3 research outputs found

    Segmenting Roads from Aerial Images: A Deep Learning Approach Using Multi-Scale Analysis

    Get PDF
    Road map generation requires frequent map updates due to the irregular infrastructural changes. Updating a manual road map is a lengthy process, whereas using aerial or remote sensing (RS) requires less time for the update. However, road extraction becomes more complex due to the similar texture appearance of building top roofs, shadows, and occlusion due to trees. The occluded roads appear as discontinuous road patch in segmented image of updated maps. In this paper, we propose a deep learning method that uses multi-scale analysis for road feature extraction. The dilated inception module (DI) in the up and down sampling paths of network extracts the local and global texture patterns of the road. Furthermore, we also utilize the pyramid pooling module (PP) which has average and max pooling to study the global contextual information under the shadow regions. In the proposed architecture, first, the road in the aerial images is segmented along with the tiny non-road segments. Next, the post processing, which exploits the geometrical shape features, is utilized for filtering the tiny non-road noises. The performance of proposed network is validated on using the publicly available Massachusetts road data by comparing with the other models available in literature

    Road Segmentation for Remote Sensing Images using Adversarial Spatial Pyramid Networks

    Full text link
    Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the complex background, and high density, most of the existing methods fail to accurately extract a road network that appears correct and complete. Moreover, they suffer from either insufficient training data or high costs of manual annotation. To address these problems, we introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation. We incorporate a feature pyramid network into generative adversarial networks to minimize the difference between the source and target domains. A generator is learned to produce quality synthetic images, and the discriminator attempts to distinguish them. We also propose a feature pyramid network that improves the performance of the proposed model by extracting effective features from all the layers of the network for describing different scales objects. Indeed, a novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features. For optimization, the model is trained by a joint reconstruction loss function, which minimizes the difference between the fake images and the real ones. A wide range of experiments on three datasets prove the superior performance of the proposed approach in terms of accuracy and efficiency. In particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches used in the evaluation

    Road Segmentation Based on Hybrid Convolutional Network for High-Resolution Visible Remote Sensing Image

    No full text
    corecore