714 research outputs found

    Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad-hoc networks

    Get PDF
    Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency

    Radio Propagation Channel Characterization and MIMO Over-the-Air Testing

    Get PDF

    Localization and cooperative communication methods for cognitive radio

    Get PDF
    We study localization of nearby nodes and cooperative communication for cognitive radios. Cognitive radios sensing their environment to estimate the channel gain between nodes can cooperate and adapt their transmission power to maximize the capacity of the communication between two nodes. We study the end-to-end capacity of a cooperative relaying scheme using orthogonal frequency-division modulation (OFDM) modulation, under power constraints for both the base station and the relay station. The relay uses amplify-and-forward and decodeand-forward cooperative relaying techniques to retransmit messages on a subset of the available subcarriers. The power used in the base station and the relay station transmitters is allocated to maximize the overall system capacity. The subcarrier selection and power allocation are obtained based on convex optimization formulations and an iterative algorithm. Additionally, decode-and-forward relaying schemes are allowed to pair source and relayed subcarriers to increase further the capacity of the system. The proposed techniques outperforms non-selective relaying schemes over a range of relay power budgets. Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spectrum holes left unused by licensed primary users. We introduce a spectrum holes detection approach, which combines blind modulation classification, angle of arrival estimation and number of sources detection. We perform eigenspace analysis to determine the number of sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources as primary or secondary users with their distinct second-orde one-conjugate cyclostationarity features. Extensive simulations carried out indicate that the proposed system identifies and locates individual sources correctly, even at -4 dB signal-to-noise ratios (SNR). In environments with a high density of scatterers, several wireless channels experience non-line-of-sight (NLOS) condition, increasing the localization error, even when the AOA estimate is accurate. We present a real-time localization solver (RTLS) for time-of-arrival (TOA) estimates using ray-tracing methods on the map of the geometry of walls and compare its performance with classical TOA trilateration localization methods. Extensive simulations and field trials for indoor environments show that our method increases the coverage area from 1.9% of the floor to 82.3 % and the accuracy by a 10-fold factor when compared with trilateration. We implemented our ray tracing model in C++ using the CGAL computational geometry algorithm library. We illustrate the real-time property of our RTLS that performs most ray tracing tasks in a preprocessing phase with time and space complexity analyses and profiling of our software

    Opportunistic Angle of Arrival Estimation in Impaired Scenarios

    Get PDF
    This work if focused on the analysis and the development of Angle of Arrival (AoA) radio localization methods. The radio positioning system considered is constituted by a radio source and by a receiving array of antennas. The positioning algorithms treated in this work are designed to have a passive and opportunistic approach. The opportunistic attribute implies that the radio localization algorithms are designed to provide the AoA estimation with nearly-zero information on the transmitted signals. No training sequences or waveforms custom designed for localization are taken into account. The localization is termed passive since there is no collaboration between the transmitter and the receiver during the localization process. Then, the algorithms treated in this work are designed to eavesdrop already existing communication signals and to locate their radio source with nearly-zero knowledge of the signal and without the collaboration of the transmitting node. First of all, AoA radio localization algorithms can be classified in terms of involved signals (narrowband or broadband), antenna array pattern (L-shaped, circular, etc.), signal structure (sinusoidal, training sequences, etc.), Differential Time of Arrival (D-ToA) / Differential Phase of Arrival (D-PoA) and collaborative/non collaborative. Than, the most detrimental effects for radio communications are treated: the multipath (MP) channels and the impaired hardware. A geometric model for the MP is analysed and implemented to test the robustness of the proposed methods. The effects of MP on the received signals statistics from the AoA estimation point-of-view are discussed. The hardware impairments for the most common components are introduced and their effects in the AoA estimation process are analysed. Two novel algorithms that exploits the AoA from signal snapshots acquired sequentially with a time division approach are presented. The acquired signals are QAM waveforms eavesdropped from a pre-existing communication. The proposed methods, namely Constellation Statistical Pattern IDentification and Overlap (CSP-IDO) and Bidimensional CSP-IDO (BCID), exploit the probability density function (pdf) of the received signals to obtain the D-PoA. Both CSP-IDO and BCID use the statistical pattern of received signals exploiting the transmitter statistical signature. Since the presence of hardware impairments modify the statistical pattern of the received signals, CSP-IDO and BCID are able to exploit it to improve the performance with respect to (w.r.t.) the ideal case. Since the proposed methods can be used with a switched antenna architecture they are implementable with a reduced hardware contrariwise to synchronous methods like MUltiple SIgnal Classification (MUSIC) that are not applicable. Then, two iterative AoA estimation algorithms for the dynamic tracking of moving radio sources are implemented. Statistical methods, namely PF, are used to implement the iterative tracking of the AoA from D-PoA measures in two different scenarios: automotive and Unmanned Aerial Vehicle (UAV). The AoA tracking of an electric car signalling with a IEEE 802.11p-like standard is implemented using a test-bed and real measures elaborated with a the proposed Particle Swarm Adaptive Scattering (PSAS) algorithm. The tracking of a UAV moving in the 3D space is investigated emulating the UAV trajectory using the proposed Confined Area Random Aerial Trajectory Emulator (CARATE) algorithm

    Improved Location And Positioning Utilizing Single MIMO Base Station In IMT-Advanced System

    Get PDF
    This paper discusses an improvement of location and positioning estimation using one of the IMT-Advanced systems known as the mobile WiMAX. The Single MIMO Base Station (SMBS) in mobile WiMAX is combined with a virtual technique, known as the Virtual Base Stations, created a novel algorithm for location and positioning (L&P) purposes. This algorithm based on the angle of arrival (AOA) and angle of departure (AOD) measurement parameter completed the new SMBS algorithm with virtual base station (SMVirBS). The developed algorithm includes the effect of the geometric dilution of precision (GDOP) to assist with the location estimation accuracy. The simulation results showed that the proposed SMVirBS technique always outperforms the linear least square (LLS) algorithm in terms of estimated location accuracy. The technique also has the capability to work well in non-line of sight errors (NLOS)

    Wiometrics: Comparative Performance of Artificial Neural Networks for Wireless Navigation

    Full text link
    Radio signals are used broadly as navigation aids, and current and future terrestrial wireless communication systems have properties that make their dual-use for this purpose attractive. Sub-6 GHz carrier frequencies enable widespread coverage for data communication and navigation, but typically offer smaller bandwidths and limited resolution for precise estimation of geometries, particularly in environments where propagation channels are diffuse in time and/or space. Non-parametric methods have been employed with some success for such scenarios both commercially and in literature, but often with an emphasis on low-cost hardware and simple models of propagation, or with simulations that do not fully capture hardware impairments and complex propagation mechanisms. In this article, we make opportunistic observations of downlink signals transmitted by commercial cellular networks by using a software-defined radio and massive antenna array mounted on a passenger vehicle in an urban non line-of-sight scenario, together with a ground truth reference for vehicle pose. With these observations as inputs, we employ artificial neural networks to generate estimates of vehicle location and heading for various artificial neural network architectures and different representations of the input observation data, which we call wiometrics, and compare the performance for navigation. Position accuracy on the order of a few meters, and heading accuracy of a few degrees, are achieved for the best-performing combinations of networks and wiometrics. Based on the results of the experiments we draw conclusions regarding possible future directions for wireless navigation using statistical methods

    Seismic energy envelopes in volcanic media : in need of boundary conditions

    No full text
    Peer reviewedPublisher PD
    • …
    corecore