62 research outputs found

    Group-level Emotion Recognition using Transfer Learning from Face Identification

    Full text link
    In this paper, we describe our algorithmic approach, which was used for submissions in the fifth Emotion Recognition in the Wild (EmotiW 2017) group-level emotion recognition sub-challenge. We extracted feature vectors of detected faces using the Convolutional Neural Network trained for face identification task, rather than traditional pre-training on emotion recognition problems. In the final pipeline an ensemble of Random Forest classifiers was learned to predict emotion score using available training set. In case when the faces have not been detected, one member of our ensemble extracts features from the whole image. During our experimental study, the proposed approach showed the lowest error rate when compared to other explored techniques. In particular, we achieved 75.4% accuracy on the validation data, which is 20% higher than the handcrafted feature-based baseline. The source code using Keras framework is publicly available.Comment: 5 pages, 3 figures, accepted for publication at ICMI17 (EmotiW Grand Challenge

    Facial Expression Analysis under Partial Occlusion: A Survey

    Full text link
    Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment and human computer interaction. The vast majority of completed FEA studies are based on non-occluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better informed and benchmarked future work.Comment: Authors pre-print of the article accepted for publication in ACM Computing Surveys (accepted on 02-Nov-2017

    Towards A Robust Group-level Emotion Recognition via Uncertainty-Aware Learning

    Full text link
    Group-level emotion recognition (GER) is an inseparable part of human behavior analysis, aiming to recognize an overall emotion in a multi-person scene. However, the existing methods are devoted to combing diverse emotion cues while ignoring the inherent uncertainties under unconstrained environments, such as congestion and occlusion occurring within a group. Additionally, since only group-level labels are available, inconsistent emotion predictions among individuals in one group can confuse the network. In this paper, we propose an uncertainty-aware learning (UAL) method to extract more robust representations for GER. By explicitly modeling the uncertainty of each individual, we utilize stochastic embedding drawn from a Gaussian distribution instead of deterministic point embedding. This representation captures the probabilities of different emotions and generates diverse predictions through this stochasticity during the inference stage. Furthermore, uncertainty-sensitive scores are adaptively assigned as the fusion weights of individuals' face within each group. Moreover, we develop an image enhancement module to enhance the model's robustness against severe noise. The overall three-branch model, encompassing face, object, and scene component, is guided by a proportional-weighted fusion strategy and integrates the proposed uncertainty-aware method to produce the final group-level output. Experimental results demonstrate the effectiveness and generalization ability of our method across three widely used databases.Comment: 11 pages,3 figure

    Affect Analysis and Membership Recognition in Group Settings

    Get PDF
    PhD ThesisEmotions play an important role in our day-to-day life in various ways, including, but not limited to, how we humans communicate and behave. Machines can interact with humans more naturally and intelligently if they are able to recognise and understand humans’ emotions and express their own emotions. To achieve this goal, in the past two decades, researchers have been paying a lot of attention to the analysis of affective states, which has been studied extensively across various fields, such as neuroscience, psychology, cognitive science, and computer science. Most of the existing works focus on affect analysis in individual settings, where there is one person in an image or in a video. However, in the real world, people are very often with others, or interact in group settings. In this thesis, we will focus on affect analysis in group settings. Affect analysis in group settings is different from that in individual settings and provides more challenges due to dynamic interactions between the group members, various occlusions among people in the scene, and the complex context, e.g., who people are with, where people are staying and the mutual influences among people in the group. Because of these challenges, there are still a number of open issues that need further investigation in order to advance the state of the art, and explore the methodologies for affect analysis in group settings. These open topics include but are not limited to (1) is it possible to transfer the methods used for the affect recognition of a person in individual settings to the affect recognition of each individual in group settings? (2) is it possible to recognise the affect of one individual using the expressed behaviours of another member in the same group (i.e., cross-subject affect recognition)? (3) can non-verbal behaviours be used for the recognition of contextual information in group settings? In this thesis, we investigate the affect analysis in group settings and propose methods to explore the aforementioned research questions step by step. Firstly, we propose a method for individual affect recognition in both individual and group videos, which is also used for social context prediction, i.e., whether a person is alone or within a group. Secondly, we introduce a novel framework for cross-subject affect analysis in group videos. Specifically, we analyse the correlation of the affect among group members and investigate the automatic recognition of the affect of one subject using the behaviours expressed by another subject in the same group or in a different group. Furthermore, we propose methods for contextual information prediction in group settings, i.e., group membership recognition - to recognise which group of the person belongs. Comprehensive experiments are conducted using two datasets that one contains individual videos and one contains group videos. The experimental results show that (1) the methods used for affect recognition of a person in individual settings can be transferred to group settings; (2) the affect of one subject in a group can be better predicted using the expressive behaviours of another subject within the same group than using that of a subject from a different group; and (3) contextual information (i.e., whether a person is staying alone or within a group, and group membership) can be predicted successfully using non-verbal behaviours

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions
    • …
    corecore