129 research outputs found

    Competing in the RoboCup Rescue Robot League

    Get PDF
    RoboCup Rescue is an international competition in which robots compete to find disaster victims in a simulated earthquake environment. It features both a Rescue Simulation League (RSL) which is entirely computer simulated, and a Rescue Robot League (RRL) with real robots and a test arena. This paper will describe the experience gained sending an undergraduate team to compete in the Rescue Robot League at the RoboCup German Open in 2008 and 2009. The design of the test arena and the rules of the competition will be outlined; as will the approaches taken by different teams; and the competition results

    An overview of RoboCup-2002 Fukuoka/Busan

    Get PDF
    © 2003, American Association for Artificial Intelligence (AAAI). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/This article reports on the Sixth Robot World Cup Competition and Conference (RoboCup-2002) Fukuoka/Busan, which took place from 19 to 25 June in Fukuoka, Japan. It was the largest RoboCup since 1997 and held the first humanoid league competition in the world. Further, the first ROBOTREX (robot trade and exhibitions) was held with about 50 companies, universities, and institutes represented. A total of 117,000 spectators witnessed this marvelous event, To the best of our knowledge, this was the largest robotic event in history.Peer reviewe

    Agent-Based Perception of an Environment in an Emergency Situation

    Full text link
    We are interested in the problem of multiagent systems development for risk detecting and emergency response in an uncertain and partially perceived environment. The evaluation of the current situation passes by three stages inside the multiagent system. In a first time, the situation is represented in a dynamic way. The second step, consists to characterise the situation and finally, it is compared with other similar known situations. In this paper, we present an information modelling of an observed environment, that we have applied on the RoboCupRescue Simulation System. Information coming from the environment are formatted according to a taxonomy and using semantic features. The latter are defined thanks to a fine ontology of the domain and are managed by factual agents that aim to represent dynamically the current situation

    System Issues in Multi-agent Simulation of Large Crowds

    No full text
    Crowd simulation is a complex and challenging domain. Crowds demonstrate many complex behaviours and are consequently difficult to model for realistic simulation systems. Analyzing crowd dynamics has been an active area of research and efforts have been made to develop models to explain crowd behaviour. In this paper we describe an agent based simulation of crowds, based on a continuous field force model. Our simulation can handle movement of crowds over complex terrains and we have been able to simulate scenarios like clogging of exits during emergency evacuation situations. The focus of this paper, however, is on the scalability issues for such a multi-agent based crowd simulation system. We believe that scalability is an important criterion for rescue simulation systems. To realistically model a disaster scenario for a large city, the system should ideally scale up to accommodate hundreds of thousands of agents. We discuss the attempts made so far to meet this challenge, and try to identify the architectural and system constraints that limit scalability. Thereafter we propose a novel technique which could be used to richly simulate huge crowds

    Research and development of a rescue robot end-effector

    Get PDF
    Includes abstract.Includes bibliographical references.This report details the research, design, development and testing of an end-effector system for use on an Urban Search and Rescue (USAR) robot which is in development in the Robotics and Agents Research Laboratory (RARL) at the University of Cape Town (UCT). This is the 5th generation Mobile Robot Platform (MRP) that UCT has developed ... codenamed ‘Ratel’. USAR robots used to be mainly of the observation type, but new robots (including UCT’s Ratel MRP) are being developed to deal with inherently dynamic, complex and unpredictable disaster response situations, particularly related to object manipulation and gripping. In order to actively interact with the environment, a flexible and robust gripping system is vital. [an] end-effector solution ... was developed for the Ratel manipulator arm to fulfil these functions
    corecore