41,718 research outputs found
A Radio-fingerprinting-based Vehicle Classification System for Intelligent Traffic Control in Smart Cities
The measurement and provision of precise and upto-date traffic-related key
performance indicators is a key element and crucial factor for intelligent
traffic controls systems in upcoming smart cities. The street network is
considered as a highly-dynamic Cyber Physical System (CPS) where measured
information forms the foundation for dynamic control methods aiming to optimize
the overall system state. Apart from global system parameters like traffic flow
and density, specific data such as velocity of individual vehicles as well as
vehicle type information can be leveraged for highly sophisticated traffic
control methods like dynamic type-specific lane assignments. Consequently,
solutions for acquiring these kinds of information are required and have to
comply with strict requirements ranging from accuracy over cost-efficiency to
privacy preservation. In this paper, we present a system for classifying
vehicles based on their radio-fingerprint. In contrast to other approaches, the
proposed system is able to provide real-time capable and precise vehicle
classification as well as cost-efficient installation and maintenance, privacy
preservation and weather independence. The system performance in terms of
accuracy and resource-efficiency is evaluated in the field using comprehensive
measurements. Using a machine learning based approach, the resulting success
ratio for classifying cars and trucks is above 99%
Learning sound representations using trainable COPE feature extractors
Sound analysis research has mainly been focused on speech and music
processing. The deployed methodologies are not suitable for analysis of sounds
with varying background noise, in many cases with very low signal-to-noise
ratio (SNR). In this paper, we present a method for the detection of patterns
of interest in audio signals. We propose novel trainable feature extractors,
which we call COPE (Combination of Peaks of Energy). The structure of a COPE
feature extractor is determined using a single prototype sound pattern in an
automatic configuration process, which is a type of representation learning. We
construct a set of COPE feature extractors, configured on a number of training
patterns. Then we take their responses to build feature vectors that we use in
combination with a classifier to detect and classify patterns of interest in
audio signals. We carried out experiments on four public data sets: MIVIA audio
events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that
we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on
the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund)
demonstrate the effectiveness of the proposed method and are higher than the
ones obtained by other existing approaches. The COPE feature extractors have
high robustness to variations of SNR. Real-time performance is achieved even
when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio
Improving performance of pedestrian positioning by using vehicular communication signals
Pedestrian-to-vehicle communications, where pedestrian devices transmit their position information to nearby vehicles to indicate their presence, help to reduce pedestrian accidents. Satellite-based systems are widely used for pedestrian positioning, but have much degraded performance in urban canyon, where satellite signals are often obstructed by roadside buildings. In this paper, we propose a pedestrian positioning method, which leverages vehicular communication signals and uses vehicles as anchors. The performance of pedestrian positioning is improved from three aspects: (i) Channel state information instead of RSSI is used to estimate pedestrian-vehicle distance with higher precision. (ii) Only signals with line-of-sight path are used, and the property of distance error is considered. (iii) Fast mobility of vehicles is used to get diverse measurements, and Kalman filter is applied to smooth positioning results. Extensive evaluations, via trace-based simulation, confirm that (i) Fixing rate of positions can be much improved. (ii) Horizontal positioning error can be greatly reduced, nearly by one order compared with off-the-shelf receivers, by almost half compared with RSSI-based method, and can be reduced further to about 80cm when vehicle transmission period is 100ms and Kalman filter is applied. Generally, positioning performance increases with the number of available vehicles and their transmission frequency
- …
