig. 1. (See Fig. 2
for an example.) We will now demonstrate how the large and
diverse class of piecewise trigonometric polynomial masks can
be precisely enforced using Theorem 3. For simplicity, we will
restrict our attention to the case of enforcing a roll-off con-
straint on a lowpass filter, but the techniques can be easily gen-
eralized. Let denote the frequency at the “left edge” of the
roll-off portion of the mask, and let denote the frequency at
the left edge of the subsequent constant portion. Let the portion

of in the roll-off region be described by the real part
of a trigonometric polynomial, i.e., let Re

for , where
Then, this portion of the mask can be described in the notation
of Section IV and Problem 1 by

(53)

where either or is to be padded with zeros so that they
are both of dimension . For linear-phase
filters, the rolloff must also be incorporated into the lower mask

because is not constrained to be non-negative,
i.e., Re for . Hence, for
the linear-phase case, we require (53) and

(54)

For this roll-off example, the complete spectral mask is de-
scribed by (46), (53), and (54), with (54) being redundant in
the case of autocorrelation design. Therefore, the design of non-
linear-phase filters that minimize the objective in (47) subject to
the new mask can be achieved by adding two variables [

and ] to Problem 1, along with
the additional constraint

(55)
where is unconstrained. (Note that in Problem 1,
is already constrained to be real.) For linear-phase filters, we
require two more variables, namely, and

, and the additional constraint

(56)
where is unconstrained. In the following example,
we revisit the designs in Example 1 with a new mask, which
contains a roll-off section.

Example 2: Consider the mask from Example 1, and
introduce a “tighter” stopband constraint consisting of a
first-order trigonometric polynomial roll-off on the magnitude
spectrum between and and a
constant bound on the magnitude for . More
specifically, in the roll-off region , we enforce

, where the first-order trigonometric
polynomial has real coefficients and chosen
such that and , and
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(a) (b) (c)

Fig. 2. Power spectra of length 49 filters from Example 2, along with the corresponding mask. In (c),� is the optimal value of�. (a) Linear-phase filter minimizing
stopband energy. (b) Nonlinear-phase filter minimizing stopband energy. (c) Nonlinear-phase filter minimizing proportion of energy in the stopband.

Fig. 3. Equivalent discrete-time model of baseband PAM.

in the constant portion of the stopband , we
enforce . That is, the rolloff “starts” at

with a suppression level of 40 dB and rolls off to
a suppression level of 50 dB at from which point,
the required suppression level remains 50 dB (see Fig. 2). Note
that since , for

can be imposed directly on the power spec-
trum by enforcing for ,
where is a second-order trigonometric polynomial
with coefficients , and

. The power spectra of the length 49 linear and
nonlinear phase filters that minimize the stopband energy with

, subject to the spectral mask, are shown in
Fig. 2(a) and (b), and that of the nonlinear-phase filter that
minimizes the proportion of the total energy of the filter in
the stopband is shown in Fig. 2(c). (The optimal designs were
obtained in 14, 95, and 99 s, respectively, using the setup
described in Example 1.) Note that these filters have similar
passband characteristics to the corresponding filters in Example
1 but that the stopband characteristics are substantially altered
by the new mask.

In the transmission of digital data by pulse amplitude modu-
lation (PAM), we often encounter design specifications in terms
of a spectral mask of the form in Fig. 1. In fact, the mask in Fig. 1
is that specified for the “chip” waveform in the IS95 digital cel-
lular communication standard [30]. A simplified block diagram
of a PAM scheme is shown in Fig. 3. The transmitted power
is normalized to unity, i.e., . In order to control the in-
tersymbol interference (ISI) in a distortionless channel, we can
enforce the constraint

(57)

for some (small) , [31]. This term is the mean square
error (MSE) in in Fig. 3 in the absence of noise and channel
distortion. When , this constraint is equivalent to self-
orthogonality (that is, to being a “root-Nyquist” filter), but
when , it allows us to trade ISI for other system properties.
One of these properties might be the sensitivity of the MSE in

Fig. 4. Tradeoff between the sensitivity and� for the IS95 standard for
Example 3. The “�” and “�” denote the positions achieved by the IS95 filter
and the robust filter in Fig. 5(b), respectively.

to unknown channel distortion. If the unknown channel is
modeled as , where is the Kronecker delta
(which is the impulse response of a distortionless channel), then
an appropriate measure of the sensitivity of the PAM scheme
is the worst-case MSE over a bounded set of’s [31]. For a
given bound on the ISI, this sensitivity can be minimized by
solving Problem 1 with , , , , and the
additional constraint in (57) [31].

Example 3: The filter specified for the synthesis of the chip
waveform in IS95 has length 48 and and satisfies the
spectral mask specified in the standard (and illustrated in Fig. 1),
but it generates a large MSE in a distortionless channel. To ef-
ficiently determine whether this MSE can be reduced while si-
multaneously reducing the sensitivity to unknown channel dis-
tortion, the modified version of Problem 1 was solved for var-
ious values of . (Each solution was obtained in about 23 s.) The
tradeoff is shown in Fig. 4, from which it is clear that the IS95
filter can be greatly improved upon. The spectra of the IS95 filter
and a representative optimal filter are plotted in Fig. 5. The ro-
bust filter provides a substantially lower “chip error rate” than
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(a) (b)

Fig. 5. Power spectra (in decibels) of the filters in Example 3 with the IS95 mask. Here,� is the optimal value of� from the modified version of Problem 1. (a)
IS95 filter. (b) Robust filter.

Fig. 6. Simulated chip error rates (CER) in a slowly varying
frequency-selective Rician channel against signal-to-noise ratio for Example 3.
Legend—Dashed: IS95 filter. Solid: robust filter.

the IS95 filter in a slowly varying frequency-selective Rician
fading channel, as shown in Fig. 6. (See [31] for the details).

Example 4: In addition to tradeoffs between ISI and sen-
sitivity, tradeoffs between ISI and bandwidth are also of in-
terest in the design of PAM schemes. For a given level of ISI, a
filter achieving the minimum bandwidth can be efficiently found
using a bisection-based search on the stopband edge of the mask
for the feasibility boundary of a convex cone feasibility problem
[31]. That feasibility problem is based on the modified version
of Problem 1 used in Example 3. (This is a variation of the
method used to find minimum bandwidth self-orthogonal fil-
ters in [10].) The resulting tradeoff for the IS95 spectral mask
is plotted in Fig. 7, from which it is clear that the IS95 filter is
some distance from the optimal filters.

B. Beamformer Design

In standard narrowband beamforming applications, the out-
puts of each antenna element at a given instant are linearly com-
bined to form the array output at that instant [32]. If de-
notes the complex envelope of the output of theth antenna ele-

Fig. 7. Minimal stopband edgef against ISI bound� for the IS95 mask. “�”
denotes the position of the IS95 filter.

Fig. 8. Trade-off between the minimum white noise gainwww www and the
interference suppressionj� j for maximum sidelobe levels� of 0.1 dB
(solid), �18 dB (dotted),�20 dB (dashed), and�22 dB (dot-dashed) for
Example 5. The�, , and� denote the tradeoffs achieved by the beamformers
in Fig. 9.

ment at the th instant and if denotes the complex envelope
of the array output at that instant, then
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(a) (b) (c)

Fig. 9. Beam patterns with minimal white noise gain, subject to 40 dB interference suppression and different maximum sidelobe levels,� , for Example 5, along
with the corresponding masks. (a)� = �18 dB. (b)� = �20 dB. (c)� = �22 dB.

where is the “weight” applied to the output of theth antenna
element, and . It is well known [32] that if the array
geometry is linear, with equi-spaced elements with separation
and if the array operates on signals with wavelength, then the
(complex) “gain” of the array for a signal arriving at an angle
to broadside (perpendicular to the array) is

where is the Fourier transform of , and deter-
mines the “phase center” of the array. For simplicity, we will
focus on the standard case where .

In many applications, we would like to control the “beam pat-
tern” of the array , but that results in nonconvex con-
straints on . Using the autocorrelation of the weights

, we have that
, and therefore, bound constraints on result in

linear constraints on . For an -element array

Re

where , and was defined in Sec-
tion V-A. Therefore, piecewise constant and piecewise trigono-
metric polynomial constraints on can be compactly en-
forced in an analogous way to that for the spectral masks in Sec-
tion V-A, as we now demonstrate in a simple example derived
from [32, Fig. 2.5].

Example 5: Suppose that a desired signal impinges on a
16-element linear equi-spaced array with element separation

from an angle of and that interfering
signals arrive from angles in the range .
An interesting data independent [32] beamforming problem
is to minimize the response to (spatially) white noise (i.e.,

) subject to the gain in the direction of the desired
signal being within dB and to the gain in the direction
of the interferers being less than dB. Furthermore, to guard
against unexpected interferers from other directions, we would
like to keep the sidelobes below dB and to constrain the
main lobe (as determined by ) to be within . In
short, our objective is to minimize the white noise gain, subject
to a mask of the shape in Fig. 9. This problem can be cast in
a similar way to Problem 1 with , , and

, except that the vector and the various and
matrices may be complex. Therefore, the tradeoffs between the
white noise gain and the level of interference suppression, for

different values of the maximum sidelobe level and the “look
direction ripple” can be efficiently found. Examples of
such tradeoffs (for dB) are presented in Fig. 8, and
examples of the resulting beam patterns are shown in Fig. 9.
(Each optimal was computed in about 7 s.) These examples
clearly demonstrate the role that the sidelobe level constraint
plays in determining the shape of the beam pattern.

VI. CONCLUDING REMARKS

In this paper, we have provided a compact representation of
piecewise constant and piecewise trigonometric polynomial
spectral mask constraints via linear matrix inequalities. This
representation is precise and avoids the heuristic approximation
of the mask incurred when discretization techniques are used.
The representation is also convex, and it generates practically
competitive design algorithms (based on well-established
interior point methods) for a diverse class of FIR filtering and
narrowband beamforming problems. Using such algorithms,
(in)feasibility of the spectral mask can be detected reliably,
which is especially important when the design problem is
solved iteratively in a binary search scheme (such as in minimal
length filter design). In addition to these applications, gener-
alizations of our results to rational filters (i.e., infinite impulse
response filters) and to multidimensional filters are of interest
in control theory, as well as signal and image processing, and
are currently being pursued. In closing, we point out that we
have efficiently solved the design problems that result from
our compact representation (e.g., Problem 1 ) using a sophisti-
cated, but general purpose, convex cone program solver [26].
Although this is convenient from a practitioner’s perspective,
we believe that more efficient implementations of our design
approach can be obtained by developing an application-specific
solver that exploits the extensive algebraic structure that our
design problems possess. Recent work on application-specific
solvers for problems from the same class [33], [34] suggests
that the resulting reductions in computational and memory
requirements can be substantial.

ACKNOWLEDGMENT

The third author would like to thank Prof. Y. Nesterov for
sharing his ideas and for stimulating research in this area.

Authorized licensed use limited to: McMaster University. Downloaded on August 14,2010 at 19:57:24 UTC from IEEE Xplore.  Restrictions apply. 



DAVIDSON et al.: LINEAR MATRIX INEQUALITY FORMULATION 2715

REFERENCES

[1] T. W. Parks and C. S. Burrus,Digital Filter Design. New York: Wiley,
1987.

[2] K. Steiglitz, T. W. Parks, and J. F. Kaiser, “METEOR: A constraint-based
FIR filter design program,”IEEE Trans. Signal Processing, vol. 40, pp.
1901–1909, Aug. 1992.

[3] I. W. Selesnick, M. Lang, and C. S. Burrus, “Constrained least square
design for FIR filters without specified transition bands,”IEEE Trans.
Signal Processing, vol. 44, pp. 1879–1892, Aug. 1996.

[4] J. W. Adams and J. L. Sullivan, “Peak-constrained least-squares opti-
mization,” IEEE Trans. Signal Processing, vol. 46, pp. 306–321, Feb.
1998.

[5] P. Leister and T. W. Parks, “On the design of digital FIR filters with
optimum magnitude and minimum phase,”Arch. El.Übertr., vol. 29, pp.
270–274, 1975.

[6] O. Herrmann and W. Schuessler, “Design of nonrecursive digital filters
with minimum phase,”Electron. Lett., vol. 6, no. 11, pp. 329–330, June
1970.

[7] X. Chen and T. W. Parks, “Design of optimal minimum phase FIR fil-
ters by direct factorization,”Signal Process., vol. 10, pp. 369–383, June
1986.

[8] S.-P. Wu, S. Boyd, and L. Vandenberghe, “FIR filter design via semidef-
inite programming and spectral factorization,” inProc. IEEE Conf. Dec.
Contr., 1996, pp. 271–276.

[9] , “FIR filter design via spectral factorization and convex optimiza-
tion,” in Applied and Computational Control, Signals and Circuits, B.
Datta, Ed. Boston, MA: Birkhauser, 1999, vol. 1.

[10] T. N. Davidson, Z.-Q. Luo, and K. M. Wong, “Design of orthogonal
pulse shapes for communications via semidefinite programming,”IEEE
Trans. Signal Processing, vol. 48, pp. 1433–1445, May 2000.

[11] T. N. T. Goodman, C. A. Micchelli, G. Rodriguez, and S. Seatzu, “Spec-
tral factorization of Laurent polynomials,”Adv. Comput. Math., vol. 7,
no. 4, pp. 429–454, 1997.

[12] R. Hettich and K. O. Kortanek, “Semi-infinite programming: Theory,
methods and applications,”SIAM Rev., vol. 35, no. 3, pp. 380–429, Sept.
1993.

[13] P. Moulin, M. Anitescu, K. O. Kortanek, and F. A. Potra, “The role of
linear semi-infinite programming in signal adapted QMF bank design,”
IEEE Trans. Signal Processing, vol. 45, pp. 2160–2174, Sept. 1997.

[14] O. Rioul and P. Duhamel, “A Remez exchange algorithm for or-
thonormal wavelets,”IEEE Trans. Circuits Syst. II, vol. 41, pp.
550–560, Aug. 1994.

[15] H. H. Dam, K. L. Teo, S. Nordebo, and A. Cantoni, “The dual param-
eterization approach to optimal least square FIR filter design subject to
maximum error constraints,”IEEE Trans. Signal Processing, vol. 48,
pp. 2314–2320, Aug. 2000.

[16] B. D. O. Anderson, K. L. Hitz, and N. D. Diem, “Recursive algorithm
for spectral factorization,”IEEE Trans. Circuits Syst., vol. CAS-21, pp.
742–750, Nov. 1974.

[17] B. Hassibi, A. H. Sayed, and T. Kailath,Indefinite-Quadratic
Estimation and Control: A Unified Approach toH andH Theo-
ries. Philadelphia, PA: SIAM, 1999.

[18] P. P. Vaidyanathan, “The discrete-time Bounded-Real Lemma in digital
filtering,” IEEE Trans. Circuits Syst., vol. CAS-32, pp. 918–924, Sept.
1985.

[19] J. E. Marsden,Basic Complex Variables. San Francisco, CA: W. H.
Freeman, 1973.

[20] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[21] A. A. Markov, “Lecture notes on functions with the least deviation
from zero” (in Russian), inA. A. Markov, Selected Papers, N. Achiezer,
Ed. Moscow, Russia: GosTechIzdat, 1948, pp. 244–291.

[22] Lukacs, “Verscharfung der ersten mittelwertsatzes der integralrechnung
fur rationale polynome,”Math. Zeitschrift, vol. 2, pp. 229–305, 1918.

[23] V. Powers and B. Reznick, “Polynomials that are positive on an interval,”
Trans. Amer. Math. Soc., vol. 352, no. 10, pp. 4677–4692, June 2000.

[24] Yu. Nesterov, “Squared functional systems and optimization problems,”
in High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S.
Zhang, Eds. Dordrecht, The Netherlands: Kluwer, 2000, pp. 405–440.

[25] Yu. Nesterov and A. Nemirovsky,Interior Point Polynomial Algorithms
in Convex Programming. Philadelphia, PA: SIAM, 1994.

[26] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,”Optimiz. Methods Softw., pp. 11 625–12 653,
1999.

[27] L. Vandenberghe and S. Boyd, “Semidefinite programming,”SIAM Rev.,
vol. 31, no. 1, pp. 49–95, Mar. 1996.

[28] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
second-order cone programming,”Linear Algebra Applicat., vol. 284,
no. 1–3, pp. 193–228, Nov. 1998.

[29] Y. Ye, Interior Point Algorithms: Theory and Analysis. New York:
Wiley, 1997.

[30] “Proposed EIA/TIA Interim Standard. Wideband Spread Spectrum Dig-
ital Cellular System Dual-Mode Mobile Station-Base Station Compati-
bility Standard,” QUALCOMM, Inc., San Diego, CA, TR45.5, 1992.

[31] T. N. Davidson, “Efficient design of waveforms for robust pulse
amplitude modulation,”IEEE Trans. Signal Processing, vol. 49, pp.
3098–3111, Dec. 2001.

[32] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE Acoust., Speech, Signal Process. Mag., pp.
4–24, Apr. 1988.

[33] Y. Genin, Y. Hachez, Yu. Nesterov, and P. Van Dooren, “Convex opti-
mization over positive polynomials and filter design,” inProc. UKACC
Int. Conf. Contr., Cambridge, U.K., Sept. 2000.

[34] B. Alkire and L. Vandenberghe, “Interior point methods for magnitude
filter design,” inProc. Int. Conf. Acoust., Speech, Signal Process., Salt
Lake City, UT, May 2001.

Timothy N. Davidson (M’96) received the B.Eng. (Hons. I) degree in elec-
tronic engineering from The University of Western Australia (UWA), Perth, in
1991 and the D.Phil. degree in Engineering Science from the The University of
Oxford, Oxford, U.K., in 1995.

He is currently an assistant professor with the Department of Electrical and
Computer Engineering, McMaster University, Hamilton, ON, Canada. His re-
search interests are in signal processing, communications, and control, with cur-
rent activity focused on signal processing for digital communication systems.
He has held research positions at the Communications Research Laboratory
at McMaster University, the Adaptive Signal Processing Laboratory at UWA,
and the Australian Telecommunications Research Institute, Curtin University
of Technology, Perth.

Dr. Davidson received the 1991 J. A. Wood Memorial Prize (for “the most
outstanding [UWA] graduand” in the pure and applied sciences) and the 1991
Rhodes Scholarship for Western Australia.

Zhi-Quan Luo (M’90) was born in Nanchang, Jiangxi Province, China. He re-
ceived the B.Sc. degree in applied mathematics in 1984 from Peking University,
Beijing, China. From 1984 to 1985, he studied at the Nankai Institute of Math-
ematics, Tianjin, China. He received the Ph.D. degree in operations research
from the Department of Electrical Engineering and Computer Science, Massa-
chusetts Institute of Technology, Cambridge, MA, in 1989.

In 1989, he joined the Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON, Canada, where he is now the Department
Chair and holds the Canada Research Chair in Information Processing. His re-
search interests lie in the union of large-scale optimization, information theory
and coding, data communications, and signal processing. He is presently serving
as an associate editor for theJournal of Optimization Theory and Applications,
SIAM Journal on Optimization, Mathematics of Computation, Mathematics of
Operations Research, and Optimization and Engineering.

Prof. Luo is a member of SIAM and MPS and is an Associate Editor of the
IEEE TRANSACTIONS ONSIGNAL PROCESSING.

Jos F. Sturmcompleted his academic studies in Econometrics at the University
of Groningen, Groningen, The Netherlands in 1993 and received the Ph.D. de-
gree from Erasmus University, Rotterdam, The Netherlands, in 1997.

He is currently an associate professor with the Department of Econometrics
and Operations Research, Tilburg University, Tilburg, The Netherlands. His re-
search interests are in large-scale optimization, cone linear programming, robust
optimization, and interior point methods. He has been an Assistant Professor at
Maastricht University, Maastricht, The Netherlands, and was a post-doctoral re-
searcher at McMaster University, Hamilton, ON, Canada.

Dr. Sturm received the Gijs de Leve Prize for the best thesis in Operations
Research in The Netherlands from 1997 to 1999 and has received research grants
from The Netherlands Organization for Scientific Research (NWO).

Authorized licensed use limited to: McMaster University. Downloaded on August 14,2010 at 19:57:24 UTC from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


