6,346 research outputs found

    Perspective Taking Through Simulation

    No full text
    Robots that operate among humans need to be able to attribute mental states in order to facilitate learning through imitation and collaboration. The success of the simulation theory approach for attributing mental states to another person relies on the ability to take the perspective of that person, typically by generating pretend states from that person’s point of view. In this paper, internal inverse and forward models are coupled to create simulation processes that may be used for mental state attribution: simulation of the visual process is used to attribute perceptions, and simulation of the motor control process is used to attribute potential actions. To demonstrate the approach, experiments are performed with a robot attributing perceptions and potential actions to a second robot

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA

    Visual Imitation Learning with Recurrent Siamese Networks

    Full text link
    It would be desirable for a reinforcement learning (RL) based agent to learn behaviour by merely watching a demonstration. However, defining rewards that facilitate this goal within the RL paradigm remains a challenge. Here we address this problem with Siamese networks, trained to compute distances between observed behaviours and the agent's behaviours. Given a desired motion such Siamese networks can be used to provide a reward signal to an RL agent via the distance between the desired motion and the agent's motion. We experiment with an RNN-based comparator model that can compute distances in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we have had also found that the inclusion of multi-task data and an additional image encoding loss helps enforce the temporal consistency. These two components appear to balance reward for matching a specific instance of behaviour versus that behaviour in general. Furthermore, we focus here on a particularly challenging form of this problem where only a single demonstration is provided for a given task -- the one-shot learning setting. We demonstrate our approach on humanoid agents in both 2D with 1010 degrees of freedom (DoF) and 3D with 3838 DoF.Comment: PrePrin

    Better Vision Through Manipulation

    Get PDF
    For the purposes of manipulation, we would like to know what parts of the environment are physically coherent ensembles - that is, which parts will move together, and which are more or less independent. It takes a great deal of experience before this judgement can be made from purely visual information. This paper develops active strategies for acquiring that experience through experimental manipulation, using tight correlations between arm motion and optic flow to detect both the arm itself and the boundaries of objects with which it comes into contact. We argue that following causal chains of events out from the robot's body into the environment allows for a very natural developmental progression of visual competence, and relate this idea to results in neuroscience

    An architecture for an autonomous learning robot

    Get PDF
    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships
    • …
    corecore