90 research outputs found

    Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems

    Get PDF
    summary:We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example

    No elliptic islands for the universal area-preserving map

    Full text link
    A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} to prove the existence of a \textit{universal area-preserving map}, a map with hyperbolic orbits of all binary periods. The existence of a horseshoe, with positive Hausdorff dimension, in its domain was demonstrated in \cite{GJ1}. In this paper the coexistence problem is studied, and a computer-aided proof is given that no elliptic islands with period less than 20 exist in the domain. It is also shown that less than 1.5% of the measure of the domain consists of elliptic islands. This is proven by showing that the measure of initial conditions that escape to infinity is at least 98.5% of the measure of the domain, and we conjecture that the escaping set has full measure. This is highly unexpected, since generically it is believed that for conservative systems hyperbolicity and ellipticity coexist

    CAPD::DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems

    Full text link
    We present the CAPD::DynSys library for rigorous numerical analysis of dynamical systems. The basic interface is described together with several interesting case studies illustrating how it can be used for computer-assisted proofs in dynamics of ODEs.Comment: 25 pages, 4 figures, 11 full C++ example
    • …
    corecore