21,827 research outputs found
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
Scale-dependent influence of pre-existing basement shear zones on rift faulting : a case study from NE Brazil
Rifting of continental crust initiates faults that are commonly influenced by pre-existing structures. We document newly identified faults cutting Precambrian units in the interior of the NE Brazilian margin to assess the effects of structural inheritance on both rift geometry and fault architecture. Stratigraphic and structural data indicate that the faults were active in the main phase of rifting of Gondwana. The influence of pre-existing structures on the Mesozoic rift faulting is scale dependent. Regionally, the faults trend parallel to subvertical, crustal-scale Brasiliano (c. 750–540 Ma) shear zones. Mylonitic foliations and broadly distributed low strain in the lower crust indicated by shear-wave splitting controlled the overall orientation and kinematics of the rift faults. However, outcrop observations of the faults show that at scales up to hundreds of metres, mylonitic foliations have little influence on fault architectures. Faults cross-cut shear zones and do not commonly utilize foliation planes as shear fractures. Instead, slip zones and fractures have a range of orientations that form acute angles to the local foliation orientation. This observation explains the range of focal mechanisms associated with seismicity that coincides with ancient shear zones in intra-continental areas
'It's not all about the land': land disputes and conflict in the eastern Congo
Key points
• Current interventions in land conflicts are focused on conflict management rather than conflict resolution.
• Land conflicts are part of a wider governance problem and need political rather than technical approaches.
• Conflicts over land are related to wider conflict dynamics, which are the result of an interplay between struggles for power and resources, identity narratives and territorial claims.
• There is a need for better donor coordination and more coherent land governance interventions, which should be
integrated into larger state-building efforts
Asymmetric continental deformation during South Atlantic rifting along southern Brazil and Namibia
Plate restoration of South America and Africa to their pre-breakup position faces the problem of gaps and overlaps between the continents, an issue commonly solved with implementing intra-plate deformation zones within South America. One of these zones is often positioned at the latitude of SE/S Brazil. However, geological evidence for the existence of a distinct zone in this region is lacking, which is why it remains controversial and is not included in all modeling studies. In order to solve this problem we present a study of multiple geological aspects of both parts of the margin, SE/S Brazil and its conjugate part NW Namibia at the time of continental breakup. Our study highlights pronounced differences between these regions with respect to Paraná-Etendeka lava distribution, magmatic dyke emplacement, basement reactivation, and fault patterns. In Namibia, faults and dykes reactivated the rift-parallel Neoproterozoic basement structure, whereas such reactivation was scarce in SE/S Brazil. Instead, most dykes, accompanied by small-scale grabens, are oriented margin-perpendicular along the margin from northern Uruguay to São Paulo. We propose that these differences are rooted in large-scale plate movement and suggest a clockwise rotation of southern South America away from a stable northern South America and Africa, in a similar way as proposed by others for a Patagonian continental section just prior to South Atlantic rifting. This rotation would produce margin-parallel extension in SE/S Brazil forming margin-perpendicular pathways for lava extrusion and leading to the asymmetric distribution of the Paraná-Etendeka lavas. NW Namibia instead remained relatively stable and was only influenced by extension due to rifting, hot spot activity, and mantle upwelling. Our study argues for significant margin-parallel extension in SE/S Brazil, however not confined to a single distinct deformation zone, but distributed across ~ 1000 km along the margin
Recommended from our members
Deep ductile shear localization facilitates near-orthogonal strike-slip faulting in a thin brittle lithosphere
Some active fault systems comprise near-orthogonal conjugate strike-slip faults, as highlighted by the 2019 Ridgecrest and the 2012 Indian Ocean earthquake sequences. In conventional failure theory, orthogonal faulting requires a pressure-insensitive rock strength, which is unlikely in the brittle lithosphere. Here, we conduct 3D numerical simulations to test the hypothesis that near-orthogonal faults can form by inheriting the geometry of deep ductile shear bands. Shear bands nucleated in the deep ductile layer, a pressure-insensitive material, form at 45 degree from the maximum principal stress. As they grow upwards into the brittle layer, they progressively rotate towards the preferred brittle faulting angle, ~30 degree, forming helical shaped faults. If the brittle layer is sufficiently thin, the rotation is incomplete and the near-orthogonal geometry is preserved at the surface. The preservation is further facilitated by a lower confining pressure in the shallow portion of the brittle layer. For this inheritance to be effective, a thick ductile fault root beneath the brittle layer is necessary. The model offers a possible explanation for orthogonal faulting in Ridgecrest, Salton Trough, and Wharton basin. Conversely, faults nucleated within the brittle layer form at the optimal angle for brittle faulting and can cut deep into the ductile layer before rotating to 45 degree. Our results thus reveal the significant interactions between the structure of faults in the brittle upper lithosphere and their deep ductile roots
Molecular Genetic Diversity Study of Forest Coffee Tree (Coffea arabica L.) Populations in Ethiopia: Implications for Conservation and Breeding
Coffee provides one of the most widely drunk beverages in the world, and is a very important source of foreign exchange income for many countries. Coffea arabica, which contributes over 70 percent of the world's coffee productions, is characterized by a low genetic diversity, attributed to its allopolyploidy origin, reproductive biology and evolution. C. arabica has originated in the southwest rain forests of Ethiopia, where it is grown under four different systems, namely forest coffee, small holders coffee, semi plantation coffee and plantation coffee. Genetic diversity of the forest coffee (C. arabica) gene pool in Ethiopia is being lost at an alarming rate because of habitat destruction (deforestation), competition from other cash crops and replacement by invariable disease resistant coffee cultivars. This study focused on molecular genetic diversity study of forest coffee populations in Ethiopia using PCR based DNA markers such as random amplified polymorphic DNA (RAPD), inverse sequence-tagged repeat (ISTR), inter-simple sequence repeats (ISSR) and simple sequence repeat (SSR) or microsatellites. The objectives of the study are to estimate the extent and distribution of molecular genetic diversity of forest coffee and to design conservation strategies for it’s sustainable use in future coffee breeding. In this study, considerable samples of forest coffee collected from four coffee growing regions (provinces) of Ethiopia were analysed. The results indicate that moderate genetic diversity exists within and among few forest coffee populations, which need due attention from a conservation and breeding point of view. The cluster analysis revealed that most of the samples from the same region (province) were grouped together which could be attributed to presence of substantial gene flow between adjacent populations in each region in the form of young coffee plants through transplantation by man. In addition wild animals such as monkeys also play a significant role in coffee trees gene flow between adjacent populations. The overall variation of the forest coffee is found to reside in few populations from each region. Therefore, considering few populations from each region for either in situ or ex situ conservation may preserve most of the variation within the species. For instance, Welega-2, Ilubabor-2, Jima-2 and Bench Maji-2 populations should be given higher priority. In addition, some populations or genotypes have displayed unique amplification profiles particularly for RAPD and ISTR markers. Whether these unique bands are linked to any of the important agronomic traits and serve in marker assisted selections in future coffee breeding requires further investigations
Innate immune basis for rift valley fever susceptibility in mouse models
Rift Valley fever virus (RVFV) leads to varied clinical manifestations in animals and in humans that range from moderate fever to fatal illness, suggesting that host immune responses are important determinants of the disease severity. We investigated the immune basis for the extreme susceptibility of MBT/Pas mice that die with mild to acute hepatitis by day 3 post-infection compared to more resistant BALB/cByJ mice that survive up to a week longer. Lower levels of neutrophils observed in the bone marrow and blood of infected MBT/Pas mice are unlikely to be causative of increased RVFV susceptibility as constitutive neutropenia in specific mutant mice did not change survival outcome. However, whereas MBT/Pas mice mounted an earlier inflammatory response accompanied by higher amounts of interferon (IFN)-α in the serum compared to BALB/cByJ mice, they failed to prevent high viral antigen load. Several immunological alterations were uncovered in infected MBT/Pas mice compared to BALB/cByJ mice, including low levels of leukocytes that expressed type I IFN receptor subunit 1 (IFNAR1) in the blood, spleen and liver, delayed leukocyte activation and decreased percentage of IFN-γ-producing leukocytes in the blood. These observations are consistent with the complex mode of inheritance of RVFV susceptibility in genetic studies
Complex rift geometries resulting from inheritance of pre-existing structures: Insights and regional implications from the Barmer Basin rift
Structural studies of the Barmer Basin in Rajasthan, northwest India, demonstrate the important effect that pre-existing faults can have on the geometries of evolving fault systems at both the outcrop and basin-scale. Outcrop exposures on opposing rift margins reveal two distinct, non-coaxial extensional events. On the eastern rift margin northwest–southeast extension was accommodated on southwest- and west-striking faults that form a complex, zig-zag fault network. On the western rift margin northeast–southwest extension was accommodated on northwest-striking faults that form classical extensional geometries.
Combining these outcrop studies with subsurface interpretations demonstrates that northwest–southeast extension preceded northeast–southwest extension. Structures active during the early, previously unrecognised extensional event were variably incorporated into the evolving fault systems during the second. In the study area, an inherited rift-oblique fault transferred extension from the rift margin to a mid-rift fault, rather than linking rift margin fault systems directly. The resultant rift margin accommodation structure has important implications for early sediment routing and depocentre evolution, as well as wider reaching implications for the evolution of the rift basin and West Indian Rift System. The discovery of early rifting in the Barmer Basin supports that extension along the West Indian Rift System was long-lived, multi-event, and likely resulted from far-field plate reorganisations
Post-Gondwana break-up evolution of the South Atlantic passive margins in eastern Brazil and the western Democratic Republic of the Congo unraveled by low-temperature thermochronology
Time and Self-Valorization Freedom from Work Through Work, an EJ Perspective on Work, Capital, and the Environment
- …
