10,367,437 research outputs found

    Looking at silk

    Get PDF
    Text of Sir Robert Megarry’s speech at the Second Annual Lecture presented by the Society for Advanced Legal Studies, looking at the history and work of Queen’s Counsel. Article based on a lecture given by the Rt Hon Sir Robert Megarry, published in Amicus Curiae - Journal of the Institute of Advanced Legal Studies and its Society for Advanced Legal Studies. The Journal is produced by the Society for Advanced Legal Studies at the Institute of Advanced Legal Studies, University of London

    Right

    Get PDF

    Gestational diabetes mellitus- right person, right treatment, right time?

    Get PDF
    Background: Personalised treatment that is uniquely tailored to an individual’s phenotype has become a key goal of clinical and pharmaceutical development across many, particularly chronic, diseases. For type 2 diabetes, the importance of the underlying clinical heterogeneity of the condition is emphasised and a range of treatments are now available, with personalised approaches being developed. While a close connection between risk factors for type 2 diabetes and gestational diabetes has long been acknowledged, stratification of screening, treatment and obstetric intervention remains in its infancy. Conclusions: Although there have been major advances in our understanding of glucose tolerance in pregnancy and of the benefits of treatment of gestational diabetes, we argue that far more vigorous approaches are needed to enable development of companion diagnostics, and to ensure the efficacious and safe use of novel therapeutic agents and strategies to improve outcomes in this common condition

    ‘Right Here Right Now’ review

    Get PDF

    Right for the Right Reason: Training Agnostic Networks

    Get PDF
    We consider the problem of a neural network being requested to classify images (or other inputs) without making implicit use of a "protected concept", that is a concept that should not play any role in the decision of the network. Typically these concepts include information such as gender or race, or other contextual information such as image backgrounds that might be implicitly reflected in unknown correlations with other variables, making it insufficient to simply remove them from the input features. In other words, making accurate predictions is not good enough if those predictions rely on information that should not be used: predictive performance is not the only important metric for learning systems. We apply a method developed in the context of domain adaptation to address this problem of "being right for the right reason", where we request a classifier to make a decision in a way that is entirely 'agnostic' to a given protected concept (e.g. gender, race, background etc.), even if this could be implicitly reflected in other attributes via unknown correlations. After defining the concept of an 'agnostic model', we demonstrate how the Domain-Adversarial Neural Network can remove unwanted information from a model using a gradient reversal layer.Comment: Author's original versio
    corecore