4 research outputs found

    Consistent Phase Estimation for Recovering Depth From Moiré Interferograms

    Get PDF
    Moiré interferometry is a common tool if depth estimation from a single image frame is desired. It uses the interference of periodic patterns to measure the topology of a given surface. The actual depth estimation relies on the consistent phase estimation from the interferogram. We show that this task can be simplified by estimating the image phase and the local image orientation simultaneously, followed by a processing step called orientation unwrapping which is introduced in this paper. We compare two methods for extracting image phase and orientation and present experimental results

    The monogenic signal

    Full text link

    On Fresnelets, interference fringes, and digital holography

    Get PDF
    In this thesis, we describe new approaches and methods for reconstructing complex-valued wave fields from digital holograms. We focus on Fresnel holograms recorded in an off-axis geometry, for which operational real-time acquisition setups readily exist. The three main research directions presented are the following. First, we derive the necessary tools to port methods and concepts of wavelet-based approaches to the field of digital holography. This is motivated by the flexibility, the robustness, and the unifying view that such multiresolution procedures have brought to many applications in image processing. In particular, we put emphasis on space-frequency processing and sparse signal representations. Second, we propose to decouple the demodulation from the propagation problem, which are both inherent to digital Fresnel holography. To this end, we derive a method for retrieving the amplitude and phase of the object wave through a local analysis of the hologram's interference fringes. Third, since digital holography reconstruction algorithms involve a number of parametric models, we propose automatic adjustment methods of the corresponding parameters. We start by investigating the Fresnel transform, which plays a central role in both the modeling of the acquisition procedure and the reconstruction of complex wave fields. The study of the properties that are central to wavelet and multiresolution analysis leads us to derive Fresnelets, a new family of wavelet-like bases. Fresnelets permit the analysis of holograms with a good localization in space and frequency, in a way similar to wavelets for images. Since the relevant information in a Fresnel off-axis hologram may be separated both in space and frequency, we propose an approach for selectively retrieving the information in the Fresnelet domain. We show that in certain situations, this approach is superior to others that exclusively rely on the separation in space or frequency. We then derive a least-squares method for the estimation of the object wave's amplitude and phase. The approach, which is reminiscent of phase-shifting techniques, is sufficiently general to be applied in a wide variety of situations, including those dictated by the use of microscopy objectives. Since it is difficult to determine the reconstruction distance manually, we propose an automatic procedure. We take advantage of our separate treatment of the phase retrieval and propagation problems to come up with an algorithm that maximizes a sharpness metric related to the sparsity of the signal's expansion in distance-dependent Fresnelet bases. Based on a simulation study, we suggest a number of guidelines for deciding which algorithm to apply to a given problem. We compare existing and the newly proposed solutions in a wide variety of situations. Our final conclusion is that the proposed methods result in flexible algorithms that are competitive with preexisting ones and superior to them in many cases. Overall, they may be applied in a wide range of experimental situations at a low computational cost

    Treatise on Hearing: The Temporal Auditory Imaging Theory Inspired by Optics and Communication

    Full text link
    A new theory of mammalian hearing is presented, which accounts for the auditory image in the midbrain (inferior colliculus) of objects in the acoustical environment of the listener. It is shown that the ear is a temporal imaging system that comprises three transformations of the envelope functions: cochlear group-delay dispersion, cochlear time lensing, and neural group-delay dispersion. These elements are analogous to the optical transformations in vision of diffraction between the object and the eye, spatial lensing by the lens, and second diffraction between the lens and the retina. Unlike the eye, it is established that the human auditory system is naturally defocused, so that coherent stimuli do not react to the defocus, whereas completely incoherent stimuli are impacted by it and may be blurred by design. It is argued that the auditory system can use this differential focusing to enhance or degrade the images of real-world acoustical objects that are partially coherent. The theory is founded on coherence and temporal imaging theories that were adopted from optics. In addition to the imaging transformations, the corresponding inverse-domain modulation transfer functions are derived and interpreted with consideration to the nonuniform neural sampling operation of the auditory nerve. These ideas are used to rigorously initiate the concepts of sharpness and blur in auditory imaging, auditory aberrations, and auditory depth of field. In parallel, ideas from communication theory are used to show that the organ of Corti functions as a multichannel phase-locked loop (PLL) that constitutes the point of entry for auditory phase locking and hence conserves the signal coherence. It provides an anchor for a dual coherent and noncoherent auditory detection in the auditory brain that culminates in auditory accommodation. Implications on hearing impairments are discussed as well.Comment: 603 pages, 131 figures, 13 tables, 1570 reference
    corecore