7,754 research outputs found

    Virtual reality: Theoretical basis, practical applications

    Get PDF
    Virtual reality (VR) is a powerful multimedia visualization technique offering a range of mechanisms by which many new experiences can be made available. This paper deals with the basic nature of VR, the technologies needed to create it, and its potential, especially for helping disabled people. It also offers an overview of some examples of existing VR systems

    Feeling crowded yet?: Crowd simulations for VR

    Get PDF
    With advances in virtual reality technology and its multiple applications, the need for believable, immersive virtual environments is increasing. Even though current computer graphics methods allow us to develop highly realistic virtual worlds, the main element failing to enhance presence is autonomous groups of human inhabitants. A great number of crowd simulation techniques have emerged in the last decade, but critical details in the crowd's movements and appearance do not meet the standards necessary to convince VR participants that they are present in a real crowd. In this paper, we review recent advances in the creation of immersive virtual crowds and discuss areas that require further work to turn these simulations into more fully immersive and believable experiences.Peer ReviewedPostprint (author's final draft

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace

    Full text link
    Human-in-the-loop manipulation is useful in when autonomous grasping is not able to deal sufficiently well with corner cases or cannot operate fast enough. Using the teleoperator's hand as an input device can provide an intuitive control method but requires mapping between pose spaces which may not be similar. We propose a low-dimensional and continuous teleoperation subspace which can be used as an intermediary for mapping between different hand pose spaces. We present an algorithm to project between pose space and teleoperation subspace. We use a non-anthropomorphic robot to experimentally prove that it is possible for teleoperation subspaces to effectively and intuitively enable teleoperation. In experiments, novice users completed pick and place tasks significantly faster using teleoperation subspace mapping than they did using state of the art teleoperation methods.Comment: ICRA 2018, 7 pages, 7 figures, 2 table

    Humanoid robot orientation stabilization by shoulder joint motion during locomotion

    Get PDF
    Arm swing action is a natural phenomenon that emerges in biped locomotion. A shoulder torque reference generation method is introduced in this paper to utilize arms of a humanoid robot during locomotion. Main idea of the technique is the employment of shoulder joint actuation torques in order to stabilize body orientation. The reference torques are computed by a method which utilizes proportional and derivative actions. Body orientation angles serve as the inputs of this system. The approach is tested via simulations with the 3D full-dynamics model of the humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Results indicate that the method is successful in reducing oscillations of body angles during bipedal walking

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time
    • …
    corecore