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Abstract
In this thesis, we describe new approaches and methods for recon-

structing complex-valued wave fields from digital holograms. We fo-
cus on Fresnel holograms recorded in an off-axis geometry, for which
operational real-time acquisition setups readily exist.

The three main research directions presented are the following.
First, we derive the necessary tools to port methods and concepts
of wavelet-based approaches to the field of digital holography. This
is motivated by the flexibility, the robustness, and the unifying view
that such multiresolution procedures have brought to many applica-
tions in image processing. In particular, we put emphasis on space-
frequency processing and sparse signal representations. Second, we
propose to decouple the demodulation from the propagation prob-
lem, which are both inherent to digital Fresnel holography. To this
end, we derive a method for retrieving the amplitude and phase of the
object wave through a local analysis of the hologram’s interference
fringes. Third, since digital holography reconstruction algorithms in-
volve a number of parametric models, we propose automatic adjust-
ment methods of the corresponding parameters.

We start by investigating the Fresnel transform, which plays a cen-
tral role in both the modeling of the acquisition procedure and the
reconstruction of complex wave fields. The study of the properties
that are central to wavelet and multiresolution analysis leads us to de-
rive Fresnelets, a new family of waveletlike bases. Fresnelets permit
the analysis of holograms with a good localization in space and fre-
quency, in a way similar to wavelets for images. Since the relevant
information in a Fresnel off-axis hologram may be separated both in
space and frequency, we propose an approach for selectively retriev-
ing the information in the Fresnelet domain. We show that in certain
situations, this approach is superior to others that exclusively rely on
the separation in space or frequency.

We then derive a least-squares method for the estimation of the
object wave’s amplitude and phase. The approach, which is reminis-
cent of phase-shifting techniques, is sufficiently general to be applied
in a wide variety of situations, including those dictated by the use of
microscopy objectives.

Since it is difficult to determine the reconstruction distance man-
ually, we propose an automatic procedure. We take advantage of our
separate treatment of the phase retrieval and propagation problems
to come up with an algorithm that maximizes a sharpness metric re-
lated to the sparsity of the signal’s expansion in distance-dependent
Fresnelet bases.

Based on a simulation study, we suggest a number of guidelines
for deciding which algorithm to apply to a given problem. We com-
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pare existing and the newly proposed solutions in a wide variety of
situations. Our final conclusion is that the proposed methods result
in flexible algorithms that are competitive with preexisting ones and
superior to them in many cases. Overall, they may be applied in a
wide range of experimental situations at a low computational cost.
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Version Abrégée
Fresnelettes, franges d’interférences et holographie digitale

Dans cette thèse, nous proposons de nouvelles approches et mé-
thodes pour la reconstruction de champs d’ondes à valeurs complexes
à partir d’hologrammes digitaux. Nous nous concentrons sur des ho-
logrammes de type Fresnel, enregistrés dans une géométrie hors axe,
pour laquelle des systèmes d’acquisition en temps réel existent ac-
tuellement.

La recherche présentée est articulée selon trois axes principaux.
Premièrement, nous dérivons les outils nécessaires pour transférer
des méthodes et concepts de l’approche multirésolution au domaine
de l’holographie digitale. Cette démarche est motivée par la flexibilité,
la robustesse et la vision unificatrice que les ondelettes ont apportées
à de nombreuses applications en traitement d’images. Nous nous in-
téressons en particulier au traitement espace-fréquence et aux repré-
sentations concises de signaux. Deuxièmement, nous proposons de
découpler les deux problèmes inhérents à l’holographie digitale de
Fresnel, à savoir ceux liés à la démodulation et à la propagation. À
cette fin, nous dérivons une méthode d’estimation de l’amplitude et
de la phase de l’onde objet à l’aide d’une analyse locale des franges
d’interférence de l’hologramme. Troisièmement, les algorithmes de
reconstruction en holographie digitale étant basés sur plusieurs mo-
dèles paramétriques, nous proposons des méthodes automatiques
d’ajustement des paramètres impliqués.

Nous commençons par étudier la transformée de Fresnel qui joue
un rôle majeur tant dans la modélisation de la procédure d’acquisi-
tion que dans la reconstruction de champs d’ondes à valeurs com-
plexes. L’étude des propriétés centrales à la théorie des ondelettes et
de l’analyse multirésolution nous conduit à dériver les Fresnelettes,
une nouvelle famille de bases de type ondelette. Les Fresnelettes per-
mettent l’analyse des hologrammes avec une bonne localisation dans
l’espace et les fréquences, comme les ondelettes pour le traitement
d’images. Comme l’information encodée dans un hologramme hors
axe de type Fresnel peut être séparée à la fois dans l’espace et les fré-
quences, nous proposons une approche pour la récupérer de manière
sélective dans le domaine des Fresnelettes. Comparée à d’autres mé-
thodes basées exclusivement sur la séparation dans l’espace ou dans
le domaine des fréquences, cette approche conduit à une qualité de
reconstruction supérieure dans de nombreuses situations.

Nous dérivons ensuite une méthode d’estimation par moindres
carrés de l’amplitude et de la phase de l’onde objet. Cette approche,
qui rappelle certaines techniques de décalage de phase, est suffisam-
ment générale pour être appliquée dans une grande variété d’arrange-

0000000011 00
3

-
VE

RS
IO

N
AB

RÉ
GÉ

E



ments expérimentaux, y compris ceux avec un objectif de microscope.

Comme il est difficile de déterminer la distance de reconstruction
manuellement, nous proposons une procédure automatique. Notre
traitement séparé des problèmes d’estimation de phase et de propa-
gation nous permet de proposer un algorithme qui maximise une mé-
trique de netteté apparentée à la capacité de représenter le signal de
manière concise dans des bases de Fresnelettes dépendantes de la
distance.

Enfin, nous donnons des directives pour guider le choix de l’algo-
rithme en fonction d’un problème donné. À cet effet, nous effectuons
une étude de simulation et comparons des méthodes existantes à
celles nouvellement proposées dans une large palette de situations.
Nous concluons que ces dernières résultent en des algorithmes à la
fois flexibles et dont la qualité de reconstruction est compétitive voire
en de nombreux cas supérieure à celle d’autres approches. De ma-
nière générale, ils peuvent être appliqués dans une gamme élargie de
situations expérimentales tout en limitant les coûts de calcul.
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Zusammenfassung
Über Fresnelets, Interferenzmuster und digitale Holographie

Vorliegende Dissertation befasst sich mit neuen Konzepten und
Methoden für die Rekonstruktion komplexer Wellenfelder, ausgehend
von digitalen Hologrammen. Wir beschränken uns auf Fresnelholo-
gramme, die in einer off-axis Anordnung aufgenommen wurden und
wofür Echtzeit Datenerfassungssysteme bereits bestehen.

Die hier vorgestellte Forschungsarbeit hat drei Hauptschwerpunk-
te. Erstens leiten wir die notwendigen Hilfsmittel her, um Methoden
und Konzepte der Multiresolutionsanalyse auf das Gebiet der digita-
len Holographie zu übertragen. Dieses Vorgehen wird durch die Fle-
xibilität, Robustheit, sowie die vereinheitlichende Darstellungsweise
motiviert, welche den Wavelets bereits zu zahlreichen Anwendungen
in der Bildverarbeitung verholfen haben. Insbesondere interessieren
wir uns für die Verarbeitung im Raum- und Frequenzbereich und für
sparsame Signaldarstellungen. Zweitens schlagen wir vor, die beiden
Probleme der digitalen Fresnel Holographie, nämlich das Demodula-
tionsproblem und das Propagationsproblem, zu entkoppeln. Zu die-
sem Zweck leiten wir eine Methode zur Näherung der Amplitude und
der Phase der Objektwelle mittels einer lokalen Analyse der Interfe-
renzstreifen des Hologramms her. Drittens konzentrieren wir uns auf
automatische Justierungsmethoden der auftretenden Parameter, zu-
mal Holographie Rekonstruktionsalgorithmen auf mehreren parame-
trischen Modellen basieren.

Wir beginnen mit der Betrachtung der Fresnel Transformation, die
sowohl beim Modellieren des Akquisitionsverfahrens, als auch bei der
Rekonstruktion komplexer Wellenfelder eine zentrale Rolle spielt. Die
Untersuchung der Eigenschaften, die für die Wavelet- und Multireso-
lutionsanalyse von Bedeutung sind, führt uns auf die Herleitung ei-
ner neuen Familie von Wavelet-artigen Basen: der Fresnelets. In ähn-
lichem Masse wie Wavelets für Bilder, ermöglichen Fresnelets die Ana-
lyse von Hologrammen mit guter Lokalisierung in Raum- und Fre-
quenzbereich. Da die relevanten Informationen in einem Fresnel off-
axis Hologramm sowohl im Raum-, wie auch im Frequenzbereich ge-
trennt werden können, schlagen wir eine Methode vor, um die Infor-
mation im Fresnelet Bereich selektiv wiederzugewinnen. In zahlrei-
chen Situationen weisen wir die Überlegenheit dieses Verfahrens ge-
genüber anderen nach, die ausschliesslich auf der Trennung im Raum-
oder Frequenzbereich beruhen.

Wir entwickeln danach eine Methode zur Schätzung der Ampli-
tude und der Phase der Objektwelle im Sinne der kleinsten Quadra-
te. Das Konzept, das an gewisse Phasenverschiebungstechniken ge-
mahnt, ist hinreichend allgemein, um in einer grossen Vielfalt von Si-
tuationen anwendbar zu sein, einschliesslich solcher, welche die An-
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wesenheit von Mikroskop Objektiven umfassen.
Da es schwierig ist die Rekonstruktionsdistanz manuell zu ermit-

teln, schlagen wir hierfür ein automatisches Verfahren vor. Dabei ge-
reicht es uns zum Vorteil, dass wir die Probleme der Phasen Rekon-
struktion und der Propagation separat behandeln. Dies is nämlich
Voraussetzung eines neuen Algorithmus zur Maximierung einer Schär-
femetrik, die verbunden ist mit der Eigenschaft der distanzabhängi-
gen Fresnelet Basen, ein Signal mit möglichst wenig Koeffizienten dar-
zustellen.

Schliesslich schlagen wir Richtlinien vor, zur Auswahl angemes-
sener Algorithmen für jeweils gegebene Probleme. Dazu vergleichen
wir in einer Simulationsstudie, das Verhalten von herkömmlichen und
den neu vorgeschlagenen Methoden in einer Vielfalt von Situationen.
Wir halten fest, dass die vorgeschlagenen Methoden zu flexiblen und
rechensparsamen Algorithmen führen. Sie können in einer breiten Pa-
lette von experimentellen Situationen angewandt werden und erwei-
sen sich in vielen Fällen den herkömmlichen überlegen.

00
6

-
ZU

SA
MM

EN
FA

SS
UN

G

0000000110



Contents

Abstract 1

Version abrégée 3

Zusammenfassung 5

Contents 7

List of Figures 12

List of Tables 13

List of Notations 15

1 Introduction 19
1.1 Digital Off-Axis Holography . . . . . . . . . . . . . . . . . 19
1.2 Motivations and Contributions . . . . . . . . . . . . . . . 21
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Reconstructing Digital Holograms: an Overview . 22
1.3.2 Wavelet Applications and Theory in Optics . . . . 24

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . 27
1.5 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Fresnelets: New Multiresolution Wavelet Bases for Digital Holog-
raphy 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Fresnel Transform . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Example: Gaussian Function . . . . . . . . . . . . 31
2.2.3 Two-Dimensional Fresnel Transform . . . . . . . 32

2.3 Properties of the Fresnel Transform . . . . . . . . . . . . 32
2.3.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Translation . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Link with the Fourier Transform . . . . . . . . . . 33
2.3.5 Localization Issues . . . . . . . . . . . . . . . . . . 33

2.4 Fresnelet Bases . . . . . . . . . . . . . . . . . . . . . . . . 35

0000000111 00
7

-
CO

NT
EN

TS



2.4.1 Fresnel Transform of a Riesz Basis . . . . . . . . . 35
2.4.2 B-splines . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Polynomial Spline Wavelets . . . . . . . . . . . . . 38
2.4.4 Fresnelets . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Implementation of the Fresnelet Transform . . . . . . . 42
2.6 Applications and Experiments . . . . . . . . . . . . . . . 44

2.6.1 Simulation: Propagation of a Test Wave Front . . 44
2.6.2 Backpropagation of a Diffracted Complex Wave . 45
2.6.3 Hologram Reconstruction . . . . . . . . . . . . . . 45

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.A Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . 53
2.B Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . 55
2.C Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . 56
2.D Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . 56

3 Nonlinear Fresnelet Approximations for Interference-Term Sup-
pression 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Fresnel Transform and Holography . . . . . . . . . . . . 60

3.2.1 Fresnel Transform . . . . . . . . . . . . . . . . . . 60
3.2.2 Holography . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Fresnelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Complex-Wave Retrieval From a Single Off-Axis Hologram 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Review of Existing Algorithms . . . . . . . . . . . . . . . . 70

4.2.1 Standard (Linear) Reconstruction Techniques . . 71
4.2.2 Other Related Techniques . . . . . . . . . . . . . . 72

4.3 Proposed Complex-Wave Retrieval Algorithm . . . . . . 73
4.3.1 Complex-Wave Retrieval Algorithm . . . . . . . . 73
4.3.2 Relation to Phase-Shifting Methods . . . . . . . . 77
4.3.3 Sampling Considerations . . . . . . . . . . . . . . 77
4.3.4 Variable-Window-Size Algorithm . . . . . . . . . . 78
4.3.5 Computational Complexity . . . . . . . . . . . . . 79

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Phase-Retrieval Simulation . . . . . . . . . . . . . 80
4.4.2 Phase Retrieval for Setups Containing a Lens . . 81
4.4.3 Experimental Digital Holographic Microscopy . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

00
8

-
CO

NT
EN

TS

0000001000



5 Autofocus for Digital Fresnel Holograms that Uses a Fresnelet-
Sparsity Criterion 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Image Quality Functionals . . . . . . . . . . . . . 91
5.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . 91

5.3 Sparse Image Representations . . . . . . . . . . . . . . . 92
5.4 Fresnelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Fresnelet-based Propagation . . . . . . . . . . . . 94

5.5 Proposed Autofocus Algorithm . . . . . . . . . . . . . . . 95
5.5.1 Algorithm Description . . . . . . . . . . . . . . . . 95
5.5.2 Computational Complexity . . . . . . . . . . . . . 96

5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . 96
5.6.1 Sparsity Illustration . . . . . . . . . . . . . . . . . . 96
5.6.2 Experimental Measurements . . . . . . . . . . . . 98

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Comparisons and Conclusion 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Parameter Influence for the Reconstruction of Holograms103
6.3 Quality Measures for Reconstructed Wave Fronts . . . . 104
6.4 Lensless Fresnel Off-Axis Holography: a Comparison . . 105

6.4.1 Fresnelet Pyramid Versus Chirp-Fourier Fresnel
Transform . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Nonuniform Amplitude . . . . . . . . . . . . . . . 109
6.4.3 Distance and Angle . . . . . . . . . . . . . . . . . . 110
6.4.4 Regions of Interest . . . . . . . . . . . . . . . . . . 114

6.5 Digital holographic Microscopy: Comparisons . . . . . . 116
6.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6.1 Fresnel Transforms . . . . . . . . . . . . . . . . . . 120
6.6.2 Digital Holography Methods . . . . . . . . . . . . 120

6.7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . 121
6.7.1 General Conclusion . . . . . . . . . . . . . . . . . 121
6.7.2 Outlook for Future Research . . . . . . . . . . . . 122

Acknowledgments 125

Bibliography 126

A Fourier Transform Properties 141

B Fresnel Transform Properties 145

C Curriculum Vitæ 147

0000001001 00
9

-
CO

NT
EN

TS



01
0

-
CO

NT
EN

TS

0000001010



List of Figures

1.1 Digital holography in a nutshell . . . . . . . . . . . . . . 20

2.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 B-Spline multiresolution and its Fresnel counterpart . . 42
2.3 Amplitude and phase of test target . . . . . . . . . . . . . 44
2.4 Propagated target . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Reconstructed amplitude and phase . . . . . . . . . . . . 46
2.6 Experimental digital holography arrangement . . . . . . 47
2.7 Measured hologram . . . . . . . . . . . . . . . . . . . . . 48
2.8 Hologram spectrum . . . . . . . . . . . . . . . . . . . . . 48
2.9 Fresnelet transform of modulated hologram . . . . . . . 49
2.10 Reconstructed amplitude . . . . . . . . . . . . . . . . . . 50
2.11 Alternative reconstructions . . . . . . . . . . . . . . . . . 52

3.1 Information repartition in the diffracted wave . . . . . . 62
3.2 Support broadening of propagating wave . . . . . . . . . 63
3.3 Hierarchical thresholding algorithm . . . . . . . . . . . . 65
3.4 Test target and simulated hologram . . . . . . . . . . . . 66
3.5 Reconstructed wave front . . . . . . . . . . . . . . . . . . 67

4.1 Schematic view of the off-axis geometry. . . . . . . . . . 70
4.2 Information separation in the Fourier and Fresnel do-

mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Schematic hologram . . . . . . . . . . . . . . . . . . . . . 74
4.4 Weights from a tensor product of cubic B-splines . . . . 75
4.5 Simulation with plane reference wave . . . . . . . . . . . 80
4.6 Simulation with quadratic phase reference wave . . . . 82
4.7 Microscopy setup . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Experimental data reconstruction . . . . . . . . . . . . . 86

5.1 Fresnel propagation . . . . . . . . . . . . . . . . . . . . . 90
5.2 Sparsity analogy . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Sparsity of wavelet coefficients. . . . . . . . . . . . . . . . 97
5.4 Fresnelet coefficient energy . . . . . . . . . . . . . . . . . 98
5.5 Sharpness metrics . . . . . . . . . . . . . . . . . . . . . . 99
5.6 Out-of-focus and focused wave fronts (experimental) . 100

0000001011 01
1

-
LI

ST
OF

FI
GU

RE
S



6.1 Setup for lensless holography . . . . . . . . . . . . . . . . 105
6.2 Test target . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Chirp-Fourier Fresnel versus Fresnelet pyramid . . . . . 107
6.4 Nonuniform amplitude hologram . . . . . . . . . . . . . 109
6.5 Reconstruction quality as a function of distance and angle111
6.6 Algorithms comparison 1, lensless holography . . . . . . 112
6.7 Algorithms comparison 2, lensless holography . . . . . . 113
6.8 Algorithms comparison 3, lensless holography . . . . . . 114
6.9 Reconstruction of regions of interest . . . . . . . . . . . . 115
6.10 Setup for digital holographic microscopy . . . . . . . . . 116
6.11 Hologram spectrum in the presence of a lens . . . . . . 117
6.12 Reconstructions, setup with lens, nonzero distance . . . 118
6.13 Reconstructions, setup with lens, zero distance . . . . . 119

01
2

-
LI

ST
OF

FI
GU

RE
S

0000001100



List of Tables

6.I Comparison of Fresnel transform implementations . . . 120
6.II Comparison of hologram reconstruction algorithms . . 121

A.I Fourier transform properties . . . . . . . . . . . . . . . . 142
A.II Fourier transform pairs . . . . . . . . . . . . . . . . . . . 142

B.I Fresnel transform properties. . . . . . . . . . . . . . . . . 145

0000001101 01
3

-
LI

ST
OF

TA
BL

ES



01
4

-
LI

ST
OF

TA
BL

ES

0000001110



List of Notations

Roman Letters
a Real number, amplitude of complex number
A Lower Riesz bound constant
A(x) Reference wave amplitude
b Real number, Amplitude of complex number
B Upper Riesz bound constant
ck Expansion coefficient
cpk Parent of expansion coefficient
C (x), S(x) Fresnel integrals
C Complex numbers
d Reconstruction distance
dk Wavelet coefficient
dO Object-lens distance
dI Lens-image distance
D, Dx , Dy Curvature of quadratic complex mask
e 2.71828. . .
f (x), g (x) (Complex-valued) functions of one variable
f (x), g (x) (Complex-valued) functions of two variables
f Focal length
g (k) Discrete filter
h(k) Discrete filter
ℑ Imaginary part
i

p−1
I(x) Hologram
j Scale parameter
J Maximal scale parameter
k Integer shift
k Wavelet coefficient index
kτ(x) Fresnel transform kernel (1D)
Kτ(x) Fresnel transform kernel (2D)
kλ = (kx , ky , kz) Wave vector
kλ = 2π/λ= ‖kλ‖ Wavenumber
K = (Kx ,Ky ) Fringe vector
K (x, y) Fringe vector norm
l General discrete index
L2 Hilbert space of finite energy functions (continuous)
`2 Hilbert space of finite energy sequences (discrete)

0000001111 01
5

-
LI

ST
OF

NO
TA

TI
ON

S



Lp Banach space (continuous)
`p Banach space (discrete)
L Total number of pixels (Nx ×Ny )
Lx ,Ly CCD dimensions
LW Side width of sliding window
LW Minimal side width of sliding window
LW Maximal side width of sliding window
Ltube Normalized microscope tube length
m Scale factor
m Integer shift (2D)
M Number of samples in window
M̃ Average number of samples in window
M Magnification
n Degree or general discrete index
N Integer, number of retrieved phase points
Nx , Ny Image dimension, number of pixels
NF Fresnel number
O Order (complexity)
O(x) Object wave
pk Parent index of wavelet coefficient index k
R(d) Free-space propagation operator
R(x) Reference wave
R Real numbers
ℜ Real part
S, S̃ Families of functions
t Temporal variable
t j Threshold at scale j
T , T ′, Tx , Ty Sampling steps
U(x, y) Complex wave
Ud (x, y) Complex wave at distance d
U Auxiliary real variable, hologram’s zero-order term
U Unitary operator
ũl , ṽl Transformed vectors
ul , vl Element of a Riesz basis and its dual.
un,τ(x) Fresnelet building block
V j , Ṽ j ,τ Subspaces of L2

Vm Normalized reference wave
wm Weights
W j , W̃ j ,τ Complement subspaces of L2

x = (x, y) 2D vector
x Continuous spatial variable
y Continuous spatial variable
z Propagation direction
Z Complex number
Z Integer numbers
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Greek Letters
α Complex variable
β Complex variable
βn(x) Basic Spline (B-Spline) of degree n
β̃n(x) Fresnelet Spline (F-Spline) of degree n
γ Camera gamma factor
δ(x) Dirac delta
∆n nth iteration of the finite difference operator
η Real variable
θ, θmax (Maximal) Angle between the reference and object waves
θ(x) Phase of the reference wave
λ Wavelength
Λ= 2π/‖K‖ Fringe spacing
µ f Mean of function f
ν Frequency variable (ν=ω/(2π))
ξ Real variable
π 3.14159. . .
ρ Chirp parameter, curvature
σ2

f Variance of function f (x)

τ Fresnel transform parameter
φ Phase of complex number
φ(t ) Mother Wavelet, scaling function
ψ(t ) Father Wavelet, wavelet
ψ(x) Complex object wave in object vicinity
Ψ(x) Complex object wave in CCD plane
ω0 Gaussian parameter
Ω Domain, R or R2

Other notations
FFT Fast Fourier Transform
IFFT Inverse Fast Fourier Transform
PSNR Peak Signal to Noise Ratio
rect(x) Rectangle function
sinc(x) = sin(πx)

πx Sinc function
SNR Signal to Noise Ratio
USAF 1951 United States Air Force 1951 resolution target
Z∗ Complex conjugate
∗ Convolution
(x)n+ One-sided power function.
f̃τ, g̃τ Fresnel transforms with parameter τ
f̂ (ν), ĝ (ν) Fourier Transform
V Closure of V
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Chapter 1

Introduction

1.1 Digital Off-Axis Holography

Whenever an object is illuminated with a coherent light source, the
transmitted or reflected wave carries information on the sample’s op-
tical and physical properties. In the close vicinity of the object, the
light intensity is related to its reflectance or attenuation while the
phase is related to its topography or thickness. Light sensors, such
as photographic film or digital cameras, may be used to measure the
intensity of the incoming light, but they fail to capture its phase. This
crucial information is therefore lost. From a mathematical point of
view, this type of measurement is equivalent to evaluating the squared
modulus of a complex number, an operation which clearly discards
the phase.

When Gabor proposed “a new two-step method of optical imagery”
[63] more than fifty years ago, his aim was to improve the resolution
of electronic microscopes, which suffer from limiting aberrations, no-
tably because of the lack of concave electron lenses [205, p. 133]. In
the sequel, holography has become a major pillar of modern optics
and imaging. The two steps that form the essence of holography are:

• The recording of information about a wave field, the object wave,
in a form and on a medium suitable for later reconstruction.

• The reconstruction or retrieval of the original object wave from
the information stored during the first step, and some a priori
knowledge on the recording conditions.

The wave field’s phase, polarization, coherence, etc., are characteris-
tics that may typically be stored in a hologram. The fact that these
quantities cannot be measured directly with conventional detectors,
which are only sensitive to the wave field’s intensity, makes holographic
techniques particularly attractive. The acquisition process consists in
recording (for example on a photographic plate) the interference be-
tween the object wave and a reference wave. This requires the two
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ψ(x) ∗Kτ(x) Ψ(x)

R(x)

?

6

m+ - | · |2 - I(x)

Fig. 1.1. Digital holography in a nutshell. We are interested in retrieving the
complex-valued wave front ψ(x) in the vicinity of the object from the real-valued
measurements of the intensity I(x) = |Ψ(x)+R(x)|2 (the hologram), where Ψ(x) is
the propagated object wave (propagation is modeled by the Fresnel transform), and
R(x) = A(x)exp[i (kx x +ky y)] the reference wave, both evaluated in the CCD plane.

waves to be coherent.1 The reconstruction may be achieved optically,
by illuminating the (chemically processed) hologram with a replica of
the reference wave.2

This thesis investigates several aspects of one particular instance
of holography, namely digital holography. The interference pattern—
the hologram—is recorded by a digital camera (CCD) and the retrieval
of the object wave is done numerically. We focus on new approaches
and methods to perform the second, reconstruction step.

As a prerequisite, we need a model that faithfully describes the ac-
quisition process. Leith and Upatnieks [123] showed that “[the] con-
struction of the hologram constitutes a sequence of three well-known
operations: a modulation, a frequency dispersion, and a square-law
detection” (see Fig. 1.1). In light of this analysis, they have proposed
an acquisition procedure, which allows for an unperturbed reconstruc-
tion by illuminating the hologram with the reference wave: In the
so-called off-axis geometry, the object and reference wave travel in
different directions. The object wave is thus separated from the ref-
erence wave. In image processing terms, this geometry implies the
presence of interference fringes in the recorded hologram or, equiva-
lently in signal processing terms, the presence of a carrier frequency
or modulation. We will consider off-axis geometries throughout this
thesis. One arrangement that is often used is to record the distribu-
tion of intensity in the hologram plane at the output of a Michelson
interferometer where one of the mirrors is slightly tilted (for a sneak
preview, see Fig. 2.6, p. 47). The digital reconstruction of the complex
wave (amplitude and phase) near the object is based on the Fresnel
transform, an approximation of the diffraction integral [72].

1The lack of powerful coherent sources until the availability of the first lasers
[138] explains why holographic techniques have only truly taken off in the Sixties.

2The reconstructing wave need not be the same as the reference (it need not even
necessarily be of high coherence). However, there needs to be a special acquisition
setup for recording holograms that are to be reconstructed with white light [10].
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1.2 Motivations and Contributions

Digital holography brings along many advantages. There is no chem-
ical film processing. Acquisition can be performed in real-time, in-
cluding during the alignment and adjustment procedure of the opti-
cal elements. Digital reconstructions offer quantitative access to the
physical quantities of interest. The processing possibilities (aberra-
tion compensation, etc.) are almost limitless.

Although the Greek etymology of the word hologram seems to
presuppose a system capable of recording the entire (holos) message
(gramma) carried by the wave, the amount of information that may
actually be accessed is limited. Compared to photographic film which
may be used for recording very fine fringes ( ∼ 5000 lines/mm), cur-
rently available CCDs offer poor performances ( ∼ 500 lines/mm for a
CCD with pixel size ∼ 10 µm). The recording medium is of lower di-
mensionality than the information to be stored on it: it corresponds
to a 2D array of positive real numbers, whereas the wave field is com-
plex valued, 3D, and possibly vectorial if polarization is taken into ac-
count. A large sampling step therefore implies that it is only partially
possible to compensate for this mismatch. Additional digital hologra-
phy constraints are:

• Digital cameras offer limited resolution (discussed above).

• The support size of currently available cameras is small.

• A computer is used for reconstruction and storage; speed and
storage capacity therefore play an important role.

• All optical elements and phenomena (including propagation,
the presence of lenses or imperfect optics) need to be modeled
accurately; this is not required when the reconstruction is done
optically, since an aberration may be compensated by an opti-
cal element.

• Noise may corrupt the result and the algorithms may become
unstable.

These constraints, which are specific to digital holography, are com-
mon to many image processing problems. The design of effective
reconstruction algorithms should therefore take advantage of recent
developments in this field; the methods we present in the subsequent
chapters aim at pushing back the above constraints.

Wavelets and, more generally, multiresolution approaches have
contributed recently to dramatic advances in several areas of image
processing. These range from image compression standards3 to ro-

3The recently adopted JPEG 2000 image compression standard [90] recommends
to code wavelet coefficients rather than discrete cosine transform coefficients, as in
the old standard.
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bust, elegant, and flexible multiresolution algorithms that lead to in-
verse problem solutions for applications such as computerized tomog-
raphy [12, 19, 85], image registration [203], denoising [45, 221], etc.
This has motivated our efforts to adapt some of these techniques to
digital holography. In order to derive the necessary tools for achieving
this, we need to analyze one of the two ingredients of digital Fresnel
holography: the Fresnel transform.

Most digital hologram reconstruction algorithms mimic the phys-
ical reconstruction procedure and suffer from a number of artifacts
that need to be treated separately. Our approach follows the flow
graph of the acquisition model (see Fig. 1.1), but in reverse order.
First, we solve the square-law detection and demodulation problem
and, in a second step, the propagation problem. This decoupling is
made possible thanks to a new algorithm that can retrieve the ampli-
tude and phase in several non-standard situations (e.g. including the
presence of a microscope objective). Since the procedure relies on a
parametric acquisition model, we can term it parametric fringe anal-
ysis.

A convenient by-product of the decoupling approach is that it pro-
vides us with a procedure for the simulation of the forward model,
which allows us to try out a wide range of experimental situations and
compare reconstruction algorithms on a quantitative basis.

Digital holography reconstruction algorithms rely on parametric
models. Once the model is set, the parameters involved need to be
tuned, which might be tedious if done manually. We therefore con-
centrate on methods for their automatic adjustment.

1.3 Related Work

To give a general picture of available digital holography reconstruc-
tion methods, we review the main developments carried out since
their conception. Because wavelets play a central role in our formu-
lation, we also give an overview of wavelet applications and theory in
optics, especially in the restricted context of propagation, demodula-
tion, and fringe analysis. We refer to further literature in later chap-
ters whenever appropriate.

1.3.1 Reconstructing Digital Holograms: an Overview

The reconstruction of holograms by computer goes back to the late
Sixties, some twenty years after the publication of Gabor’s landmark
papers [62–64]. Methods were first proposed by Goodman and Law-
rence [73], Kronrod et al. [109] and Yaroslavsky and Merzlyakov [225].

Important steps in the evolution of the technique and algorithms
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have been: the use of a CCD camera to acquire the hologram [185],
acquisition through endoscopic devices [34], the reconstruction of
the phase in addition to the amplitude [36, 37, 39], the measurement
of polarization states [32], and stress analysis [170]. The use of dig-
ital holography at high wavelength has been demonstrated recently
[2]. Other developments include phase imaging without 2π ambigu-
ity by multi-wavelength digital holography [68]. Several aberration
compensation techniques [37, 41, 52, 53, 89, 122, 168, 198] have been
described. Digital holography has also been used extensively for de-
termining particle location in 3D [152, 156, 163, 167].

A recent evolution of digital holography is its application to mi-
croscopy, which allows for truly noninvasive examination of biologi-
cal samples. The power of digital holography techniques for biomed-
ical applications has been recognized early on [11, 22, 121]. Tomo-
graphic reconstruction using a wavelength scanning technique have
also been reported [100].

Highly promising results have been obtained by Cuche, Marquet
and co-workers who were able to monitor changes in the morphol-
ogy of living organisms in real time using digital holographic micros-
copy [31, 37]. The technique has been further refined to allow the vi-
sion in turbid media by use of low coherence sources [143]. Its per-
formances are close to confocal and electron microscopy but it has
numerous advantages:

• It is noninvasive (low intensity, safe radiation).

• It allows for 3D measurements.

• It offers high resolution (subwavelength in the axial direction).

• Since no scanning is involved, it is faster than most other mi-
croscopy techniques and may operate in real time.

• No vacuum is required.

• It works in the presence of ambient light.

From the algorithmic point of view, much effort has been put into
algorithms that aim at removing the zero and minus 1 order terms
from the reconstructions [38, 106, 133] or at avoiding their presence
[43]. These terms still remain a determining factor that limits the qual-
ity of the reconstructions. Sampling is a central issue in digital algo-
rithms, and it has been studied extensively [3, 4, 49, 93, 107, 108, 116,
118, 161]. Methods that solve specific problems include a Gerchberg-
Saxton-like iterative algorithm to improve the reconstructions [77] or
specific implementations of the Fresnel transform [226, 227]. Finally,
a general methodology for reconstructing digital holograms that in-
herently takes into account the statistical nature of the measured data
[197] has also been proposed recently.
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It is interesting to note that parallel developments have been car-
ried through within several research communities, which consider
different radiations. Although the algorithms are often similar, the
literature is distinct. For instance, X-Ray holography requires algo-
rithms that perform mainly in in-line geometries [28, 102] because
of the lack and expense of efficient mirrors and are sometimes remi-
niscent of crystallographic techniques [145]. Aside from X-rays, algo-
rithms have been developed for acoustical holography [84, 228, 230],
but the techniques most similar to optical digital holography can be
found in electron microscopy [205]. Techniques have been developed
for both in-line [131] and off-axis holography [120, 151]. Commercial
software packages are available for the latter [217, 218]. Beside the
more conventional Fourier techniques [214], there are approaches
based on neural networks [149], genetic algorithms [119] or linear
programming [80]. The ability of (digital) holography to correct for
aberration has also been exploited [119, 134]. Investigations to deter-
mine the optimal sampling conditions [91, 92, 99], including simula-
tions [154], have been carried out as well.

As the range of applications gets broader, demands toward better
image quality increases. Suppression of noise, higher resolution of
the reconstructed images, precise parameter adjustment and faster,
more robust algorithms are the essential issues.

1.3.2 Wavelet Applications and Theory in Optics

The use of wavelets in the field of optics dates back to the early years
of wavelet theory. We do not cover all applications of wavelets in op-
tics4 but concentrate on those relevant to digital holography, propa-
gation, fringe analysis, and demodulation.

In optics, wavelets usually appear either under the form of optical
implementations of the wavelet transform, or in connection to prop-
agation theory or image processing. Optical implementation of the
(continuous) wavelet transform have been proposed at an early stage
of wavelet development [59,191]. Lebrun et al. [117] proposed a holo-
gram reconstruction technique based on an optical implementation
of the continuous wavelet transform. Hologram reconstruction by
use of a digital CWT implementation had been proposed previously
by Onural and Kocatepe [162]. An interesting result that comes out of
their analysis is that the 3D structure can be completely recovered if
one gets access to measurements in several successive planes. Onural
and Özgen used a related transform, the Wigner transform, for similar
purposes [163]. The wavelet transform was also applied to hologram
analysis, again for determining the 3D location of particles [24].

4A more detailed picture of the development until 1996 is available in the review
article by Li et al. [125].
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Theoretical developments have been reported mainly in the do-
main of wave propagation. Kaiser [97] proposed solutions to the Max-
well equations in terms of a superposition of spherical wavelets in-
stead of the more conventional plane waves. Onural [160], Onural
and Kocatepe [162] proposed a formulation of the Fresnel diffraction
formula that makes it isomorphic to the continuous wavelet trans-
form, provided the commonly-used admissibility condition is appro-
priately extended. Sheng et al. [190] showed that the wavelets pro-
posed by Kaiser reduce to Huygens wavelets, thus making a formal
link between the Huygens principle and the continuous wavelet the-
ory some 300 years after Huygens’ Traité de la lumière appeared.5

Under the Fresnel approximation, these wavelets then become those
proposed by Onural [160], and Onural and Kocatepe [162]. Battle [9]
designed spherically harmonic Huygen[s] wavelets that form an or-

5A common misbelief is that the term ‘wavelet’ was introduced by Huygens in
1678. This is probably due to the fact that the term ‘Huygens wavelet’ is widely used
in most optics books (including the classical text by Born and Wolf [20], who use the
term ‘wavelet’ since their first edition in 1959 to describe the Huygens principle).
It is unlikely, however, that Huygens introduced this term, since it is absent from
the original manuscript, which he wrote in French. There, he uses the term on-
des élémentaires [87, p. 18] (elementary waves). Fresnel, who completed Huygens’
principle by combining it with that of interferences, was neither using the word
wavelet (nor ondelette). Probably because his reasoning (like Huygens’) was based
on vibrating ether particles, he used the term vibrations élémentaires [58, p.209] (el-
ementary vibrations). In 1869, É. Verdet, who published and commented Fresnel’s
work [58] calls the principle “principe des ondes enveloppes [215]” and uses the term
ondes élémentaires (elementary waves) rather than ondelettes which seems not to
have been used at that time. Rayleigh [200] (1887) speaks of ‘secondary waves’.
Poincaré [172, p. 79] (1889) uses the term ondes élémentaires. Kirchhoff [101, p.
22] (1891), who put the diffraction theory on a sound basis and proposed a reason-
ing mainly based on differential equations, banishes the idea of elementary waves
altogether. At the beginning of the Twentieth Century, textbooks in French were not
using the term ondelette neither: Wallon [219, p. 6] speaks of centres d’ébranlement
secondaires. The term wavelet is present in Ch. F. Meyer’s book [148, p. 266] (1934)
as well as in L. De Broglie’s [40, p.180]. The latter speaks of ondelettes cohérentes (co-
herent wavelets) that emanate from secondary sources located on the wave front’s
surface. But the use of the term wavelet seems not to be universal yet. Sommerfeld,
who authored a mathematical theory on diffraction in 1896 [194], introduces the
Huygens principle in these terms (1967) [195, p 195], ‘[...] Each point of this surface
emits a spherical wave and by constructing the envelope of all these spherical waves
[...]’ (1967). Sabra [182, p. 212] speaks of “Huygens’ waves”, and the ‘concept of sec-
ondary waves’. It seems therefore that the term wavelet must have been associated
to Huygens sometime in the beginning of the Twentieth Century.

The Oxford English Dictionary [164] points to a poem by Shelley [189] as one of
the first instances of the word wavelet (about 1813). The diminutive -let is a con-
struction borrowed from French [164]. The French word ondelette probably orig-
inates, in turn, from the Latin diminutive undula [65], that Roman philosopher
Boethius (c.480-c.525 CE) used in his De musica [16, p. 200] to describe the propa-
gation of sound. It translates to German with Wellchen [17, p. 18], while the English
translation [15, p. 21] calls it a weaker impulse. This is the oldest occurrence of a
wavelet we could trace back.
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thonormal wavelet basis. The latter wavelets are generated dynami-
cally, that is, rather than using translates of a single prototype func-
tion, he uses the classical wave equation in three dimensions to gen-
erate the family. Potvliege [173] proposed waveletlike basis functions,
based on polar basis functions.

The developments of wavelet theory linked to propagation are also
intertwined with that of the fractional-order Fourier transform [144,
157, 165]. There is a tight relation between Fresnel diffraction and
the fractional-order Fourier transform [169]: while the former is eval-
uated on a plane, the latter is evaluated on a spherical surface, whose
radius is related to the fractional order. Mendlovic, et al. [146] intro-
duced a fractional wavelet transform (not to be confused with the frac-
tional wavelets proposed by Unser and Blu [211]). It is essentially a
fractional Fourier transform, followed by a continuous wavelet trans-
form. The fractional order is determined in such a way as to maximize
the mean-square error between the input and the reconstructed sig-
nal. The implementation is optical.

There also exist a number of formulations of the Fresnel transform
in terms of simple building blocks. Hamam and Bougrenet de la Toc-
naye [79] interpret the Fresnel diffraction as the composition of repli-
cas of the original propagated field at well chosen distances related
to Talbot planes. In the same spirit, Hamam [78] proposed a formula-
tion of the Fresnel transform using functions that are self-similar and
localized. It is however limited to periodic functions.

Another, application of wavelets in optics, closely related to our
problem, is the demodulation of interference signals. These signals
are usually 1D, or at least, they are treated as if they were 1D. Wave-
let techniques to determine the local frequency of a signal are mainly
based on the fact that the phase of the continuous wavelet transform
of an interference pattern using an analytical wavelet is related to the
phase of the signal’s analytical counterpart [42]. White light interfero-
grams have been analyzed by Sandoz [183], and Recknagel and Notni
[178]. Watkins et al. [220] proposed a phase distribution determina-
tion algorithm based on the integration of a phase gradient which
is, in turn, determined by a continuous wavelet transform. A con-
tinuous wavelet transform (using Paul wavelets) has also been used
to evaluate optical phase distributions by Afifi et al. [1]. Cherbuliez
et al. [26, 27] used continuous wavelet transforms for dynamic phase
shifting, a technique where the object’s deformation or motion is re-
sponsible for creating the phase shifts. The analysis is performed on
the temporal signal acquired at every pixel. Tomassini et al. [204] an-
alyzed laser plasma interferograms with a continuous wavelet trans-
form ridge extraction technique. More recently, a method that com-
bines spectral interferometry and wavelength multiplexing was intro-
duced for 3D imaging [60]. The decoding relies on the signal analysis

02
6

-
1.

IN
TR

OD
UC

TI
ON

0000011010



based on its continuous wavelet transform.
More traditional applications of waveletlike denoising can also

be found in situations that are specific to coherent imaging systems,
namely speckle noise. Wavelet thresholding algorithms for speckle
noise suppression have been proposed and compared [50, 51, 66, 67,
98, 112, 136].

The approach we follow in Chapter 2 is in many aspects close to
the concept of unitary equivalence proposed by Baraniuk and Jones
[5]. The idea is to go into a transformed domain (via a change of ba-
sis using a unitary transform) thus converting the traditional systems
into new systems with different properties that are possibly better
adapted to existing image processing techniques.

Finally, this review would not be complete without a glimpse at
Gabor wavelets. Meyer [150, Chap. 5] acknowledges Gabor as the
first person to have introduced time-frequency wavelets. However,
he also notices that “difficulties appear when a signal is to be decom-
posed into Gabor wavelets. As long as only continuous decomposi-
tions are considered [. . . ] Gabor wavelets may be used as if they were
an orthonormal basis, but the corresponding discrete algorithms are
either inexistent or require considerable tricks that make them too
complicated”. The stability of Gabor expansions [61] has notably been
studied by Bastiaans [7] and Janssen [94]. Coifman and Meyer showed
that modulated Gaussians can form unconditional Wilson bases of
L2 [30]. Yet, the above cited examples lack a representation of func-
tions in stable and nonredundant multiresolution bases. A way to cir-
cumvent this problem is the topic of Chapter 2.

1.4 Organization of the Thesis

The thesis is organized as follows.
In Chapter 2, we present a new family of waveletlike functions:

Fresnelets. They are a conceptual, mathematical, and practical tool
that is of use whenever the Fresnel transform is involved. We give
the mathematical foundations and applications to hologram simu-
lation and reconstruction. An important result that we derive is a
Heisenberg-like uncertainty principle for the Fresnel transform. This
also allows us to review the Fresnel transform’s main properties since
they are involved for the construction of the Fresnelet bases. Two
properties that are inherent to Fresnelets, their space-frequency local-
ization and their energy compaction ability, will be the starting points
for applications described in Chapters 3 and 5, respectively.

In Chapter 3, we take advantage of the first joint localization prop-
erty and come up with a zero-order term and twin-image removal al-
gorithm that takes full advantage of the space-frequency information
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repartition in the Fresnelet domain.
In Chapter 4, we propose an alternative procedure to the optical-

reconstruction-inspired algorithm, that is, the separation of the re-
construction problem into two distinct problems: phase and ampli-
tude retrieval (a fringe analysis, respectively spatial phase-shifting in-
terferometry problem) and propagation simulation. To this end, we
propose a parametric amplitude and phase retrieval method that can
be viewed as a generalization of widely-used (both spatial and tempo-
ral) phase-shifting algorithms. Its main advantage is that it is applica-
ble for complicated setups, including those that include a microscope
objective.

In Chapter 5, we take advantage of the second important property
of Fresnelets, namely their ability to produce sparse representations
of Fresnel fields and holograms. We use this concept to implement
an effective and robust autofocus method, that is, a way to set the
distance parameter automatically.

Finally, in Chapter 6, we compare a number of algorithms (previ-
ously existing and newly proposed ones) in a variety of situations by
quantitative simulation experiments. We conclude that the proposed
methods result in flexible algorithms that are competitive with preex-
isting ones and superior to them in many cases. They are also applica-
ble over a wide range of situations while keeping the computational
cost low.

Chapters 2, 3, and 4 are based on the published Refs. [127–129]. A
paper based on Chapter 5 has been submitted for publication [130].

1.5 Conventions

We use the following definition of the Fourier transform f̂ (ν) of a func-
tion f (x)

f̂ (ν) =
∫ ∞

−∞
f (x) exp(−2iπxν)dx, (1.1)

f (x) =
∫ ∞

−∞
f̂ (ν) exp(2iπνx)dν. (1.2)

With this definition, ‖ f ‖ = ‖ f̂ ‖. We recall several relevant properties
in Appendix A.

We use the following form of the free-space propagation operator
R(d), defined for functions of two variables as the Fresnel transform

R(d){ f }(x) = ei kλd

iλd

Ï ∞

−∞
f (ξ,η)exp

{
iπ

λd
[(ξ−x)2 + (η− y)2]

}
dξdη,

(1.3)
where λ is the wavelength of the light, kλ = 2π/λ its wave number, d
the propagation distance and x = (x, y).
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Chapter 2

Fresnelets: New Multiresolution
Wavelet Bases for Digital Holography

Abstracta— We propose a construction of new waveletlike bases that are well suited for the re-
construction and processing of optically generated Fresnel holograms recorded on CCD-arrays.
The starting point is a wavelet basis of L2 to which we apply a unitary Fresnel transform. The
transformed basis functions are shift-invariant on a level-by-level basis but their multiresolution
properties are governed by the special form that the dilation operator takes in the Fresnel do-
main. We derive a Heisenberg-like uncertainty relation that relates the localization of Fresnelets
with that of their associated wavelet basis. According to this criterion, the optimal functions
for digital hologram processing turn out to be Gabor functions, bringing together two separate
aspects of the holography inventor’s work.
We give the explicit expression of orthogonal and semi-orthogonal Fresnelet bases correspond-
ing to polynomial spline wavelets. This special choice of Fresnelets is motivated by their near-
optimal localization properties and their approximation characteristics. We then present an ef-
ficient multiresolution Fresnel transform algorithm, the Fresnelet transform. This algorithm al-
lows for the reconstruction (backpropagation) of complex scalar waves at several user-defined,
wavelength-independent resolutions. Furthermore, when reconstructing numerical holograms,
the subband decomposition of the Fresnelet transform naturally separates the image to recon-
struct from the unwanted zero-order and twin image terms. This greatly facilitates their sup-
pression. We show results of experiments carried out on both synthetic (simulated) data sets as
well as on digitally acquired holograms.

aThis chapter is based on Ref. [127].

2.1 Introduction

In digital Fresnel holography, the hologram results from the interfer-
ence between the wave reflected or transmitted by the object to be
imaged and a reference wave. One arrangement that is often used is
to record the distribution of intensity in the hologram plane at the out-
put of a Michelson interferometer. The digital reconstruction of the
complex wave (amplitude and phase) near the object is based on the
Fresnel transform, an approximation of the diffraction integral [72].
Since Fresnel holography is in essence a lens-less process, sharp de-
tails like object edges tend to be spread out over the entire image
plane. Therefore, standard wavelets, which are typically designed to
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process piecewise smooth signals, will give poor results when applied
directly to the hologram. We present a new family of wavelet bases
that is tailor-made for digital holography.

While analytical solutions to the diffraction problem can be given
in terms of Gauss-Hermite functions [72], those do not satisfy the
completeness requirements of wavelet theory [199] and are therefore
of limited use for digital processing1. This motivates us to come up
with basis functions that are well-suited for the problem at hand. The
approach that we are proposing here is to apply a Fresnel transform
to a wavelet basis of L2 to simulate the propagation in the hologram
formation process and build an adapted wavelet basis.

We have chosen to concentrate on B-spline bases for the following
reasons:

• The B-splines have excellent approximation characteristics (in
some asymptotic sense, they areπ times better than Daubechies
wavelets [13]).

• The B-splines are the only scaling functions that have an analyt-
ical form in both time and frequency domains; hence, there is
at least some hope that we can derive their Fresnel transforms
and associated wavelets explicitly.

• The B-splines are nearly Gaussians and their associated wave-
lets very close to Gabor functions (modulated Gaussians) [207].
This property will turn out to be crucial because we will show
that these functions are well localized with respect to the holo-
graphic process.

This chapter is organized as follows. In Section 2.2, we define the
unitary Fresnel transform in one and two dimensions. In section 2.3
we review several of its key properties that are needed in order to de-
fine the new bases. We also investigate the spatial localization prop-
erties of the Fresnel transform and derive a Heisenberg-like uncer-
tainty relation. In Section 2.4, we define the Fresnelet bases. We
briefly review B-splines and their associated wavelet bases and show
how to construct the corresponding Fresnelet bases. We derive an
explicit closed-form expression for orthogonal and semi-orthogonal
Fresnelet bases corresponding to polynomial spline wavelets. We also
discuss their properties including their spatial localization and mul-
tiresolution structure. In Section 2.5, we show how to implement our
multiresolution Fresnel transform. Finally, in Section 2.6, we apply
our method to the reconstruction of holograms using both simulated
and real-world data.

1In particular, they lack a two-scale relation.
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2.2 Fresnel Transform

2.2.1 Definition

We define the unitary Fresnel transform with parameter τ ∈ R+ of a
function f ∈ L2(R) as the convolution integral

f̃τ(x) = kτ∗ f (x) with kτ(x) =
{

1/τexp
(
iπ (x/τ)2

)
τ> 0

eiπ/4δ(x) τ= 0.
(2.1)

which is well defined in the L2 sense. Our convention throughout this
paper will be to denote the Fresnel transform with parameter τ of a
function using the tilde and the associated index τ. The frequency
response of the Fresnel operator is:

k̂τ(ν) = ei π4 e−iπ(τν)2
, (2.2)

with the property that
∣∣k̂τ(ν)

∣∣= 1, ∀ν ∈ R. As the transform is unitary,
we get a Parseval equality:

∀ f , g ∈ L2(R) 〈 f , g 〉 = 〈 f̃τ, g̃τ〉 (2.3)

and for f = g a Plancherel equality:

∀ f ∈ L2(R) ‖ f ‖ = ‖ f̃τ‖. (2.4)

Therefore, we have that f̃τ ∈ L2(R). The inverse transform in the space
domain is given by:

f (x) = ( f̃τ∗k−1
τ )(x) with k−1

τ (x) = k∗
τ (x) =

{
1/τexp

(−iπ (x/τ)2
)

τ> 0

e−iπ/4δ(x) τ= 0.
(2.5)

It is simply derived by conjugating the operator in the Fourier do-
main:

k̂−1
τ (ν) = e−i π4 eiπ(τν)2 = k̂∗

τ (ν). (2.6)

2.2.2 Example: Gaussian Function

The Fresnel transform of the Gaussian function:

g (x) = e−π(x/σ)2
(2.7)

is again a Gaussian, modulated by a chirp function:

g̃τ(x) = a e−π(x/σ′)2
eiπ(x/τ′)2

(2.8)

where a = eiπ/4 (σ/(σ2+ iτ2)1/2) is the complex amplitude, σ′2 = (σ4+
τ4)/σ2 is the new variance and τ′2 = (σ4 +τ4)/τ2 is the chirp param-
eter. As the parameter τ increases, the variance and therefore the
spatial spreading of the transformed function increases as well. We
further investigate this particular aspect of the Fresnel transform in
Subsection 2.3.5.

0000011111 03
1

-
2.

FR
ES

NE
LE

TS
:

NE
W

MU
LT

IR
ES

OL
UT

IO
N

WA
VE

LE
T

BA
SE

S



2.2.3 Two-Dimensional Fresnel Transform

We define the unitary two dimensional Fresnel transform of parame-
ter τ ∈R∗+ of a function f ∈ L2(R2) as the 2D convolution integral

f̃τ(x) = f̃τ(x, y) = ( f ∗Kτ)(x) (2.9)

where the kernel is:

Kτ(x) = 1

τ2
eiπ(‖x‖/τ)2

. (2.10)

A key property is that it is separable:

Kτ(x) = 1

τ2
eiπ(‖x‖/τ)2 = kτ(x) kτ(y). (2.11)

Thus, we will be able to perform most of our mathematical analysis
in one dimension and simply extend the results to two dimensions by
using separable basis functions.

Up to a complex multiplicative constant, this definition is equiva-
lent to the free-space propagation formula in the Fresnel approxima-
tion, which relates the complex values of a propagating wave, mea-
sured in two planes perpendicular to the direction of propagation and
separated by a distance d. Specifically, we have

Ud (x, y) = ei kλd

iλd

Ï
U(ξ,η)exp

(
iπ

λd

(
(ξ−x)2 + (η− y)2)) dξdη (2.12)

=−i ei kλd Ũτ(x, y), τ=
p
λd, (2.13)

where λ is the wavelength of the light an kλ = 2π/λ its wavenumber.
In other words, the amplitudes and phases of the wave at two differ-
ent depths are related to each other via a 2D Fresnel transform.

2.3 Properties of the Fresnel Transform

Conventional wavelet bases are built using scaled and dilated versions
of a suitable template. For building our new wavelet family, it is thus
essential to understand how the Fresnel transform behaves with re-
spect to the key operations in multiresolution wavelet theory; i.e. dila-
tion and translation. In Subsections 2.3.1 to 2.3.4, we recall properties
of the Fresnel transform that are central to our discourse but are also
documented in the optics literature [72, pp. 114–119]. In Subsection
2.3.5, we give a new result, which is an uncertainty relation for the
Fresnel transform. For clarity, the results are presented for 1D func-
tions but, using the separability property, they can easily be extended
to 2D functions.
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2.3.1 Duality

To compute the inverse of the Fresnel transform we can use following
dual relation:

f ∗(x) = (
( f̃τ)∗

)∼
τ (x), f ∈ L2(R). (2.14)

Computing the inverse Fresnel transform of a function is therefore
equivalent to taking its complex conjugate, computing the Fresnel
transform and again taking the complex conjugate. In other words,
the operator f 7→ ( f̃τ)∗ is involutive.

2.3.2 Translation

As the Fresnel transform is a convolution operator, it is obviously shift-
invariant:

( f (·−x0))∼τ (x) = f̃τ(x −x0), x0 ∈R. (2.15)

2.3.3 Dilation

The Fresnel transform with parameter τ of the dilated function f (x/s)
is: (

f
( ·

s

))∼
τ

(x) = f̃τ/s

(x

s

)
, s ∈R∗

+. (2.16)

This relation involves a dilation by s of the Fresnel transform of f with
a rescaled parameter τ′ = τ/s. This ratio also appears in the defini-
tion of the so-called Fresnel number NF = (s/τ)2, where τ2 = λd; it
is used to characterize the diffraction of light by a square aperture of
half-width s and at a distance d [72].

2.3.4 Link with the Fourier Transform

So far, we have considered the Fresnel transform as a convolution op-
erator. Interestingly, there is also a direct multiplicative relation with
the Fourier transform [72]. Computing the Fresnel transform g̃τ of a
function g ∈ L2(R) can be done by computing the Fourier transform
of an associated function f (x) = τkτ(x)g (x). The frequency variable
is then interpreted as an appropriately scaled space variable:

g̃τ(x) = kτ(x) f̂
( x

τ2

)
. (2.17)

2.3.5 Localization Issues

Our approach for the construction of a Fresnelet basis will take a wave-
let basis and transform it. This still leaves many possibilities to choose
the original basis. A suitable basis should take into account one of
the least intuitive aspects of holography, namely that the propagation
process tends to spread out features that are initially well localized in
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the object domain. Getting a better understanding of the notion of
resolution in holography and setting up a criterion that will guide us
in the choice of an optimal wavelet is what we are after in this section.

The tight link between the Fresnel and the Fourier transform (2.17)
suggests that they should both have similar (de)localization proper-
ties. Here we derive an uncertainty relation for the Fresnel transform
that is the analog of the Heisenberg inequality [81] for the Fourier
transform.

In the sequel, we denote the average µ f of the squared modulus
of a function f ∈ L2(R) by:

µ f = 1

‖ f ‖2

∫ ∞

−∞
x| f (x)|2 dx

and its variance σ2
f around this average by:

σ2
f = 1

‖ f ‖2

∫ ∞

−∞
(x −µ f )2| f (x)|2 dx.

Theorem 1 (Uncertainty relation for the Fresnel transform) Let g ∈
L2(R) and g̃τ ∈ L2(R) its Fresnel transform with parameter τ. We have
following inequality for the product of their variances:

σ2
gσ

2
g̃τ
≥ τ4

16π2
. (2.18)

This inequality is an equality if and only if there exist x0,ω0, b real and
a complex amplitude a such that:

g (x) = a eiω0x e−b(x−x0)2
e−iπ(x/τ)2

(2.19)

Furthermore, if g (x) is real valued, the following relation holds:

σ2
gσ

2
g̃τ
≥ τ4

16π2
+σ4

g . (2.20)

This inequality is an equality if and only if there exist x0, a, b real, such
that:

g (x) = a e−b(x−x0)2
(2.21)

Also, (2.20) implies a lower bound on the variance for σg̃τ that is inde-
pendent of g :

σ2
g̃τ
≥ τ2

2π
.

The proof of Theorem 1 is given in Appendix 2.A.
This result implies that narrow functions yield functions with a

large energy support when they are transformed. It suggests that Gaus-
sians and Gabor-like functions, modulated with the kernel function
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as in (2.19) should be well suited for processing and reconstructing
holograms as they minimize the spatial spreading of the energy. This
is especially satisfying because it brings two separate aspects of Ga-
bor’s research together: he is both the inventor of holography [62] and
of the Gabor transform [61, 94], which is a signal representation as a
linear combination of atoms of the form (2.19). We are not aware of
anyone having pointed out this connection before.

We will base our Fresnelets construction on wavelet bases that
are close to these optimal functions. Practically, in the case of a digi-
tal hologram measurement where a transformed function is available
over a finite support and with a given sampling step, we may use the
above uncertainty relation to get a bound on the maximal resolution
to expect when reconstructing the original function.

A direct illustration of the second part of this Theorem can be
found in the example of Subsection 2.2.2; indeed, it can be verified
that the product of the variance of the Gaussian and that of its Fres-
nel transform achieves the lower bound in (2.20).

2.4 Fresnelet Bases

To construct our new Fresnelet bases, we will apply a Fresnel trans-
form to a wavelet basis. Here, we will explain what happens when
we apply the transform to a general Riesz basis of L2(Ω), where the
dimension of the domain Ω is arbitrary e.g. Ω=R or R2.

2.4.1 Fresnel Transform of a Riesz Basis

Let
{

ul
}

l∈Z be a Riesz basis of L2(Ω) and
{

vl
}

l∈Z its dual. Then, ∀ f ∈
L2(Ω), we can write following expansion:

f =∑
l
〈 f , vl〉︸ ︷︷ ︸

cl

ul =
∑

l
〈 f , ul〉vl (2.22)

Let ũl = U ul where U is a unitary operator (e. g. the Fresnel
transform). First, it is easy to see that U maps the biorthogonal set
S = {

ul , vl
}

l∈Z into another biorthogonal set S̃ = {
ũl , ṽl

}
l∈Z:

〈ṽl , ũm〉 = 〈U vl ,U um〉
= 〈UU †︸ ︷︷ ︸

1

vl , um〉 = δl,m .

Here U † denotes the adjoint of U . Let us now show that S̃ is also
complete. For the set S, we define the sequence:

fN =
N∑

l=1
〈 f , vl〉ul , ∀ f ∈ L2(Ω)
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and have the completeness equation:

lim
N→∞

‖ f − fN‖2 = 0. (2.23)

Note that the Riesz basis hypothesis ensures that fN ∈ L2(Ω). Because
U is unitary, we have:

〈 f , vl〉 = 〈U f ,U vl〉
= 〈 f̃ , ṽl〉 (2.24)

and therefore:
‖ f − fN‖2 = ‖ f̃ − f̃N‖2

which proves that the transformed set S̃ is complete as well.
Similarly, the Parseval relation (2.24) can also be used to prove that

S and S̃ have the same Riesz bounds. The Riesz bounds are the tight-
est constants A > 0 and B <∞ that satisfy the Riesz inequality:

A‖〈vl , f 〉‖2
`2

≤ ‖ f ‖2
L2

≤ B ‖〈vl , f 〉‖2
`2

.

They are the same for the transformed set:

A‖〈ṽl , f̃ 〉‖2
`2

≤ ‖ f̃ ‖2
L2

≤ B ‖〈ṽl , f̃ 〉‖2
`2

.

Thus, we can conclude that the Fresnel transform, which is a uni-
tary operator from L2(Ω) into L2(Ω), maps Riesz bases into other Riesz
bases, with the same Riesz bounds. Similarly, if we only consider a
subset of basis functions that span a subspace of L2(Ω) (e.g. a mul-
tiresolution subspace) we can show that it maps into a transformed
set that is a Riesz basis of the transformed subspace with the same
Riesz bounds.

Relation (2.24) is important for this proof but it is also most rel-
evant for the reconstruction of an image f given its transform f̃ . It
indicates that we can obtain the expansion coefficients in (2.22) di-
rectly by computing the series of inner products 〈 f̃ , ṽl〉. This is one of
the key ideas for our construction.

2.4.2 B-splines

The uncertainty relation for the Fresnel transform suggests the use
of Gabor-like functions. Unfortunately, these functions cannot yield
a multiresolution basis of L2(R). They don’t satisfy the partition of
unity condition, implying that a representation of a function in term
of shifted Gaussians won’t converge to the function as the sampling
step goes to zero [206]. Furthermore, they don’t satisfy a two-scale
relation which is required for building wavelets and brings many ad-
vantages regarding implementation issues.

03
6

-
2.

FR
ES

NE
LE

TS
:

NE
W

MU
LT

IR
ES

OL
UT

IO
N

WA
VE

LE
T

BA
SE

S

0000100100



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1
n=0

n=1

n=2

n=3

Fig. 2.1. B-splines of degree n = 0,1,2,3.

We will therefore base our construction on B-splines which are
Gaussian-like functions that do yield wavelet bases; they are also well
localized in the sense of the uncertainty principle for the Fresnel trans-
form (2.20).

B-splines [213] are defined in the Fourier domain by :

β̂n(ν) =
(

1−e−2iπν

2iπν

)n+1

= sincn+1(ν) e−iπν(n+1)

where sinc(x) = sin(πx)/(πx) and n ∈N.
The corresponding expression for the B-spline of degree n in the

time domain (see Fig. 2.1) is:

βn(x) =∆n+1 ∗ (x)n+
n!

where (x)n+ = max(0, x)n (one-sided power function); ∆n+1 is the (n +
1)th finite-difference operator:

∆n+1 =
n+1∑
k=0

(−1)k

(
n +1

k

)
δ(x −k)

which corresponds to the (n+1)-fold iteration of the finite difference
operator (see [213]): ∆= δ(x)−δ(x −1). Explicitly, we have following
expression for the B-spline of degree n:

βn(x) =
n+1∑
k=0

(−1)k

(
n +1

k

)
(x −k)n+

n!
. (2.25)

This definition is equivalent to the standard approach where the B-
splines of degree n are constructed from the (n +1)-fold convolution

0000100101 03
7

-
2.

FR
ES

NE
LE

TS
:

NE
W

MU
LT

IR
ES

OL
UT

IO
N

WA
VE

LE
T

BA
SE

S



of a rectangular pulse:

βn(x) =β0 ∗·· ·∗β0︸ ︷︷ ︸
n+1 times

(x)

β0(x) =


1, 0 < x < 1
1
2 , x = 0 or 1
0, otherwise.

2.4.3 Polynomial Spline Wavelets

The B-splines satisfy all the requirements of a valid scaling function
of L2(R), that is, they satisfy the three necessary and sufficient condi-
tions [199]:

Riesz Basis: 0 < A ≤ ∑
k∈Z

∣∣β̂n(ν+k)
∣∣2 ≤ B <∞

Two-scale relation: βn
(x

2

)
= ∑

k∈Z
h(k)βn(x −k) (2.26)

Partition of unity:
∑
k∈Z

βn(x −k) = 1

where the filter h(k) is the binomial filter h(k) = 1
2n

(n+1
k

)
. These condi-

tions ensure that B-splines can be used to generate a multiresolution
analysis of L2(R).

Unser et al. [208] have shown that one can construct a general fam-
ily of semi-orthogonal spline wavelets of the form:

ψn
(x

2

)
=∑

k
g (k)βn(x −k) (2.27)

such that the functions{
ψn

j ,k = 2
− j
2 ψn(2− j x −k)

}
j∈Z,k∈Z (2.28)

form a Riesz basis of L2(R). These wavelets come in different brands:
orthogonal, B-spline (of compact support), interpolating, etc. . . They
are all linear combinations of B-splines and are thus entirely specified
from the sequence g (k) in equation (2.27). Here, we will consider B-
spline wavelets [209], which have the shortest support in the family.

The main point here is that by using the properties of the Fresnel
transform (linearity, shift invariance and scaling), we can easily derive

the family of functions
{(
ψn

j ,k

)∼
τ
= kτ∗ψn

j ,k

}
j∈Z,k∈Z, provided that we

know the Fresnel transform of their main constituent, the B-spline.
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2.4.4 Fresnelets

In this section, we introduce our new wavelets: Fresnelets. They will
be specified by taking the Fresnel transform of (2.27). Thus, the re-
maining ingredient is to determine the Fresnel transform of the B-
splines.

F-splines

We define the Fresnel spline, or F-spline of degree n ∈N and parame-
ter τ ∈ R∗+ (denoted β̃n

τ (x)) as the Fresnel transform with parameter τ
of a B-spline βn(x) of degree n:

β̃n
τ (x) = (βn ∗kτ)(x).

Theorem 2 The F-spline of degree n and parameter τ has the closed
form:

β̃n
τ (x) =

n+1∑
k=0

(−1)k

(
n +1

k

)
un,τ(x −k) (2.29)

where:

un,τ(x) =
∫ x

0

(x −ξ)n

n!
kτ(ξ)dξ. (2.30)

The proof of Theorem 2 is given in Appendix 2.B.
F-splines have many similarities with B-splines. For example, to

get (2.29), one just substitutes the one-sided power function used in
the definition of the B-spline (2.25) with the functions un,τ.

Theorem 3 The functions un,τ can be calculated recursively:

un,τ(x) = τ

2iπn!
xn−1 − τ2

2iπn
un−2,τ(x)+ x

n
un−1,τ(x). (2.31)

For n = 0 we have:

u0,τ(x) = 1p
2

(
C

(p
2

τ
x

)
+ i S

(p
2

τ
x

))

where C (x) and S(x) are the so-called Fresnel integrals:

C (x) =
∫ x

0
cos

(π
2

t 2
)

dt , S(x) =
∫ x

0
sin

(π
2

t 2
)

dt

For n = 1 we have:

u1,τ(x) = x u0,τ(x)− τ2

2iπ

(
kτ(x)− 1

τ

)
.
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The proof of Theorem 3 is given in Appendix 2.C.
This gives us a straightforward way to evaluate the F-splines as the

Fresnel integrals can be computed numerically [174]. Furthermore,
we can also transpose the well-known B-spline recursion formula:

βn(x) = x

n
βn−1(x)+ n +1−x

n
βn−1(x −1) (2.32)

to the Fresnel domain.

Theorem 4 We have following recursion formula for the F-splines:

β̃n
τ (x) = xβ̃n−1

τ (x)+ (n +1−x)β̃n−1
τ (x −1)

n

+ iτ2

2πn
∆2β̃n−2

τ (x). (2.33)

The proof of Theorem 4 is given in Appendix 2.D.

Fresnelet Multiresolutions

Let us now transpose the classical multiresolution relations of wave-
let theory to the Fresnelet domain. The two scale relation (2.26) be-
comes:

β̃n
τ/2

(x

2

)
=∑

k
h(k)β̃n

τ (x −k) (2.34)

In classical wavelet theory, embedded multiresolution spaces are
generated through dilation and translation of one single function. The
Fresnel transform preserves the embeddedness of those spaces. The
important modification comes from the dilation relation (2.16) which
changes the generating function from one scale to the next. The differ-
ence is that in the transformed domain there is one generating func-
tion for each scale.

Formally, we consider, for j ∈ Z, the sequence of spaces {Ṽ j ,τ} de-
fined as:

Ṽ j ,τ = span
k∈Z

{
β̃n
τ2− j (2− j x −k)

}
∩L2(R)

corresponding to the sequence of spaces {V j } defined as:

V j = span
k∈Z

{
βn(2− j x −k)

}
∩L2(R).

The subspaces V j satisfy the requirements for a multiresolution anal-
ysis [199]:

1. V j+1 ⊂ V j and
⋂

V j = 0 and
⋃

V j = L2(R) (completeness).

2. Scale invariance: f (x) ∈ V j ⇔ f (2x) ∈ V j−1.
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3. Shift invariance: f (x) ∈ V0 ⇔ f (x −k) ∈ V0.

4. Shift-invariant basis: V0 has a stable Riesz basis {βn(x −k)}.

For the sequence {Ṽ j ,τ} the shift-invariance is preserved within each
scale but requirement 2 is clearly not fulfilled because of the scaling
property (2.16) of the Fresnel transform. We nevertheless get a modi-
fied set of multiresolution analysis requirements for the Fresnel trans-
form:

1’) Ṽ j+1,τ ⊂ Ṽ j ,τ and
⋂

Ṽ j ,τ = 0 and
⋃

Ṽ j ,τ = L2(R) (completeness).

2’) Scale invariance: f (x) ∈ Ṽ j ,τ ⇔ f̃p3τ(2x) ∈ Ṽ j−1,τ.

3’) Shift invariance: f (x) ∈ Ṽ0,τ ⇔ f (x −k) ∈ Ṽ0,τ.

4’) Shift-invariant basis: V0 has a stable Riesz basis
{
β̃n
τ (x −k)

}
.

Condition 2’ is obtained by observing that f (x) ∈ Ṽ j ,τ ⇔ f ∗k−1
τ ∈ V j .

As we require the V j to satisfy the scale invariance condition 2, we
have f ∗k−1

τ (2x) ∈ V j−1 hence ( f ∗k−1
τ (2·))∗kτ(x) ∈ Ṽ j−1,τ. And finally:(

f ∗k−1
τ (2·))∗kτ(x) =( f ∗k∗

τ )∗k2τ(2x)

= ei π4 f̃p3τ(2x).

Specifically, the generating functions corresponding to the B-spline
wavelets of (2.27) are:

ψ̃n
τ/2

(x

2

)
=∑

k
g (k)β̃n

τ (x −k)

where β̃n
τ (x) is given by (2.29). The corresponding Fresnelets are such

that:
span

k∈Z

{
ψ̃n
τ/2

(x

2
−k

)}
⊥ span

k∈Z

{
β̃n
τ/2

(x

2
−k

)}
.

For the multiresolution subspaces, we have that the residual spaces
W̃ j ,τ defined as:

W̃ j ,τ = span
k∈Z

{
ψ̃n
τ2− j (2− j x −k)

}
.

are such that
W̃ j+1,τ⊥ Ṽ j+1,τ

and
W̃ j+1,τ⊕ Ṽ j+1,τ = Ṽ j ,τ.

The above expressions extend the meaning of multiresolution to the
fresnelet domain.
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(a) (b)

Fig. 2.2. B-Spline multiresolution and its Fresnel counterpart. (a) B-splines: 2(− j /2)β3(2− j x), j =
−2,−1,0,1,2,3,4. (b) Corresponding F-splines: 2(− j /2)β̃3

τ2− j (2− j x). In this illustration, τ = 0.9. The real
part is displayed with a continuous, the imaginary part with a dashed line. For the F-splines, we also
show the envelopes of the signals.

Fresnelet multiresolution example

In Fig. 2.2 we show a sequence of dyadic scaled B-splines of degree
n = 3 and their counterpart in the Fresnel domain. The effect of the
spreading is clearly visible: as the B-splines get finer ( j = 1,2,3,4) the
corresponding F-splines get larger. In contrast to the Fourier trans-
form, as the B-splines get larger ( j = −1,−2), the corresponding F-
splines’ support doesn’t get smaller than the B-splines’. This behavior
is in accordance with relation (2.20).

The main practical consequence for us is: if we want to recon-
struct a hologram at a fine scale, that is, express it as a sum of nar-
row B-splines, the equivalent basis functions on the hologram get
larger. Our special choice of Fresnelet bases limits this phenomenon
as much as possible; it is nearly optimal in the sense of our uncer-
tainty relation for real functions (2.20) as they asymptotically converge
to Gabor functions [207].

2.5 Implementation of the Fresnelet Transform

In this section we derive a numerical Fresnelet transform algorithm
based on our Fresnelets decomposition.

We consider a function f̃τ(x) which is the Fresnel transform of a
function f ∈ L2(R), i.e., f̃τ(x) = kτ∗ f (x). In a digital holography exper-
iment, this would be the measured phase and amplitude of a propa-
gated wave (without interference with a reference wave). Given some
measurements of f̃ , the goal is thus to find the best approximation of
f in our multiresolution basis. For instance, one can start the process
by determining the coefficients ck that give the closest approximation

04
2

-
2.

FR
ES

NE
LE

TS
:

NE
W

MU
LT

IR
ES

OL
UT

IO
N

WA
VE

LE
T

BA
SE

S

0000101010



of f (in the L2 sense) at the finest scale of representation:

f =∑
k

ck u(x −k), ck = 〈 f , v(x −k)〉 = 〈 f̃ , ṽ(x −k)〉

where u and v (respectively ũ and ṽ) are dual bases that are linear
combinations of B-splines βn (respectively F-splines β̃τ).

Therefore we only need to compute the inner-products of the trans-
formed function with the shifted F-splines that have been appropri-
ately rescaled:

dk =
〈

f ,
1

h
βn

( ·
h
−k

)〉
=

〈
f̃τ,

1

h
β̃n
τ/h

( ·
h
−k

)〉
. (2.35)

Our present implementation is based on a convolution evaluated in
the Fourier domain using FFTs. It can be justified as follows. Using
Plancherel’s identity for the Fourier transform, we express the inner
products (2.35) as:

dk =
〈

ˆ̃fτ, ˆ̃βn
τ/h(h·) e−2iπkh·

〉
=

∫
ˆ̃fτ(ν) ˆ̃βn

τ/h(hν) e−2iπkhνdν.

In practice, we don’t know f̃τ(x) in a continuous fashion, but we can
easily compute a sampled version of its Fourier transform by apply-
ing the FFT to the measured values. If we also approximate the above
integral by a Riemann sum, we end up with the implementation for-
mula:

dk = 1

NT

N/2∑
l=−N/2+1

ˆ̃fτ
( l

NT

)
ˆ̃βn
τ/h

( hl

NT

)
e−2iπkhl/(NT )

where T is the sampling step of the measured function. We can make
use of the FFT a second time to compute this sum if we consider sam-
pling steps on the reconstruction side that are multiples of the sam-
pling step of the measured function: h = m T , m = 1,2, . . ., then:

dk = 1

NT

N/2∑
l=−N/2+1

ˆ̃fτ
( l

NT

)
ˆ̃βn
τ/(mT )

(
m

l

N

)
e−2iπmkl/N

The algorithm is thus equivalent to a filtering followed by downsam-
pling by m. It is also possible to proceed hierarchically by applying
the standard wavelet decomposition algorithm once we have the fine
scale coefficients dk .

See also the FFT implementation of the fractional spline wavelet
transform proposed by Blu and Unser [14].
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(a) (b) (c)

Fig. 2.3. (a) Amplitude and (b) phase of the test target. The bars width is 256µm. The sampling step is
T = 10µm and 512×512 samples are evaluated. The amplitude is equal to 1 (dark gray) or

p
2 (light gray).

The phase is equal to 0 (black) or π/4 (light gray). (c) Perspective view. The grayscale is representative for
the amplitude and the elevation for the phase.

(a) (b) (c)

Fig. 2.4. Propagated target’s (a) amplitude and (b) phase. d = 30 cm and λ = 632.8 nm. The sampling
step is T = 10µm and 512×512 samples are evaluated. (c) Perspective view.

2.6 Applications and Experiments

We will now validate our multiresolution Fresnelet-based algorithm
and illustrate it in practice on experimental digital holographic data.

2.6.1 Simulation: Propagation of a Test Wave Front

First, we will use our Fresnelet formalism to compute the Fresnel trans-
form of a test pattern that will be used as gold standard to evaluate our
algorithm. Although our methodology is more general, for explana-
tory purposes we consider the case of a plane wave that is being re-
flected on a test target. The test target is given by three bars. They
are of a given thickness and have a different reflectivity than the back-
ground they lie on. A plane wave that travels in a normal direction
to the target is reflected. In a plane close to the target, the reflected
wave’s phase is directly proportional to the target’s topology whereas
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the wave’s amplitude characterizes the target’s reflectivity. The key
motif of this test pattern is a bar b(x, y) expressed as a tensor product
of two B-splines of degree 0:

b(x, y) = ei 3π/4 β0
(

x

wx

)
β0

(
y

wy

)
+p

2

=
{

ei π4 , on the barp
2, outside.

(2.36)

Its Fresnel transform of parameter τ is:

b̃τ(x, y) = ei 3π/4 β̃0
τ/wx

(
x

wx

)
β̃0
τ/wy

(
y

wy

)
+p

2 eiπ/2 . (2.37)

The amplitude and phase of the target and of the propagated target
are shown in Figs. 2.3 and 2.4. More complex targets or different phases
and amplitudes can be implemented easily with this method.

2.6.2 Backpropagation of a Diffracted Complex Wave

In this experiment, we took the analytical propagated target we just
described as the input for our multiresolution Fresnelet transform
algorithm. We reconstructed the original target at dyadic scales. In
concrete terms, we computed the inner products with F-splines of
varying widths: β̃n

τ/2 j (x/2 j )β̃n
τ/2 j (y/2 j ), j = 0,1,2,3,4, n = 3. We then

reconstructed the corresponding images using the underlying spline
model. This is also equivalent to running the inverse wavelet trans-
form algorithm up to a specified scale. The results are presented in
Fig. 2.5. At the finest scale ( j = 0), the sampling step is the same as the
one used to sample the propagated wave. To ensure that the recon-
structed wave agrees with the initial analytical target, we computed
the peak signal to noise ratio (PSNR) of the reconstructed amplitude
and phase for the finest reconstruction scale j = 0. We took following
definition of the PSNR:

PSNR = 10log10

 (max{| f |}−min{| f |})2

1
Nx Ny

∑
k,l | f (k, l)− f ′(k, l)|2


were f is our (complex) gold standard target and f ′ the reconstructed
target. We obtain a PSNR of 23.10 dB. We can thus say that our algo-
rithm reconstructs the target reasonably well.

2.6.3 Hologram Reconstruction

For this experiment, we considered true holographic data, recorded
using a similar system as in [36]. We give a simplified diagram of the
experimental setup in Fig. 2.6.
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Fig. 2.5. Reconstructed amplitude (top) and phase (bottom).

An object (United States Air Force 1951 (USAF 1951) target) was
illuminated using a He-Ne laser (λ = 632.8nm). The reflected wave
was then directed to the 776× 572 pixels CCD camera. The camera
recorded the interference (hologram) of this propagated wave with a
plane reference wave in an off-axis geometry. The sampling step of
the CCD was T = 10µm.

We denote f (x, y) the reflected wave in the vicinity of the object
and f̃τ(x, y) the complex amplitude of the propagated wave in the
CCD plane. The hologram is the intensity I(x, y) measured by the
camera and results from the interference of the propagated wave f̃τ
and the reference (plane) wave R(x, y) = A ei (kx x+ky y):

I(x, y) = | f̃τ(x, y)+R(x, y)|2 = | f̃τ|2 +|R|2 +R∗ f̃τ+R( f̃τ)∗. (2.38)

The measured hologram is reproduced in Fig. 2.7.
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Fig. 2.6. Experimental digital holography setup. A He-Ne LASER (λ = 632.8nm)
beam is expanded by the beam expander (BE) system made of two lenses L1 and L2
and diaphragms. The beam-splitter BS splits the beam. One part illuminates the
object. The reflected wave f propagates to the CCD camera at a distance d of the
object. In the camera plane the propagated wave is f̃τ where τ2 = λd. The second
part of the beam is reflected by a slightly tilted mirror and impinges on the CCD
with a certain angle i.e., its wave vector k = (kx , ky , kz ) has nonzero components kx

and ky . The plane reference wave evaluated in the plane of the CCD is R(x, y) =
A ei (kx x+ky y). The interference of f̃τ and R gives the hologram I = |R + f̃τ|2.

The two first terms in (2.38) are known as the zero-order, the third
and fourth terms as the image and twin image terms respectively [72].
In the frequency domain, their energy is concentrated around three
frequencies: (0,0) for the zero-order, (−kx ,−ky ) for the image and
(kx , ky ) for the twin image. This is clearly visible in Fig. 2.8.

Prior to reconstructing f (x, y) we multiplied the hologram by a
numerical reference wave R′ = ei (k ′

x x+k ′
y y):

R′I = R′| f̃τ|2 +R′|R|2 +R′R∗ f̃τ+R′( f̃τ)∗R.

The values k ′
x and k ′

y were adjusted precisely to the experimental val-
ues kx , ky , such that the third term (which is the one we are interested
in) becomes R′R∗ f̃τ = a f̃τ where a is some complex constant. We ap-
plied zero padding to the hologram (resulting in a 2048×2048 input
image) to ensure a clear spatial separation of the three reconstructed
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Fig. 2.7. Measured hologram. There are 776×572 samples. The sampling step is
10µm. (Data courtesy of T. Colomb, F. Montfort and Ch. Depeursinge, IOA/EPFL)

Fig. 2.8. Absolute value of the Fourier transform of the hologram. The frequency
origin is in the center.

terms.
We then applied our Fresnelet transform to this (de-)modulated

hologram R′I . The reconstruction distance d was adjusted to 35 cm
resulting in the proper parameter τ = p

λd. In Fig. 2.9 we show the
Fresnelet coefficients corresponding to the inner products of R′I with
the tensor product basis functions

ψ̃n
τ/2 j (x/2 j )β̃n

τ/2 j (y/2 j ),

ψ̃n
τ/2 j (x/2 j )ψ̃n

τ/2 j (y/2 j ),

β̃n
τ/2 j (x/2 j )ψ̃n

τ/2 j (y/2 j ),

and β̃n
τ/2J (x/2J ).β̃n

τ/2J (y/2J )

for n = 3, j = 0, . . . , J and J = 4. These coefficients are complex and
we are only showing their modulus. From these coefficients we could
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Fig. 2.9. Fresnelet transform of the modulated hologram R′I (coefficient’s amplitude). There are
2048×2048 coefficients.

recover the reconstructed signal (amplitude and phase) at any dyadic
scale as it is shown in the pyramids of Fig. 2.10. It is important to re-
member that all the information to get a finer scale from the coarsest
scale (top left) is contained in the subbands of the Fresnelet transform
of Fig. 2.9.

The experiment shows that the three hologram terms are spatially
separated in the reconstruction: the zero-order term in the center,
the image below left and the twin image up right (not visible). One
can also notice how the zero-order term vanishes as the reconstruc-
tion scale gets coarser. This is visible in both the pyramid (Fig. 2.10)
where more and more energy goes into the image term as the image
gets coarser, and in the Fresnelet transform (Fig. 2.9) where the zero-
order term coefficient’s energy is mainly in the highpass subbands.
The explanation for this behavior is the following. As mentioned ear-
lier, the hologram’s energy is concentrated around the three frequen-
cies (−kx ,−ky ), (0,0), and (kx , ky ), corresponding respectively to the
image, the zero-order, and the twin image.When we multiply the holo-
gram by R′(x, y) ≈ R(x, y) = ei (kx x+ky y), the different terms are shifted
by (kx , ky ) in frequency and their new respective locations are (0,0),
(kx , ky ) and (2kx ,2ky ). As the energy corresponding to the zero or-
der and twin image terms is shifted to high frequencies, it is mainly
encoded in the fine scale (highpass) Fresnelet coefficients. Coarse
scale reconstructions (which discard the high frequency information)
will therefore essentially suppress the zero order or twin image terms,
which is a nice feature of our algorithm.
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j=4

j=3
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j=0

Fig. 2.10. Reconstructed amplitude and phase from the Fresnelet coefficients in Fig. 2.9 for j = 0,1,2,3,4.
The contrast was stretched for each image to the full grayscale range, except for the amplitude at j = 0. At
the finest scale ( j = 0) the size of the images is 2048 × 2048.
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2.7 Discussion

We have seen that the wavefronts reconstructed with the Fresnelet
transform from the simulated data agree with the theoretical gold
standard and that the algorithm can be applied successfully to recon-
struct real-world holographic data as well. Although ringing artifacts
may be distinguished at fine scales, they tend to disappear as the
scale gets coarser.

The presented method differs from the traditional reconstruction
algorithms used in digital holography which implement an inverse
Fresnel transform of the data. The Fresnel transform algorithms fall
into two main classes [108]. The first approach [Fig. 2.11(a)], as de-
scribed in [108], uses the convolution relation (2.1). It is implemented
in the Fourier domain and needs two FFTs. The transformed func-
tion’s sampling step T ′ is the same as that of the original function.
The three terms—the image, the twin image (that is suppressed at
all scales in the Fresnelet algorithm) and the zero-order)—are visible
in Fig. 2.11(a). The second method [Fig. 2.11(b)] uses the link with
the Fourier transform (2.17) [36, 108]. We call this implementation a
Chirp-Fourier Fresnel transform (ChFFrT) (See Chapter 6). The dis-
cretization of this relation requires only one FFT. As this method re-
lies on the special interpretation of the spatial frequency variable as
a rescaled space variable, the sampling step of the transformed func-
tion is T ′ = λd/(NT ) where N is the number of samples in one direc-
tion. Therefore it depends on the distance, the wavelength and the
number of measured samples. In particular if the number of samples
in the x and y directions are not the same, e.g., in Fig. 2.11(b), the
corresponding sampling steps do not agree. In the work of Cuche et
al. [36], the parameters are set such that the reconstruction is at ap-
proximately one fourth the scale of the digitized hologram.

The first advantage of our approach is that it allows us to choose
the sampling step on the reconstruction side. It can be any multiple
T ′ = m T for m = 1,2,4,8, . . . The computational cost of our algorithm
is the same as that of a filtering in the Fourier domain; i.e., roughly
the cost of two FFTs.

Also, as our method is based on the computation of inner prod-
ucts, it leaves more freedom for treating boundary conditions. One
possibility to reduce the influence of the finite support of the CCD
camera is to use weighted, or renormalized inner products.

More than just a Fresnel transform, our Fresnelet transform pro-
vides us with wavelet coefficients. A remarkable feature is that the
energy of the unwanted zero-order and twin images is concentrated
within the fine scale subbands. This opens up new perspectives for
their selective suppression (see Chapter 3) in the wavelet domain as
an alternative to other proposed algorithms ( [38, 106]). In addition,
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Zero-order

Twin
Image

Image

(a) (b)

Fig. 2.11. Reconstructed amplitudes from the hologram of Fig. 2.7 using alter-
native methods based on the discretization of (a) the convolution relation (2.1)
and (b) the Fourier formulation (2.17) of the Fresnel transform. For (a), the holo-
gram was padded with zeros to a size of 2048 × 2048 and the sampling step is
T ′ = T = 10µm. For the reconstruction in (b) the 776× 572 hologram was fed di-
rectly into the algorithm resulting in different sampling steps in the x and y direc-
tions: Tx

′ =λd/(Nx T ) = 28.54µm and Ty
′ =λd/(Ny T ) = 38.72µm.

it allows us to apply simple wavelet-domain thresholding techniques
to reduce the measurement noise in the reconstructed images.

2.8 Conclusion

We have constructed a new wavelet basis for the processing and re-
construction of digital holograms by taking advantage of the mathe-
matical properties of the Fresnel transform. We have motivated our
choice of B-splines as elementary building blocks based on a new un-
certainty relation.

We have demonstrated that the method works and that it is appli-
cable to the reconstruction of real data. Our method offers several ad-
vantages: it allows to reconstruct at different user-specified and wave-
length independent scales. Furthermore, reconstructions at coarse
scale allow for optimal filtering of the zero-order and the twin image
and also result in less noisy images.
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2.A Proof of Theorem 1

Proof: We first recall the Heisenberg uncertainty relation for the Fourier
transform. Let f ∈ L2(R). We have following inequality:

σ2
f σ

2
f̂
≥ 1

16π2
. (2.39)

This inequality is an equality if and only if there exist t0,ω0, b real and
a complex amplitude a such that:

f (t ) = a eiω0t e−b(t−t0)2
. (2.40)

Let f (x) = eiπ(x/τ)2
g (x). We start by noting that f and g have the

same norm:

‖ f ‖2 =
∫ ∞

−∞

∣∣∣eiπ(x/τ)2
g (x)

∣∣∣2
dx =

∫ ∞

−∞
|g (x)|2dx = ‖g‖2,

the same mean:

µ f = 1

‖ f ‖2

∫ ∞

−∞
x

∣∣∣eiπ(x/τ)2
g (x)

∣∣∣2
dx

= 1

‖g‖2

∫ ∞

−∞
x|g (x)|2dx =µg ,

and finally the same variances:

σ2
g = 1

‖g‖2

∫ ∞

−∞
(x −µg )2|g (x)|2 dx

= 1

‖g‖2

∫ ∞

−∞
(x −µg )2

∣∣∣eiπ(x/τ)2
f (x)

∣∣∣2
dx

= 1

‖ f ‖2

∫ ∞

−∞
(x −µ f )2| f (x)|2 dx

=σ2
f .

Also, g and g̃τ have the same means. Without loss of generality, we
will from now on consider that f and g have unit norm ‖ f ‖ = ‖g‖ = 1
and that they have zero mean µ f =µg = 0. Using the link between the
Fresnel and Fourier transforms (2.17), we compute the variance of g̃ :

σ2
g̃τ
=

∫ ∞

−∞
x2|g̃τ(x)|2 dx

=
∫ ∞

−∞
x2

∣∣∣∣1

τ
e2iπ(x/τ)2

f̂
( x

τ2

)∣∣∣∣2

dx

= τ4
∫ ∞

−∞
ν2| f̂ (ν)|2 dν

= τ4σ2
f̂

.
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The product of the variances becomes:

σ2
gσ

2
g̃τ
= τ4σ2

f σ
2
f̂
≥ τ4

16π2
.

From the Heisenberg uncertainty relation, we know that this inequal-
ity is an equality if and only if there exist x0, ω0, b real and a complex
amplitude a such that:

g (x) = a eiω0x e−b(x−x0)2
e−iπ(x/τ)2

.

To prove the second part of the statement, we compute the vari-
ance of the transformed function explicitly:

σ2
g̃τ
= 1

τ2

∫ ∞

−∞
x2

∣∣∣ f̂
( x

τ2

)∣∣∣2
dx

= τ4
∫ ∞

−∞
x2| f̂ (x)|2dx

= τ4

4π2

∫ ∞

−∞
| f (x)′|2dx

= τ4

4π2

∫ ∞

−∞

∣∣∣∣g (x)′+ 2iπx

τ2
g (x)

∣∣∣∣2

dx.

If g (x) is real valued, there are no cross terms in the modulus. Thus,
we get:

σ2
g̃τ
= τ4

∫ ∞

−∞
|νĝ (ν)|2dν+

∫ ∞

−∞
|xg (x)|2dx

= τ4σ2
ĝ +σ2

g

and finally:

σ2
g̃τ
σ2

g = τ4σ2
ĝσ

2
g +σ4

g ≥ τ4

16π2
+σ4

g

which is an equality if and only if there exist x0, a, b real, such that:

g (x) = a e−b(x−x0)2
.

To derive the lower bound on the variance σ2
g̃τ

we rewrite (2.20) as:

σ2
g̃τ
≥ τ4

16π2

1

σ2
g
+σ2

g .

The right-hand side is minimal for σ2
g = τ2/(4π) and therefore:

σ2
g̃τ
≥ τ2

2π
.

�

05
4

-
2.

FR
ES

NE
LE

TS
:

NE
W

MU
LT

IR
ES

OL
UT

IO
N

WA
VE

LE
T

BA
SE

S

0000110110



2.B Proof of Theorem 2

Proof: un,τ(x) satisfies, for n ≥ 1:

u′
n,τ(x) = d

dx

∫ x

0

(x −ξ)n

n!
kτ(ξ)dξ

=
∫ x

0

(x −ξ)n−1

(n −1)!
kτ(ξ)dξ

= un−1,τ(x)

and for n = 0:

u′
0,τ(x) = kτ(x).

Therefore, by differentiating un,τ (n+1) times, we hit the kernel of the
Fresnel Transform operator:

u(n+1)
n,τ (x) = kτ(x).

We can now calculate the Fresnel transform of a B-spline of degree n:

β̃n
τ (x) = (βn ∗kτ)(x)

=
(
βn ∗u(n+1)

n,τ

)
(x).

As differentiation and convolution commute, we have:

β̃n
τ (x) =

(
dn+1

dxn+1
βn

)
∗un,τ(x)

=
(

n+1∑
k=0

(−1)k

(
n +1

k

)
δ(x −k)

)
∗un,τ(x)

=
n+1∑
k=0

(−1)k

(
n +1

k

)
un,τ(x −k).

�
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2.C Proof of Theorem 3

Proof: We integrate (2.30) by parts, using (d/dx)kτ(x) = (2iπx/τ2)kτ(x):

un,τ(x) =
∫ x

0

(x −ξ)n

n!
kτ(ξ)dξ

=
[
− (x −ξ)n+1

(n +1)!
kτ(ξ)

]x

0

−
∫ x

0
− (x −ξ)n+1

(n +1)!

2iπξ

τ2
kτ(ξ)dξ

= xn+1

τ(n +1)!
− 2iπ

τ2

×
(∫ x

0

(x −ξ)n+2

(n +1)!
kτ(ξ)dξ

−x
∫ x

0

(x −ξ)n+1

(n +1)!
kτ(ξ)dξ

)
= xn+1

τ(n +1)!

− 2iπ

τ2

(
(n +2) un+2,τ(x)−x un+1,τ(x)

)
which we rewrite under the form (2.31). The expressions for u0,τ(x)
and u1,τ(x) follow immediately from the general definitions of un,τ,
the Fresnel integrals and the recursion formula (2.31). �

2.D Proof of Theorem 4

Proof: We begin by computing the Fresnel transform of a B-spline that
is multiplied by x:

(xβn)∼τ (x) =
∫ ∞

−∞
(x −ξ)βn(x −ξ) kτ(ξ)dξ

= xβ̃n
τ (x)−

∫ ∞

−∞
τ2

2iπ
βn(x −ξ)

d

dx
kτ(ξ)dξ

= xβ̃n
τ (x)− τ2

2iπ

(
d

dx
βn(x)

)∼
τ

.

We can now use the B-spline’s differentiation formula [213]:

d

dx
βn(x) =βn−1(x)−βn−1(x −1) =∆βn−1(x)

to get:

(xβn)∼τ (x) = xβ̃n
τ (x)− τ2

2iπ
∆β̃n−1

τ (x).
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We rewrite (2.32) as:

βn(x) = 1

n
∆(xβn−1(x))+βn−1(x −1)

to finally get its Fresnel transform:

β̃n
τ (x) = 1

n
∆

(
xβ̃n−1

τ (x)− τ2

2iπ
∆β̃n−2

τ (x)

)
+ β̃n−1

τ (x −1) (2.41)

= xβ̃n−1
τ (x)+ (n +1−x)β̃n−1

τ (x −1)

n

+ iτ2

2πn
∆2β̃n−2

τ (x).

�
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Chapter 3

Nonlinear Fresnelet Approximations
for Interference-Term Suppression

Abstracta— We present a zero-order term and twin image elimination algorithm for digital
Fresnel holograms that were acquired in an off-axis geometry. These interference terms arise
when the digital hologram is reconstructed and corrupt the result. Our algorithm is based on
the Fresnelet transform, a waveletlike transform that uses basis functions tailor-made for digital
holography. We show that in the Fresnelet domain, the coefficients associated to the interfer-
ence terms are separated both spatially and with respect to the frequency bands. We propose
a method to suppress them by selectively thresholding the Fresnelet coefficients. Unlike other
methods that operate in the Fourier domain and affect the whole spacial domain, our method
operates locally in both space and frequency, allowing for a more targeted processing.

aThis chapter is based on Ref. [128].

3.1 Introduction

The hologram is a measure of the intensity that results from the object
wave’s interference with a reference wave. In the so-called off-axis ge-
ometry, the reference wave and object wave travel in slightly different
directions thus giving rise to interference fringes. During optical re-
construction, the object wave may be reproduced by illuminating the
chemically processed hologram with a reconstruction beam. The lat-
ter is diffracted. Three diffraction orders may be distinguished: the
+1 order which is an exact replica of the object wave, the undiffracted
zero-order term, and the −1 order term.

In digital holography [36, 73, 109], the photographic plate is re-
placed by a CCD camera. The hologram is stored in the computer as
a digital image and the reconstruction process is carried out by simu-
lating the physical diffraction phenomenon. Since wave propagation
can be modeled with good accuracy in the Fresnel regime by the Fres-
nel transform, it can be easily implemented. However, since digital
recording media have a lower resolution than those used in classical
holography, the fringes’ spacing must be larger to be resolved. This
means that the reference beam’s angle cannot be as high. As a conse-
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quence, the three diffracted waves do, at least partially, overlap during
reconstruction.

So far, only algorithms have been proposed that either filter the
relevant information in the Frequency domain [38, 106, 133], or, that
take advantage of the spatial separation of the different orders after
propagation. However, neither approach is completely satisfactory,
since either the reconstructed wave’s bandwidth or its field of view are
drastically limited. Here, we derive a nonlinear signal approximation
algorithm that takes advantage of the interference-terms’ separation
in both frequency and space. To this end, we make use of the family
of shift invariant, multiresolution basis functions that we proposed in
Chapter 2 (see also [127]), namely Fresnelets.

The chapter is organized as follows: In Section 3.2, we review the
Fresnel transform and holography. In Section 3.3, we briefly describe
Fresnelets. In Section 3.4 we propose our new approximation algo-
rithm which we finally illustrate and test on simulation examples in
Section 3.5.

3.2 Fresnel Transform and Holography

3.2.1 Fresnel Transform

Three fundamental properties of the Fresnel transform are of partic-
ular interest to us, since they give a direct insight on how well the
diffraction terms are separated in either space or frequency. First, a
modulated signal undergoes a shift after the transform. Let f ∈ L2(R)
and g (x) = exp(2iπν0x) f (x +ν0τ

2/2) be a modulated version of the
function. Then its Fresnel transform with parameter τ, is

g̃τ(x) = exp(−iπν2
0τ

2)exp(2iπν0x) f̃τ

(
x − ν0τ

2

2

)
. (3.1)

Second, the Fresnel transform is a unitary convolution operator and,
as such, the spectrum of the transformed signal remains unchanged.
This property may be recognized immediately from the Fresnel oper-
ator’s frequency response

k̂τ(ν) = eiπ/4 exp(−iπ(τν)2) (3.2)

where
∣∣k̂τ(ν)

∣∣= 1 implies the spectrum invariance

∣∣ f̂ (ν)
∣∣2 = ∣∣ ˆ̃fτ(ν)

∣∣2 ∀τ ∈R+. (3.3)

Last, localized features spread out during the propagation process
and obey a Heisenberg-like uncertainty principle [127]. The latter
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gives a lower bound to the product of a function’s variance and that
of its transform

σ2
f σ

2
f̃τ
≥ τ4

16π2
. (3.4)

For real functions there is also a lower bound on σ2
f̃τ
≥ τ2/2π, that is

independent of f .

3.2.2 Holography

Information in the hologram plane

The hologram measured with the CCD camera, I(x) ∈R+ results from
the interference, at every location x = (x, y), of the object wave Ψ(x) ∈
C with a plane reference wave R(x) = A(x)exp

(
i (kx x + ky y)

)
(where

kλ = (kx , ky , kz) is the wave vector)

I(x) = |Ψ(x)+R(x)|2. (3.5)

This equation may be expanded to identify the three interference terms

I(x) = |R(x)|2 +|Ψ(x)|2︸ ︷︷ ︸
zero-order

+R∗(x)Ψ(x)︸ ︷︷ ︸
+1 order

+R(x)Ψ∗(x)︸ ︷︷ ︸
−1 order

. (3.6)

In the hologram plane, they overlap completely.

Plane wave diffraction by a hologram

To reconstruct the object wavefront, we apply a Fresnel transform to
the hologram (which is equivalent to physically illuminating the holo-
gram with a plane wave that travels perpendicularly to the hologram).
As the propagation distance grows, the unmodulated zero-order stays
located in the central part of the image, while the ±1 orders move
away from the center according to property (3.1) (see Fig. 3.1). The
higher the modulation frequency (or equivalently, the angle between
the reference and the object wave), the larger the separation. Because
the acquisition device’s sampling step remains large, the modulation
frequency is limited, as well as the angle between the object and the
reference wave. Therefore, the spatial separation between the differ-
ent orders is limited and they do, at least partially, overlap.

Moreover, the uncertainty relation on the Fresnel transform im-
plies a broadening of the zero and −1 orders as the distance increases
(see Fig. 3.2). In contrast, the +1 order’s support first shrinks until the
original image-hologram distance is reached and starts broadening
again for larger distances.
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Fresnel Transform

Spectrum

Fig. 3.1. Information repartition in the diffracted wave. Each depth has an associ-
ated shift invariant, multiresolution Fresnelet basis. For the in-focus distance, the
associated wavelet basis is a standard wavelet basis.

Frequency content

The three terms have their energy clearly separated in the frequency
domain and located around their respective modulation frequency.
This property was recognized early on to be of use in digital hologra-
phy, since several algorithms that keep only the relevant frequency
information (+1 order) and discard the rest via a bandpass filtering
procedure have been proposed. Their implementation can be carried
out in either the spatial [106, 133] or frequency domain [38]. All these
filtering procedures are linear. However, since they limit the spectral
content of the image to reconstruct, details are lost. Moreover, since
such filtering procedures are nonlocal, the whole field of view is af-
fected.

Interestingly, property (3.3) implies that the diffracted-wave’s spec-
trum at any distance from the hologram remains unchanged (see Fig.
3.1). This means, that the filtering may be equivalently performed at
any distance.

3.3 Fresnelets

Fresnelet bases are wavelet bases that have undergone a Fresnel trans-
form. We focus on Fresnelets associated with B-spline wavelets, since
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+1 0 -1

Image plane

d

Hologram plane

Fig. 3.2. Support broadening of the wave diffracted by an off-axis Fresnel holo-
gram.

their expression may be derived in both frequency and space [127].
They have many desirable properties required for the digital process-
ing of holograms: for example, they tend to be optimal with respect
to the spatial energy spreading as they can be shown to converge to
Gabor functions [127]. The construction is based on the definition of
the Fresnel spline, or F-spline of degree n ∈ N and parameter τ ∈ R+,
denoted β̃n

τ (x), that is the Fresnel transform with parameter τ of a B-
spline βn(x) of degree n

β̃n
τ (x) = (βn ∗kτ)(x).

The generating functions are then constructed as linear combinations
of F-splines

ψ̃n
τ/2

(x

2

)
=∑

k
g (k)β̃n

τ (x −k)

and are entirely specified from the sequence g (k). They correspond
to the general family of semi-orthogonal spline wavelets of the form

ψn
(x

2

)
=∑

k
g (k)βn(x −k). (3.7)

The transformed basis functions are shift-invariant on a level-by-level
basis but their multiresolution properties are governed by the special
form that the dilation operator takes in the Fresnel domain. In our
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case, given that the wavelength is fixed, the parameter τ =p
λd only

depends on the depth d of the propagation. For each depth there is
an associated basis.

From now on, we only consider orthonormal Fresnelet bases of
L2(R2), denoted

{
ψ̃n
τ, j ,m,p

}
j∈Z,m∈Z2,p=1,2,3

, ψ̃n
τ, j ,m,p(x) = 1p

2 j
ψ̃n
τ/2 j ,p

( x

2 j
−m

)
. (3.8)

These may be constructed for example from the separable orthonor-
mal wavelet basis of L2(R2){

ψn
j ,m,1(x),ψn

j ,m,2(x),ψn
j ,m,3(x)

}
j∈Z,m∈Z2

(3.9)

where the two-dimensional wavelets

ψn
j ,m,p(x) = 1

2 j
ψn

p

( x

2 j
−m

)
(3.10)

are separable products of the Battle-Lemarié scaling function φn(x)
and wavelet ψn(x) of degree n [8, 124]:

ψn
1 (x) =φn(x)ψn(y),ψn

2 (x) =ψn(x)φn(y),ψn
3 (x) =ψn(x)ψn(y).

(3.11)
We introduce the condensed notation k = (p, j ,m) ∈ {1,2,3}×Z×Z2

For a given setup, a single set of coefficients may be used to gen-
erate the diffracted wave at any depth, simply by replacing the basis
functions in the expansion

f̃τ(x) =∑
k

ckψ̃
n
τ,k(x) (3.12)

with those associated to a different depth. In our case, the diffract-
ing wave in the hologram plane is given by I(x), the coefficients are
obtained by computing the inner products

ck = 〈I ,ψ̃n
τ,k〉. (3.13)

3.4 Algorithm

We now propose an algorithm that selectively suppresses the Fres-
nelet coefficients in order to keep only coefficient whose energy is
mainly related to the + 1 order. It is a fully automatic two-step pro-
cess. First, we suppress the zero-order and second, the −1 order.

06
4

-
3.

NO
NL

IN
EA

R
FR

ES
NE

LE
T

AP
PR

OX
IM

AT
IO

NS

0001000000



j=1j=5 j=4 j=3 j=2

w
k

w
k

p

Fig. 3.3. Schematic representation of the hierarchical thresholding algorithm.

Zero-order term suppression

The first step consists in the computation of the hologram’s Fresnelets
coefficients (3.13), where the parameter τ = p

λd must be adjusted
properly. This not only yields a decomposition of the information
in several frequency bands, but also in terms of their spatial distri-
bution within the frequency bands. The energy that is associated to
the (unmodulated) zero-order is mainly concentrated at low frequen-
cies. The algorithm proceeds from coarse to fine: a threshold value t j

is associated to every frequency band j . The parent coefficient of ck

is denoted cpk (Fig. 3.3). The new coefficients c ′k are computed at the
coarsest scale j = J as

c ′k =
{

ck if |ck| < tJ

0 if |ck| ≥ tJ
(3.14)

and for the finer scales j < J

c ′k =
{

ck if |ck| < t j

0 if |ck| ≥ t j and |cpk | ≥ t j+1.
(3.15)

Unlike denoising algorithms that set low energy coefficients to zero,
our method eliminates high energy coefficients. The test on the par-
ent coefficient ensures that high frequency coefficients are only re-
moved in regions that are corrupted by the zero-order. The signal
is reconstructed with Fresnelets of parameter τ = 0 which yield a re-
construction with the real image (+1 order) at proper focus and the
zero-order suppressed.
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(a) (b)

Fig. 3.4. (a) Amplitude of test target. (256×256 pixels, T = 10µm, d = 0.25m, λ =
632.8nm) (b) simulated hologram

Minus 1 order term suppression

Since in the Fresnelet domain, information located around a partic-
ular frequency cannot be distinguished from that lying around the
opposite sign frequency, and since the +1 and −1 order are indeed
located at opposite frequencies, a second step is required to suppress
the −1 order. We start by a pointwise multiplication of the wave ob-
tained in the first step, with a digital wave of the form

R∗(x) = exp
(−i (kx x +ky y)

)
,

the complex conjugate of the reference wave. This modulation shifts
the frequencies such that the−1 order is located around the frequency
origin. We then apply a Fresnelet transform with parameter τ= 0 be-
fore going through the same thresholding scheme as in the first step,
but with new thresholding values. After inverse transforming the coef-
ficients and (de)modulating the result using a digital wave of the form
R′(x) = exp

(
2i (kx x + ky y)

)
, we obtain a reconstruction that is free of

interference terms.

3.5 Results

A hologram was obtained by simulating the propagation of the wave
reflected by a test target using a procedure described in Subsection
2.6.1 (See also [127]). We have chosen the following values for the
various parameters: T = 10µm (camera’s sampling step), d = 0.25 m
(object-camera distance), λ= 632.8 nm (light wavelength). The angle
between the reference wave vector and the normal to the CCD plane
was set to 0.45◦. The reference wave’s intensity profile is Gaussian.
The test target and the simulated hologram are shown in Fig. 3.4.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.5. Reconstructed amplitude: (a) without filter, (b) with frequency filter, (c) with wavelet threshold.
(d), (e), (f) detail images.

In Fig. 3.5(a), we show the wave diffracted by the hologram in the
image plane without any interference-term suppression scheme ap-
plied. The field of view is limited because of the zero-order overlap.
A filtering scheme that keeps only a circular frequency band around
the +1 order term was used to obtain Fig. 3.5(b). Finally, in Fig. 3.5(c),
we show the reconstruction with the proposed algorithm. High fre-
quency features are well preserved in regions where the zero-order
does not overlap, such as the bars in the upper right. By contrast, the
same bars are completely blurred in the bandpass filtering approach.
The two approaches behave similarly in regions were the zero-order
overlaps. Hence, the wavelet-based approach only removes high fre-
quency information in regions already corrupted by the zero-order
but keeps it intact in other regions.

3.6 Conclusion

We have proposed a zero and −1 order term suppression algorithm
for digital hologram reconstruction. It takes advantage of the informa-
tion distribution of the different diffraction terms in both frequency
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and space. This is made possible by the use of the Fresnelet transform
which has the ability to separate the information in the hologram ac-
cordingly. Unlike algorithms that are based on a bandpass filtering of
the hologram, high frequency features that would normally get lost
over the whole field of view are only suppressed where necessary.
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Chapter 4

Complex-Wave Retrieval From a
Single Off-Axis Hologram

Abstracta— We present a new digital two-step reconstruction method for off-axis holograms
recorded on a CCD camera. First, we retrieve the complex object wave in the acquisition plane
from the hologram’s samples. In a second step, if required, we propagate the wave front by using
a digital Fresnel transform to achieve proper focus. This algorithm is sufficiently general to be
applied to sophisticated optical setups that include a microscope objective. We characterize
and evaluate the algorithm by using simulated data sets and demonstrate its applicability to
real-world experimental conditions by reconstructing optically acquired holograms.

aThis chapter is based on Ref. [129]. We thank one of the latter paper’s anonymous reviewers for pro-
viding many relevant pointers to the phase-shifting literature.

4.1 Introduction

So far, most methods that aimed at retrieving the complex wave from
the hologram were directly inspired by the optical reconstruction pro-
cess: The chemically processed photographic plate (the hologram) is
illuminated, and the image (respectively the virtual image) is gener-
ated by the diffracted wave. The translation of this physical process
into a numerical algorithm is nearly literal. Simulating the diffraction
process boils down to computing the propagation of a complex wave,
which can be done using several approximations [108]. The hologram
may also be multiplied by an appropriate digital counterpart of a ref-
erence wave beforehand or afterward to retrieve the proper phase [36].

The most blatant disadvantage of approaches that imitate the
physical process is that the reconstructed image is severely corrupted
by interference terms: the zero-order and the out-of-focus twin-
image. While several techniques have been proposed for removing
them [38, 106, 133], the presence of these terms still remains a deter-
mining factor that limits the quality of the reconstructed image, or at
least the field of view. The present approach overcomes this disad-
vantage by intrinsically removing the zero-order and the twin-image
terms without the need for any pre- or post-processing.

The method we put forward has two steps. First, we estimate the
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Fig. 4.1. Schematic view of the off-axis geometry.

amplitude and phase in the acquisition plane by applying a new al-
gorithm that retrieves the complex wave in the CCD plane from the
real-valued measurements. The key idea is to perform a nonlinear
change of variables, so that the reconstruction may be performed by
use of a method that is reminiscent of phase-shifting techniques. The
algorithm is based on a local least-squares estimation of the ampli-
tude and phase by assuming an a priori model of the reference wave’s
phase. Once the complex object wave is recovered in the acquisition
plane, we (back)propagate the wave (which contains neither zero-
order nor twin-image terms) to restore a focused image using a digital
implementation of the Fresnel transform. This chapter concentrates
on the first step, that is, the phase retrieval from a single interfero-
gram in several configurations that fulfill the appropriate hypotheses.

We consider digital holograms acquired in an off-axis geometry
(see Fig. 4.1), which permit complex wave front retrieval from one sin-
gle, two-dimensional, real-valued intensity image.

This chapter is organized as follows: In Section 4.2, we briefly
review existing methods for digital, off-axis holography reconstruc-
tion and, more generally, related algorithms in interferometry. In
Section 4.3, we present the phase retrieval algorithm, specifically tar-
geted to the application at hand. In Section 4.4, we present some
experimental examples and validations of the technique using both
synthetic (simulated) and true measurement data.

4.2 Review of Existing Algorithms

Before presenting our method, we briefly review the most widely used
techniques for reconstructing digital holograms, as well as a large
body of related work in interferometry.
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Fourier Transform

Fresnel Transform

Hologram

Zero-order

Zero-order

Image

Image

Twin-image

Twin-image

(-k /(2p)ld,-k /(2p)ld)x y

(k /(2p)ld,k /(2p)ld)x y

(-k /(2p),-k /(2p))x y

(k /(2p),k /(2p))x y

(0,0)

(0,0)

Fig. 4.2. Information separation of the interferogram using the Fourier, respec-
tively Fresnel transform.

4.2.1 Standard (Linear) Reconstruction Techniques

The hologram originates from the interference between an object and
a reference wave:

I(x) = |R(x)+Ψ(x)|2
= |R(x)|2 +|Ψ(x)|2︸ ︷︷ ︸

zero-order

+R∗(x)Ψ(x)+Ψ∗(x)R(x), (4.1)

where R(x) is the reference wave and Ψ(x) the object wave evaluated
in the acquisition plane. The first two intensity contributions in Eq.
(4.1) are known as the zero-order term, while the third and fourth are
the image and twin-image terms, respectively. These terms are super-
imposed in the hologram space, the plane in which the acquisition
was made. When the hologram is acquired in an off-axis geometry,
{that is, R(x) = exp[i (kx x + ky y)] where kλ = (kx , ky , kz) is the wave
vector}, they can be separated either by taking the hologram’s Fourier
transform or its Fresnel transform (see Fig. 4.2).

This is simply because the three terms are separated in the Fourier
domain: the zero-order term is located around the origin, while the
image and twin-image are centered on (−kx/(2π),−ky /(2π)) (image)
and (kx/(2π), ky /(2π)) (twin-image), respectively. Alternatively, after
application of a Fresnel transform with distance d and wavelength λ,
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the three terms will be located at respective positions:

(0,0) (zero order),(−kx/(2π)λd,−ky /(2π)λd
)

(image),

and
(
kx/(2π)λd, ky /(2π)λd

)
(virtual image).

The most popular reconstruction methods for digital holograms are
in essence linear techniques: They filter out the useless information
(twin-image, zero-order) and keep the image information [36, 103,
104]. Instead of first transforming the hologram to another domain
(Fourier domain or diffracted plane), the filtering operation can also
be performed in the spatial domain by convolving the hologram with
a suitable complex-valued function [216]. The frequency responses
of the filters in both cases are similar.

4.2.2 Other Related Techniques

The first part of the method that we are proposing for digital hologra-
phy consists of the demodulation of a fringe pattern, a general prob-
lem for which a wide variety of algorithms have been devised. One
of the most popular, the Fourier transform technique [137, 202], is es-
sentially a linear technique that selectively filters the relevant infor-
mation in the Fourier domain. In fact, it is formally equivalent to the
way recent zero-order and twin-image-removal algorithms for digital
holography operate. Many variants have been proposed to overcome
some limitations and to optimize the technique [18, 103, 158, 180].
Similar results have been achieved by using equivalent spatial con-
volution filters [104, 216].

Alternatively, there exist various methods that may be regarded as
the spatial counterparts of temporal phase-shifting methods [74,105].
The latter require several interferograms to be recorded, each corre-
sponding to a particular shift of the reference’s phase; the phase es-
timation is done at each pixel using the pixels at the same location
in the other interferograms. In contrast, spatial phase-shifting algo-
rithms [88, 110, 111, 137, 147, 175, 224] use the neighboring pixels (on
the same line) of a single interferogram to carry out the estimations.
The phase to retrieve is assumed to vary slowly and the carrier fre-
quency to be constant. The general method has been improved in
many ways, for example to compensate for nonideal acquisition de-
vices and conditions [21, 25, 35, 153, 184, 187, 223].

A number of spatial demodulation algorithms have been pro-
posed that are able to demodulate interferograms with closed fringes
[115, 141, 142, 188, 229]. Thus, they might also form the basis of a two-
step procedure to reconstruct digital off-axis holograms acquired in
the presence of a microscope lens, since such general setups possibly
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yield closed fringes. They would, however, require some adaptation
to our problem, a strategy that we are not pursuing here.

Finally, a general approach for reconstructing digital holograms
that inherently takes into account the statistical nature of the mea-
sured data [196, 197] may also be adapted to reconstruct our type of
data.

4.3 Proposed Complex-Wave Retrieval Algo-
rithm

Our approach to reconstructing digital holograms is decomposed
into two distinct and independent parts. Starting from the digitally
acquired interferogram, these are:

1. Reconstruction of the object wave’s amplitude and phase in the
acquisition plane by using an algorithm that is reminiscent of
phase-shifting methods in interferometry.

2. Numerical propagation of the reconstructed wave front to at-
tain proper focus in the image plane.

Here, we focus mainly on the first step. The second step, if required,
can be implemented efficiently by use of a Fresnel propagation algo-
rithm; for example, a procedure based on the Fresnelet transform (see
Chapter 2 or Ref. [127]). From now on, we restrict ourselves to optical
setups with an off-axis geometry. An illustration of such an arrange-
ment is given in Fig. 4.1. We shall discuss the requirements of our
method in more detail in what follows, but we can already state that
they are no more demanding than those required by digital-hologram-
reconstruction algorithms mentioned earlier [36, 108]. The main ad-
vantages of treating the two problems independently are as follows:
(1) the approach provides more flexibility for the treatment of bound-
ary conditions, (2) there are fewer parameters to set simultaneously
(decoupling effect), and (3) the zero-order and twin-image terms are
implicitly suppressed—they simply do not arise because the process
does not involve simulating a wave’s diffraction by the hologram.

4.3.1 Complex-Wave Retrieval Algorithm

The methodology that we follow, requires a precise description of
the reference wave’s phase in the form of a parametric mathemati-
cal model. The simplest example is that of a plane reference wave.
We will, however, consider a more general model for the reference
wave that is also suitable for the more sophisticated optical setups
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Fig. 4.3. Schematic hologram with a grid denoting the pixels’ centers.

that are encountered in microscopy (Subsection 4.4.2). Both the mea-
surement and the calibration may be done within a single acquisition
frame provided that there are regions where the object wave is con-
stant. These regions are used for the second purpose.

The key idea of our algorithm is that we consider the measured
quantity I(x), the intensity of the hologram, and θ(x), the phase of
the reference wave in the hologram plane R(x) = A(x)exp[iθ(x)], to
vary much more rapidly with x than the unknown quantities Ψ(x) ∈C,
the complex wave to retrieve, and A(x) ∈ R∗+, the amplitude of the
reference wave. Although modeling the reference wave’s phase has
proved to be very effective, doing the same for its amplitude A(x) is
much more problematic because of the latter’s highly unpredictable
changes observed when repeating the experiment over longer time
periods (real-time imaging). For this reason we consider it an un-
known.

We regard Ψ(x) and A(x) to be constant (lowest order approxima-
tion) within the neighborhood of a given point of interest x. We shall
discuss the requirements for this condition in more detail in Subsec-
tion 4.3.3. With this hypothesis, determining the phase and ampli-
tude of Ψ(x) together with A(x) is equivalent to solving at each loca-
tion x the following set of M nonlinear equations:

I(x+xm) = ∣∣Ψ(x)+ A(x)exp[iθ(x+xm)]
∣∣2 , (4.2)

where the x+xm (m = 1, . . . ,M) are the positions of the M pixels within
the considered neighborhood of x (see Fig. 4.3). We further simplify
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Fig. 4.4. Weights computed from the tensor product of two cubic B-splines and a
window size LW = 9, M = 81.

the notation by assigning an index m to a variable at position x+xm :

Im = |Ψ+ A exp(iθm)|2
= |Ψ|2 + A2 +2ℜ(R∗

mΨ). (4.3)

We propose to retrieve the unknown parameters by solving the above
nonlinear set of equations in the least-squares sense [69], i.e.,

arg min
A∈R∗+,Ψ∈C

∑
m

wm
∣∣Im − [|Ψ|2 + A2 +2ℜ(R∗

mΨ)]
∣∣2

. (4.4)

The nonnegative weights wm ensure that the intensities that are far
away from the point of interest account for less than those that are in
its close vicinity, and allow us to be consistent with the hypothesis of a
(nearly) constant Ψ and A. For brevity, they are normalized such that∑

m wm = 1. In practice, we may use a simple indicator function or
use weights that correspond to a smooth function, typically, a tensor
product of B-splines of degree n (e.g. n = 3). This is a separable, bell-
shaped, Gaussian-like function that is nearly isotropic and has a finite
support [213]. The weighting function can be written as

w(k, l) =βn(k/s)βn(l/s),

with s = (LW −1)/(n +1), (4.5)

and with −(LW −1)/2 ≤ k, l ≤ (LW −1)/2, where LW is the side-width of
the window and whereβn(x) denotes the central B-spline of degree n.
An illustration of such a weighting window, for a B-spline of degree 3
(cubic B-spline) and a window of size L2

W = 92 = M is given in Fig. 4.4.
Other forms of windows may be used (Hanning, etc.) but the B-spline
offers computational advantages in that there exist fast convolution
algorithms (either waveletlike or based on iterated moving averages)
with a complexity that does not depend on the window’s size [210].
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We introduce the auxiliary variables Z ∈C and U ∈R+ defined by

Ψ= Z /A, (4.6)

U = |Z |2/A2 + A2. (4.7)

If we now define the normalized reference wave Vm ∈ {z|z ∈C, |z| = 1}
by Vm = R∗

m/A = exp(−iθm) and make the appropriate substitutions,
the nonlinear problem (4.4) becomes

argmin
U ,Z

∑
m

wm |Im −U −2ℜ(VmZ )|2, (4.8)

which may be solved by use of a linear method. The original variables
Ψ and A are restored by the following (nonlinear) operations

Ψ= Z /A (4.9)

A± =+
(

U ±
√

U2 −4|Z |2
2

)1/2

. (4.10)

Note that these equations are well-defined and consistent with the
hypothesis A ∈ R∗+ since U2 ≥ U2 − 4|Z |2 = (|Z |2/A2 − A2)2 ≥ 0. Fur-
thermore, if we make the assumption that |Ψ| < A, i.e., that the object
wave’s amplitude is smaller than the reference wave’s (which is exper-
imentally advisable to yield highly contrasted fringes), there is only
one possible solution for A. The fact that A− ≤ A+ and the Viète rela-
tion for the roots of Eq. (4.7), A2−A2+ = |Z |2, imply that A2− ≤ |Z | ≤ A2+.
Thus, A− ≤ |Ψ|, which rules this case out as an acceptable solution.

The problem now boils down to finding values of U and Z that
satisfy Eq. (4.8). These must be the solutions of the normal equations:∑

m
wm[Im −U −2ℜ(VmZ )] = 0,∑

m
wmVm[Im −U −2ℜ(VmZ )] = 0,∑

m
wmV ∗

m[Im −U −2ℜ(VmZ )] = 0, (4.11)

which are obtained by differentiating relation (4.8) with respect to U
(which is real), Z , and Z∗ (since Z is complex). If we rearrange the
terms, we get

∑
m

wmIm =U +2ℜ
(
Z

∑
m

wmVm

)
,∑

m
wmVmIm =U

∑
m

wmVm +Z
∑
m

wmV 2
m +Z∗,∑

m
wmV ∗

mIm =U
∑
m

wmV ∗
m +Z +Z∗∑

m
wmV ∗2

m . (4.12)
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Finally, by setting α=∑
m wmVm and β=∑

m wmV 2
m , we end up with

a set of three linear equations to solve at every location: 1 α α∗

α β 1
α∗ 1 β∗

 U
Z
Z∗

=
 ∑

m wmIm∑
m wmVmIm∑
m wmV ∗

mIm

 . (4.13)

4.3.2 Relation to Phase-Shifting Methods

We now briefly discuss similarities and differences between the pro-
posed algorithm and related methods in interferometry. A central
contribution of this chapter is the change of variables of Eqs. (4.6)
and (4.7) that transforms the nonlinear holography problem (4.4) into
a form that may be solved with a linear algorithm. In particular, this
step may be inverted uniquely, provided that the amplitude of the ref-
erence wave is greater than that of the object wave. Once the change
of variables is performed, the remaining mathematics is essentially
the same as for phase-shifting algorithms: For specific choices of the
reference wave (for example, a plane wave whose wave vector is hori-
zontal) and a suitable one-dimensional weighting function, the linear
part of our formulation is equivalent to previously proposed spatial
phase-shifting algorithms [35, 111, 137, 147, 184, 224]. One notable
difference, however, is that we consider a two-dimensional spatial
weighting function that lets us be much less restrictive regarding the
choice of the reference wave’s form (plane, parabolic, etc.) and orien-
tation. This point is essential, since we need to deal with non-planar
reference waves in the case of microscopy. From a methodological
point of view, problem (4.4) may also be seen as the spatial coun-
terpart of the generalized (temporal) phase-shifting algorithm of Lai
and Yatagai [113]. The analogy, however, is only formal since tem-
poral phase-shifting requires several interferograms to be measured.
Our method does not include all ad hoc developments that have been
proposed to optimize both temporal and spatial phase-shifting tech-
niques [82, 171, 176, 201], except for the use of a weighting function,
which has been found to have beneficial effects, albeit only in the one-
dimensional case [184, 224].

We now have to investigate the appropriateness of the hypothesis
of a constant phase in the vicinity of a point. This should enable us to
set the right width of the weighting function (respectively the size of
the neighborhood window) to consider.

4.3.3 Sampling Considerations

The achievable resolution for holographic reconstruction is dictated
mainly by two parameters: the spatial frequency of the reference
wave (which influences the fringe spacing) and the sampling step of
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the digital acquisition system (CCD). The bounds for the minimal
sampling steps can be deduced from the Shannon–Whittaker sam-
pling theory. A thorough treatment of the sampling of digital holo-
grams, including aspects related to the non-ideal sampling by the
CCD can be found in the literature [107, 161]. There are also closely
related discussions more specific to spatial [21, 35, 166] and tempo-
ral [82] phase shifting.

In the simplest case of an interference pattern measured in a
plane and involving two plane waves, it is the angle that the refer-
ence wave’s wave vector makes with the object wave’s that specifies
the spacing of the fringes. As a simple illustration we consider a plane
reference wave given by

R(x, z) = exp[i (kx x +ky y +kz z)], (4.14)

whose interference with an object wave that is also a plane wave trav-
eling perpendicularly to the acquisition device plane (z = 0), [that is,
O(x, z) = exp(i kz), k = (kx + ky + kz)1/2] leads to a hologram of the
form I(x,0) = |R(x,0)+O(x,0)|2 = 2+2cos(kx x+ky y) (see Fig. 4.1). Let
T be the sampling step of the CCD. To achieve alias-free sampling of
the interference pattern, one must have

kx <π/T, ky <π/T. (4.15)

The maximal incidence angle θmax is defined when kx = ky = π/T , in
which case

sin(θmax) =
(k2

x +k2
y )1/2

2π/λ
≤ λp

2T
. (4.16)

Thus, decreasing the incidence angle ensures that the conditions for
proper sampling are met. On the other hand, working with a low
carrier frequency results in the expected resolution dropping. By ex-
perimenting with our algorithm, we have found that it works well
if the window covers at least one period of the interference pattern.
Depending on the form of the window (simple indicator function or
more sophisticated weighting function), and in the case of the most
rapidly varying fringes (critical sampling), the window should be at
least 3× 3 (respectively 7× 7 in the case of a cubic B-spline). If the
window size is taken too small, the linear system becomes unstable.
On the other hand, taking too large a window has the consequences
of increasing the computation time and decreasing the resolution of
the retrieved phase.

4.3.4 Variable-Window-Size Algorithm

So far, we have considered the weighting window to be the same for
all positions at which we want to retrieve the phase, but this is not a
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requirement. If the reference is not a plane wave, or if the setup in-
volves a lens, the fringes may have a different spacing depending on
the x position; i.e., the local carrier frequency is variable. How does
one choose an optimal window size in this case? In light of the discus-
sion in Subsection 4.3.3, having the same window size for each posi-
tion is obviously not optimal. Therefore, if we have a model for the
reference wave, it makes good sense to tune and adapt the window
size to it. Practically, we define a table containing the width of the
weighting function to consider at each position. This table can typi-
cally be designed on the basis of the reference wave’s model. Since
the weighting function may have to be evaluated at every location,
another reason for the choice of the B-spline is that, because it is a
polynomial, its computation is reasonably fast.

4.3.5 Computational Complexity

To compute the amplitude and phase for N pixels, the presented algo-
rithm requires O (M̃N) = O (N) operations where N is the number of
retrieved phase points and M̃ is the average number of points covered
by the window function at a given location.

The linear complexity of the present algorithm makes it attrac-
tive for large image sizes. Furthermore, the fact that we do not rely
on a fast Fourier Transform (FFT)—which usually imposes periodic
boundary conditions—allows us to use more general boundary con-
ditions or to work on arbitrary regions of interest without further in-
creasing computation time. For instance, in our implementation, we
used mirror boundary conditions that give a more natural way of
extending the signal and have proved to be the extension of choice
in many other applications. We therefore get rid of artifacts that
are typically introduced by the periodic assumption. For the image
sizes we used (512×512), for a 7×7 window, and given that our imple-
mentation was designed to handle variable window sizes (and there-
fore does not take advantage of possible separability and convolution
properties [210]), the algorithm takes approximatively 0.51 s (respec-
tively 1.6 s in the B-spline-weighted case) whereas an FFT-based fil-
tering typically takes around 0.56 s (1.8 GHz PowerPC G5).

For the second part of our algorithm (i.e., propagation), which
usually involves the computation of FFTs, the number of operations
is O [N log(N)].
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(a)

(d)(c)

(b)

Fig. 4.5. (a) Simulated hologram (b) Original phase (c) Reconstructed phase (d)
Reconstructed phase with weighted algorithm.

4.4 Results

4.4.1 Phase-Retrieval Simulation

This first experiment consists of a simple interference simulation to
test the first part of our algorithm (i.e., phase retrieval). The starting
point is a test target (respectively a complex test wave) in the CCD
plane. The modulus of the complex object wave is constant over the
whole plane of interest while the phase follows a sinusoidal pattern
depending on the polar angle. The phase varies between −π/5 and
π/5. The thus-defined spoke target is shown in Fig. 4.5(b). To sim-
ulate the hologram, we create the interference by adding a complex
reference wave. The latter wave is a plane wave that makes an an-
gle of θ = 1.224◦ with the acquisition plane. It has a slowly varying
Gaussian-shaped amplitude that is typical of experimental illumina-
tion sources. The hologram is shown in Fig. 4.5(a). The sampling step
was chosen to be T = 10 µm (typical sampling step of commercial
CCD cameras) andλ= 632.8 nm the wavelength (He-Ne laser). The re-
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sulting fringe’s k-vector (that defines the fringe’s frequency and orien-
tation) is K = (1.5,1.5), resulting in a fringe period Λ= 2π/‖K‖ ≈ 3 pix-
els. We are now aiming at reconstructing the complex test wave from
the simulated interference pattern. To reconstruct the image we used
a window size of 7×7 pixels at every point with either a simple indi-
cator function or a cubic B-spline with support of 7× 7 pixels. The
reconstructed phase is given in Figs. 4.5(c) and (d), respectively. As ex-
pected, the resolution is limited by the respective width of the weight-
ing functions, which is smaller for the cubic B-spline than for the in-
dicator function. This can be verified by examining the center of the
reconstructed phase in Fig. 4.5(c), where the algorithm fails to recon-
struct the high spatial frequency. In Fig. 4.5(d) we can see that much
better results are achieved by using the cubic B-spline weighted algo-
rithm. The support of the weighting functions and hence the compu-
tational complexity is, however, the same in both cases.

4.4.2 Phase Retrieval for Setups Containing a Lens

We now consider the image of an object wave that has traveled
through a lens:

ΨI (x) =Ψ
( x

−M

)
exp

(
iπ

‖x‖2

Mλ f

)
, (4.17)

where M is the magnification1, f the focal length of the lens, and λ

the wavelength. It is a magnified version of the object wave Ψ(x) mul-
tiplied by a quadratic phase term. Note that, for the sake of simplicity,
we have chosen to consider an infinite-aperture lens.

We considered a wavelength λ = 632.8 nm and a lens curvature
π/(Mλ f ) = 0.333 × 108 m−2. The reference wave makes an angle
θ = 0.6529◦ with the optical axis. We are interested in recovering
Ψ(x/M ) through the samples of this function. Thus we place in the
image plane, perpendicular to the optical axis, a CCD whose size is
500× 500 pixels with a sampling step of T = 10 µm. The measured
hologram in the image plane is given by

I(x) =
∣∣∣∣A(x)exp[i (kx x +ky y)]+Ψ

( x

−M

)
exp

(
iπ

‖x‖2

Mλ f

)∣∣∣∣2

, (4.18)

with A(x) ∈R∗+. This expression can be written equivalently as

I(x) =
∣∣∣∣A(x)exp

[
i

(
1

D
‖x−xc‖2 +C

)
+Ψ

( x

−M

)]∣∣∣∣2

, (4.19)

1M = dI /dO > 0, where dO is the distance between the object and the lens, and
dI the distance between the lens and the image plane.
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Fig. 4.6. (a) Simulated hologram. (b) Window width table visualization; maximum width: 80 pixels (white
regions), minimum width: 7 pixels (black regions) (c) Weighted hologram. (d) Test wave’s phase. In black
regions it equals π/30, in bright regions 2π/30. (e) Reconstructed phase. (f) Difference image. Black is 0,
white is 3π/30.

where xc = (xc , yc ) ∈ R2, C ∈ R, and D ∈ R∗, and it can be interpreted
as the interference of the complex wave Ψ with a non-planar wave. It
is thus sufficient to adjust the parameters D, xc , and yc appropriately
to specify our model. In real-world experiments, we determine them
by a simple procedure based on a standard one-dimensional signal
demodulation technique. We select a horizontal line segment from
the measured hologram where the object wave’s phase is assumed to
be constant and where the measured intensity is therefore given by
I(x) = a(x) + b(x)cos[(x − xc )2/Dx +C ′]. The offset a(x) is removed
by low-pass filtering. We then compute the corresponding analytic
signal using Matlab’s HILBERT function [193]. The principal value of
this signal is then unwrapped and fitted to a quadratic function yield-
ing parameters Dx and xc . The procedure is repeated with a vertical
line segment, yielding Dy and yc . For an astigmatism-free system
Dx = Dy = D. Further adjustments that may be necessary are cur-
rently done manually. In case the parameters are not set correctly,
our algorithm is still operational but the phase difference between the
true and the modeled wave will be added to the returned phase. One
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may consider other parametric models for the reference wave [140]
but the procedure described above is limited to those that are separa-
ble.

Our aim in this experiment was to reconstruct a “gold standard”
wave front Ψ(x/M ) that has a constant intensity and whose phase is
either π/30 or 2π/30 according to a United States Air Force 1951 test
target pattern. The phase is reproduced in Fig. 4.6(d). The reference
wave is a plane wave with a constant amplitude that we set 10 times
higher than that of the object wave. The resulting hologram is given in
Fig. 4.6(a). The hologram consists of concentric fringes whose spac-
ing varies in a quadratic way. We applied the variable-window-size
algorithm to recover the phase. We have defined a matrix containing
for each pixel of the measured hologram the size of the window to con-
sider in order to retrieve the phase at that particular point. The max-
imum window size was set to LW = 80 and the minimum to LW = 7
as illustrated in Fig. 4.6(b). The side-width LW of the window was de-
fined as the local fringe period computed using:

LW (x, y) =


LW if K (x, y) > 2π/LW

LW if K (x, y) < 2π/LW ,

2π/K (x, y) otherwise,

where K (x, y) = ‖K(x, y)‖ = ‖(x/D +2xc /D, y/D +2yc /D)‖ is the norm
of the local fringe k-vector. Note that we kept the minimum to be 7
pixels even though the minimal local fringe period is Λ ≈ 3.5 pixels.
This ensured a stable algorithm. The windows themselves were taken
to be B-splines of degree 3. In Fig. 4.6(c) we show the hologram for
which the pixels in the neighborhood of several locations [square re-
gions shown in Fig. 4.6(b)] have been weighted. The reconstructed
phase is given in Fig. 4.6(e) and the difference image between the
original and reconstructed image in Fig. 4.6(f). We can clearly see in
Fig. 4.6(e) that the whole field of view is available and not perturbed
by any interference terms whatsoever. As we have a variable win-
dow size, the resolution is variable too. At places where the window
size is large the resolution is low: The digit 2 is not recognizable any-
more. On the other hand, in regions where the spatial modulation
frequency is too high, the under-sampling introduces artifacts (see
Group 2, element 6). Spatial frequencies of up to 32 lines per mm
are resolved (Group 5, element 1) with a sampling step of the inter-
ferogram T = 10µm (50 lines per mm). When we use windows with
a variable width, our reconstruction time is much more substantial
(6.9 s on a 1.8 GHz PowerPC G5 computer) but we believe that it can
be decreased by using waveletlike techniques.
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Fig. 4.7. Phase aberration compensation and phase retrieval in the case of a mi-
croscopy setup. The CCD is not in the image plane.

4.4.3 Experimental Digital Holographic Microscopy

In this experiment, we have applied our method to measurements
that were performed by Cuche et al. with a digital holographic micro-
scope setup [37]. The specimen (a USAF test target) is illuminated by
a plane wave and the reflected light is collected by a microscope ob-
jective. The CCD camera records the interference of this object wave
with a reference plane wave in an off-axis geometry. The CCD is in
front of the image plane at a distance d (Fig. 4.7). This implies that
the complex wave that we will recover in the camera plane will be out-
of-focus and require a propagation step to yield the desired image of
the specimen, as is the case for lens-less Fresnel holography.

In the vicinity of the object, we denote the reflected wavefront by
ψ(x). The complex wave in the image plane is a magnified version of
the object multiplied by a quadratic phase

ψI (x) =ψ
( x

−M

)
exp

(
iπ

‖x‖2

Mλ f

)
(4.20)

Again, we have considered a lens of infinite aperture as our starting
model. The expression of the complex wave in the CCD plane can be
given by back-propagating Eq. (4.20) by use of the definition of the
Fresnel transform

ψ̃(x) =R(−d)

{
ψ

( ·
−M

)
exp

(
iπ

‖·‖2

Mλ f

)}
(x) (4.21)

=Ψ(x)exp

(
i
‖x‖2

D

)
,

Ψ(x) =R(−d ′)

{
ψ

( ·
−M ′′

)}
(x), (4.22)
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where

d ′ = d − d2

M f
, (4.23)

D = λ(M f −d)

π
, (4.24)

M ′′ =M −d/ f . (4.25)

Equation (4.22) is a consequence of the Fresnel transform’s properties
[72].

Assuming a plane reference wave, the procedure to recover Ψ(x)
from I(x) is the one described in Subsection 4.4.2, as the intensity
measured by the CCD camera,

I(x) =
∣∣∣∣A(x)exp[i (kx x +ky y)]+Ψ(x)exp

(
i

1

D
‖x‖2

)∣∣∣∣2

(4.26)

has the same form as Eq. (4.18). Once Ψ is recovered, the last step is
its propagation up to the proper distance d ′ to yield

ψ
( x

−M ′′
)
=R(d ′){Ψ}(x) (4.27)

The parameters d ′, D, and kx , ky are adjusted numerically. In gen-
eral, these quantities cannot be obtained experimentally with the re-
quired level of accuracy. However, in the case of a reflection setup
for holographic microscopy, the phase distribution over a flat back-
ground area can be assumed to be constant and the reconstruction
parameters adjusted to match this constraint. The fringe period Λ

varies between 4 and 15 pixels and the window size was set accord-
ingly in our model with the minimum window size set to 7.

In Fig. 4.8(a) we show the hologram, i.e., I(x). Fig. 4.8(b) shows the
reconstructed amplitude (phase is not shown) in the CCD plane. The
amplitude and phase after applying the Fresnel transform to reach
proper focus is given in Figs. 4.8(c) and (d). In Figs. 4.8(e) and (f),
we show the reconstructions from the same data set obtained by us-
ing an alternative (linear) technique without any zero-order or twin-
image removal scheme. In the latter approach, the quadratic-phase
exponential induced by the objective is compensated numerically by
multiplying the diffracted wave by a numerical phase mask [37]. The
zero order is the bright square portion that masks the center of the
image. The image itself is on the upper left while the twin image is
located in the lower right. Only the image is in focus.

Remarkably, the reconstructions using the new approach are not
perturbed by the zero-order or twin-image terms. Furthermore, the
field of view is also larger.
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(b) (d)

(e)(c)(a)

(f)

1 mm
100 mm

Fig. 4.8. (a) Measured hologram (Data courtesy of E. Cuche, IOA, EPFL and P. Marquet, Université de
Lausanne), (b) Reconstructed amplitude in the CCD plane. Reconstructed amplitude (c), and phase (d),
with adjusted focus. Reconstructed amplitude (e) and phase (f) with an alternative technique [37]. All
images are 360×360 pixels. The phase images’ grayscale covers the range (−π,π].

4.5 Conclusion

We have presented a new approach for reconstructing complex waves
from a single digital hologram. The method works for holograms ac-
quired in an off-axis geometry. This experimental arrangement al-
lows for the three-dimensional information to be encoded in one sin-
gle interferogram, and therefore permits work at increased acquisi-
tion rates, which is required when investigating an object that under-
goes fast changes. Since very low intensities can be used, it is par-
ticularly indicated for the study of biological samples. The working
hypothesis for our procedure is that the object wave has slower local
variations (low-pass spectrum) than the reference wave, a condition
that tends to be met in a wide variety of applications. As the illumina-
tion amplitude often has a Gaussian amplitude, its spatial variation is
also sufficiently slow to fulfill the requirement for the reference wave’s
amplitude.

The advantages of our method over others that rely on FFTs for
the phase retrieval are manifold. Our algorithm has a linear complex-
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ity in the number of points where the amplitude and phase are to be
retrieved. Since it is a local algorithm, it offers much flexibility for
working in the spatial domain: variable window size, boundary con-
ditions, etc. Also, a local defect of quality in the measurement will not
deteriorate the quality of the whole reconstruction. The problem we
solve is nonlinear. We take advantage of the extra information pro-
vided by the zero order and the twin image, which is discarded in lin-
ear reconstruction methods. Since the core of our algorithm is linear,
the computation time remains reasonable.

To achieve reconstruction at optimal resolution in the case of a
non-planar reference wave or when microscope objectives are used,
we advise use of the variable-window-size algorithm. It ensures a
stable reconstruction over the whole field of view. In such circum-
stances, the size of the window should be adapted to the modulation
frequency. To obtain a stable reconstruction, we found that the equiv-
alent window size should be at least 3 pixels. We also recommend the
use of a tensor product of cubic B-spline window functions, which
are separable as well as nearly isotropic. Their finite support makes
them highly suitable for a numerical implementation.
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Chapter 5

Autofocus for Digital Fresnel
Holograms that Uses a
Fresnelet-Sparsity Criterion

Abstracta— We propose a robust autofocus method for reconstructing digital Fresnel holo-
grams. The numerical reconstruction involves simulating the propagation of a complex wave-
front to the appropriate distance. Since the latter value is difficult to determine manually, it is
desirable to rely on an automatic procedure for finding the optimal distance to achieve high
quality reconstructions. Our algorithm maximizes a sharpness metric related to the sparsity of
the signal’s expansion in distance-dependent waveletlike Fresnelet bases. We show results from
simulations and experimental situations that confirm its applicability.

aThis chapter is based on Ref. [130].

5.1 Introduction

The computerized reconstruction of complex-valued object waves
from Fresnel holograms [62] acquired electronically and digitized
[36, 37, 73, 103, 109, 185, 225] relies on the numerical computation of
wave propagation. A possible approach for a wide variety of setups is
to consider the free-space propagation formula in the Fresnel approx-
imation, which relates the complex values of a propagating complex
scalar wave measured in two planes perpendicular to the direction
of propagation and separated by a distance d (see Fig. 5.1). It is de-
fined [72] as

fd (x) =Rd { f }(x)

= exp(i kλd)

iλd

Ï
f (x′)exp

(
iπ

λd
‖x−x′‖2

)
dx′ (5.1)

where λ is the wavelength of the light, kλ = 2π/λ its wavenumber,
and x = (x, y). In a holography experiment, the interference of the
diffracted wave with a reference wave is recorded on a CCD and can
be written as

I(x) = | fd (x)+R(x)|2. (5.2)
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y

x

z
d

f (x)

f (x)
d

Fig. 5.1. Fresnel propagation

The reconstruction of the complex-valued wave f in the object’s vicin-
ity from one or several measurements of I may conveniently be ac-
complished in two steps: First, one reconstructs the wave fd in the
CCD-plane from I , for example by use of a parametric phase retrieval
procedure [129], and second, one computes f through an appropri-
ate discretization of Eq. (5.1). To perform the latter operation, the
distance parameter d in Eq. (5.1) must be set accurately. In Chapter
2, we have proposed a numerical multiresolution reconstruction im-
plementation for evaluating Eq. (5.1) based on a Fresnelet decompo-
sition (see also Ref. [127]). Here, we show how this procedure can also
be used advantageously to adjust the focusing parameter d in an accu-
rate, robust and fast manner. Our method is based on the maximiza-
tion of the sparsity of the Fresnelet representation, which appears to
be a natural choice in the light of the multiresolution, wavelet-trans-
formlike reconstruction method we have adopted.

This chapter is organized as follows. In Section 5.2, we list a num-
ber of possible approaches to autofocusing. In Section 5.3, we empha-
size the concept of sparse image representations, which is central to
our approach. In Section 5.4, we give the formal definition of distance-
dependent Fresnelet bases and of the Fresnelet-based propagation al-
gorithm. In Section 5.5, we introduce the autofocus algorithm and its
underlying sparsity measure. In Section 5.6, we illustrate and validate
the method using both synthetic (simulated) and true measurement
data.
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5.2 Existing Methods

5.2.1 Image Quality Functionals

Although our algorithm is specifically designed for the reconstruction
of complex Fresnel fields, it is in keeping with applications that aim at
synthesizing and acquiring images, as well as assessing their quality
through the evaluation (and eventually the determination of an ex-
tremum) of an image quality functional that depends on some imag-
ing parameter to be optimized—here, the distance. More specifically,
such procedures are used for providing feedback to acquisition de-
vices for automatically setting the distance and alignment between
their constituents as in optical imaging [48, 95], electronic micros-
copy [47] and holography [126] or for the optical reconstruction of
acoustic holograms [228]. They also appear in devices that actively
correct the incoming wavefront to overcome aberrations in astronom-
ical imaging [23,155] or microscopy [96]. Yet another use of such func-
tionals is image quality assessment of acquisition devices and dis-
plays [132]. They are central for local sharpness evaluation in the case
of image fusion and depth evaluation in images of three-dimensional
scenes [76, 86] as well as for determining particle location. They are
also instrumental for the estimation of unknown imaging parame-
ters for degraded image restoration [135], digital aberration correc-
tion and deconvolution, and for computerized image reconstruction
for various modalities, including coherent imaging [56, 57]. The au-
tomatic setting of the distance parameter for numerical reconstruc-
tion of complex wave fields from digitally acquired holograms (digital
holography) also falls into this last category [71].

The selection of a suitable image quality metric is usually an ad
hoc choice, driven by the imaging system’s characteristics. Insensitiv-
ity to specific conditions and invariance with respect to diverse trans-
forms [55,192] constitute another goal. The perfect functional should
be an unimodal function over a wide range of parameter values with
a low computational cost [75]. Also, defining sharpness in the first
place implies agreement on some a priori knowledge on the image to
reconstruct. Possible requirements might be to achieve images with
high contrast, sharp edges, or crisp details. Such criteria are highly
application-dependent and possibly difficult to apply in the presence
of noise.

5.2.2 Related Work

Gillespie et al. [71] have proposed to use the reconstructed image’s
self-entropy, for measuring the focus, albeit with quantized levels of
gray. Ferraro et al. [52] have recently proposed an autofocus algo-
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rithm for digital in-line holography that tracks the axial displacement
of the sample in real time by measuring the phase shift of the holo-
gram fringes. The use of an autofocus method has also been reported
by Hobson et al. [83] although they do not give details on its imple-
mentation.

We are aware of at least three occurrences of wavelets for focus es-
timation and/or holographic reconstruction, albeit unrelated to the
method we propose. Widjaja et al. [222] have proposed to improve
a focus measure based on the autocorrelation of an image whose
edges have been enhanced using a continuous wavelet transform.
Rooms et al. [181] estimate image blur by analyzing the sharpness
of its sharpest edges by evaluating the Lipschitz exponent based on
the analysis of the scalogram, obtained by a continuous wavelet trans-
form (CWT). Onural et al. [162] have proposed methods for hologram
reconstruction and space-depth analysis for the three-dimensional
determination of particle location by use of scaling-chirp functions.
Their formulation of the Fresnel diffraction formula makes it isomor-
phic to the continuous wavelet transform formulation, provided the
commonly-used admissibility condition is extended appropriately.

5.3 Sparse Image Representations

A standard approach in image processing and optics is to express
the signal of interest as a weighted sum of basis functions. Fourier,
Hermite-Gauss or wavelet bases are among the most popular can-
didates for such expansions. Although it is possible, in theory, to
express a finite energy signal in any of these bases, in practice, the
choice of one or the other is usually dictated by specific properties
of the basis functions. A family might be selected, for example, be-
cause it diagonalizes an operator that is relevant to the application at
hand (e.g. the Hermite-Gauss modes for fiber-optics problems). An-
other reason for choosing a specific basis is that it may yield a sparse
representation of the signal; i.e., most of the signal’s energy is packed
into a few coefficients only. Local Gabor representations, and in par-
ticular wavelet bases [139], are good candidates to yield sparse rep-
resentations of natural images [54, 159]. The reason for the wavelet
transform’s excellent energy compaction properties for a large palette
of images is that wavelets are well-localized and that they yield very
small coefficients in smooth signal regions thanks to their vanishing
moments properties. This energy-compaction property of the wave-
let transform has been recognized early on, and has proved to be use-
ful in a wide variety of applications, ranging from superresolution im-
age restoration [44], efficient noise reduction algorithms [45,221] and
state of the art image compression algorithms [46], including the re-
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cently adopted JPEG2000 standard [90]. Sparse representations also
play an important role in blind source separation algorithms [231].

Fresnel fields and holograms are not natural images, and their de-
composition is sparse only if the basis functions are well-chosen. Our
guiding principle to reconstruct focused wavefronts is that their ex-
pansion in a distance-dependent basis should be sparse.

5.4 Fresnelets

5.4.1 Definition

We consider the separable orthonormal wavelet basis of L2(R2){
ψ1

j ,m(x),ψ2
j ,m(x),ψ3

j ,m(x)
}

j∈Z,m∈Z2
(5.3)

where the two-dimensional wavelets

ψ
p
j ,m(x) = 1

2 j
ψp

( x

2 j
−m

)
(5.4)

are constructed with separable products of the cubic Battle-Lemarié
scaling function φ(x) and wavelet ψ(x) [8, 124]:

ψ1(x) =φ(x)ψ(y),ψ2(x) =ψ(x)φ(y),ψ3(x) =ψ(x)ψ(y). (5.5)

For the sake of brevity, we index the basis functions with a single index
k that includes the scale j , translation m, and wavelet type p:

ψk(x) =ψp
j ,m(x), k = (p, j ,m) ∈ {1,2,3}×Z×Z2. (5.6)

In practice, one only considers a finite number of scales and trans-
lates (because of the finite resolution and support of the image, and
appropriate boundary conditions).

A complex wave field f (x), measured in a plane perpendicular to
propagation, may be decomposed in this basis according to

f (x) =∑
k

ckψk(x), (5.7)

where the coefficients ck are given by the inner-products

ck = 〈 f ,ψk〉
=

∫ ∞

−∞
f ∗(x)ψk(x)dx.

(5.8)

Note that we consider integer scale and shift parameters j and m
which leads to a dyadic multiresolution structure [139]. This ap-
proach is different from the representation provided by continuous
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wavelet transforms, which is highly redundant (i.e., not sparse) and
does not have an underlying basis.

For any distance d 6= 0, an associated Fresnelet basis of L2(R2) can
be constructed by taking the Fresnel transform of the above defined
basis {

ψd
k (x)

}
k∈{1,2,3}×Z3

, ψd
k (x) =Rd {ψk}(x). (5.9)

The transformed basis functions ψd
k are shift-invariant on a level-by-

level basis but their multiresolution properties are governed by the
special form that the dilation operator takes in the Fresnel domain
(see Chapter 2 or Ref. [127]). Such bases have many desirable prop-
erties required for the digital processing of holograms. For example,
since they are based on splines, whose Fresnel transform may be
computed analytically (see Subsection 2.4.4), they are well-defined
in both time and frequency. Here, we will show that they become par-
ticularly useful for reconstructing propagated complex wave fields.

5.4.2 Fresnelet-based Propagation

The propagating wavefront may be computed at any depth given its
wavelet coefficients at the origin by simply replacing the wavelet basis
functions in the expansion (5.7) with the Fresnelets associated to a
different depth

fd (x) =Rd { f }(x)

=∑
k

ckψ
d
k (x). (5.10)

Conversely, the focused wavefront f (x) at the origin, may be recon-
structed given complex measurements of the propagated field fd̄ (x)
in a plane at distance d̄ as follows

f (x) =∑
k

cd
k ψk(x). (5.11)

where cd
k = 〈 fd̄ ,ψd

k (x)〉. It is only when the distance is well adjusted

(d = d̄) that we have cd
k = ck and that the reconstruction leads to a

focused image. The focus measure that we propose lets us determine
the quality of the computed coefficients, that is, the quality of our
reconstruction.
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5.5 Proposed Autofocus Algorithm

5.5.1 Algorithm Description

Our starting hypothesis is that the wavelet coefficients ck for focused
images are sparse. To decide whether the computed coefficients cd

k
are satisfactory, we thus need a measure that depends on their spar-
sity. We define the focus measure S(d) as follows. For a test depth
d, we compute the Fresnelet coefficients cd

k = 〈 fd̄ ,ψd
k (x)〉. The coeffi-

cients are sorted: we define a mapping k = k(l) such that∣∣∣cd
k(l−1)

∣∣∣≥ ∣∣∣cd
k(l)

∣∣∣≥ ∣∣∣cd
k(l+1)

∣∣∣, (5.12)

with 0 < l < L and where L is the total number of coefficients. The
sharpness metric S(d) is the energy of the signal that is reconstructed
with the fraction 0 <α< 1 of highest modulus coefficients, viz.

S(d) =
Ï ∣∣∣∣∣bαLc∑

l=0
cd

k(l)ψk(l)(x)

∣∣∣∣∣
2

dx

=
bαLc∑
l=0

∣∣∣cd
k(l)

∣∣∣2
.

(5.13)

The second equality is a consequence of the basis functions ψk(l) be-
ing orthonormal. In practice, we typically setα≈ 1%. An initial depth
range is defined for example by rough measurements or estimates
made on the experimental setup. The typical distance range for a lens-
less digital holography setup is about 0.2 m. Our autofocus algorithm
maximizes the S(d) criterion by applying a combined golden section
search and parabolic interpolation maximization algorithm [174].

The focusing problem may be summarized as follows: we aim at
finding the best Fresnelet basis such that as much of the image energy
is encoded with as few coefficients as possible. This idea is very sim-
ilar to the following problem of linear algebra in a two-dimensional
cartesian vector space. On the road map shown in Fig. 5.2, we de-
termine the highway’s direction (the reconstruction distance) by us-
ing an instrument that is initially oriented toward the North Pole and
that measures a test car’s two coordinates in an orthonormal basis
but only displays the highest (the quality metric). The instrument,
hence the basis, is rotated until the device displays the maximum
value, which gives us the orientation we are after. Some a priori knowl-
edge is nevertheless required for this method to be effective: the car
should be driving on the highway (but not at the origin) and the initial
guess should be no more that 45 degrees away from the true value. It
is noteworthy that all the rotated bases—like the Fresnelet bases for
different distance parameters d—are equivalent in that they all allow
to express the position of any car on the map.
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N

Fig. 5.2. The orientation of the highway is given by the orientation of the basis in
which the representation of a car’s position is sparsest.

5.5.2 Computational Complexity

The cost for sorting the L coefficients is O (L logL) [186]. The cost for
computing a Fresnelet transform, which relies on fast Fourier trans-
forms (FFT), is of similar complexity, i.e. O (L logL). The minimiza-
tion procedure usually converges in less than 10 iterations. The whole
autofocusing procedure for a 512×512 pixels images takes around 9 s
on a PowerPC G5 1.8 GHz computer, but we believe that the imple-
mentation may be optimized for specific applications and allow for
real-time processing.

5.6 Results and Discussion

5.6.1 Sparsity Illustration

We have simulated the propagation of a coherent monochromatic
scalar complex wave. The diffracted wave was computed at a distance
of d = 0.1 m using a procedure we described in Subsection 2.6.1 (see
also [127]). Its intensity and phase is shown in Figs. 5.3(a) and (b). We
then applied the Fresnelet decomposition with bases of different dis-
tance parameters d, ranging from 0.01 m to 0.19 m. In Figs. 5.3(c) and
(d), the positions of the wavelet coefficients that account for 95% of
the signal’s energy are shown. More than one and a half times as many
coefficients are required when the Fresnelet parameter d = 0.086 m
is used than when the correct parameter d = 0.1 m is applied. In
Fig. 5.4, we show the Fresnelet coefficient’s energy packing for differ-
ent distances; we have sorted the Fresnelet coefficients in decreasing
order, and reported their relative cumulated energy. From the inset,
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.3. Sparsity of wavelet coefficients. (a) Intensity and (b) phase of measured
complex field at a distance d = 0.1 m. (c) Positions of the 5% highest Fresnelet
coefficients for parameter d = 0.09 m that account for 95% of the signal’s energy.
(d) The same energy is packed in only 3.1% of the coefficients when d = 0.1 m. The
respective reconstructions are given in (e) and (f).

it is clearly visible that the larger the distance difference between the
Fresnelet parameter and the focus distance, the weaker the energy
packing. We show the sharpness metric S(d) in Fig. 5.5(a) along with
two other metrics, the fourth power of the wave’s modulus and the
squared modulus of the intensity’s Laplacian computed as follows:

S4(d) =
Ï

|R−d { fd̄ }(x)|4dx, (5.14)

SL(d) =
Ï

|∆|R−d { fd̄ }(x)|2|dx. (5.15)

The maximum is reached for the optimal distance d = 0.1 m for all
three sharpness metrics. However, the Laplacian and squared inten-
sity metrics exhibit local maxima, even in our ideal, noiseless situa-
tion. In Fig 5.5(b), we show the same curves in the case where 10%
gaussian random noise was added to the propagated wave field be-
fore reconstruction.
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Fig. 5.4. Wavelet coefficient energy for several Fresnelet bases and detail (inset).

Since Fresnelet coefficients—like wavelet coefficients—may be as-
similated to the derivatives of the two-dimensional function along
the horizontal, vertical and diagonal directions [212], they are also
related to quantities that appear in the computation of the Laplacian
sharpness metric. For the latter, they would mostly correspond to the
high-pass coefficients of the Fresnelet transform. However, these are
highly sensitive to noise which make the Laplacian sharpness metric
useless in noisy conditions (see Fig. 5.5(b)). Conversely, these coeffi-
cients do not contribute to our sparsity metric, since they carry little
energy and are removed—similarly to wavelet-based noise reduction
algorithms [45, 221]. For this reason, our method is robust to noise,
i.e. suitable for experimental situations.

In this experiment, the autofocus algorithm converged to a rela-
tive precision of 10−3 in as few as 9 iterations.

5.6.2 Experimental Measurements

In Fig. 5.6, we show the amplitude of the unfocused and focused wave
fields obtained from experimental data. The amplitude and phase
was computed using the phase retrieval algorithm presented in Chap-
ter 4 (see also [129]). The sharpness curves for the same metrics as in
Subsection 5.6.1 are also given. We can see that our proposed sparsity
metric behaves well, even in experimental conditions. Conversely,
the two other metrics are unreliable, since at best, they only reach
a local maximum for the proper distance.
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Fig. 5.5. Sharpness metrics as a function of the distance. (a) Ideal noiseless data (b) Noise corrupted
data: 10% gaussian random noise was added to the complex valued propagated wave of Fig. 5.3(a). The
sparsity of the Fresnelet transform is given by the energy of α= 1% Fresnelet coefficients.

5.7 Conclusion

We have proposed a novel sharpness metric for the reconstruction of
digital holograms based on the computation of the sparsity of a Fres-
nelet decomposition. The global maximum of this functional corre-
sponds to a sharp reconstruction. Because it is smooth and unimodal
even in the presence of noise, the localization of its maximum may be
carried out without an exhaustive search but only by evaluating it for
a limited number of distances. This is a crucial aspect of our met-
ric since the computational cost of computing the wavefront at many
distances can become important. Other simple metrics that exhibit
local maxima are useless because then, finding the global maximum
requires exhaustive search. The sharpness measure has indeed all the
characteristics of a good functional; in particular, it is robust and does
not require a large computational overhead, since it is tightly related
to our reconstruction technique. Although a wide-variety of wavelets
(Daubechies, etc.) may be considered for building Fresnelets, we ad-
vise the use of cubic Battle-Lemarié wavelets, since they may be con-
structed using B-splines, which have closed-form expressions in both
time and frequency and yield a simple implementation. It is impor-
tant, however, that the wavelet basis be orthonormal to ensure the
validity of Equation (5.13).

Finally, we have confronted our technique to both synthetic (sim-
ulated) and experimental data and observed that it is suitable for real
applications.
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Fig. 5.6. Out-of-focus and focused modulus of wavefront, and sharpness metrics (Laplacian of inten-
sity (dashed), squared intensity (dashed-dotted) and wavelet sparsity (bold)). The experimental data was
kindly provided by E. Cuche and Ch. Depeursinge, École Polytechnique Fédérale de Lausanne, Switzer-
land.
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Chapter 6

Comparisons and Conclusion

Abstract—The purpose of this chapter is manifold. We aim at providing a number of guide-
lines for deciding which algorithm to apply to a given problem. We propose a simulation study
to compare previously existing and the newly proposed reconstruction procedures. We carry
out the evaluation based on various criteria: reconstruction quality, computational complex-
ity, memory requirements, success and failure of the phase retrieval, ease of use (when setting
parameters). We show that Fresnelet decompositions play an important role in the conceptual
analysis of digital holography but also lead to concrete implementations. Whenever possible, we
point out the relationship between the compared algorithms. Finally, this analysis will allow to
point toward new directions for future research.

6.1 Introduction

Up to this point, the thesis has been mainly concerned with propos-
ing new tools and methods for reconstructing holograms. In Chap-
ter 2, we have used a nonlinear approximation of the hologram in the
Fresnelet domain to suppress the unwanted zero and minus 1 order
terms in the reconstructed hologram. In Chapter 4, we proposed to
decouple the phase retrieval problem and the propagation problem
and we came up with a versatile method for retrieving the amplitude
and the phase from a single hologram. Here, we compare the differ-
ent algorithms (newly proposed and existing ones) on a quantitative
and qualitative basis using a simulation procedure, in order to draw
a more complete picture of their relative performances. Although an
evaluation based on synthetic data might possibly neglect some as-
pects that are present in true experimental conditions, it has the in-
valuable advantage of giving insight into the performances of the al-
gorithms on a quantitative basis.

There is no algorithm that is superior to all others in every situa-
tion. A method that may seem optimal for a given setup may well be-
come obsolete as soon as a new technology (camera, computer,. . . )
becomes available or economically more attractive. The design of
digital holography setups has largely been influenced by the compu-
tational limitations of early calculators. The simpler and faster algo-
rithms would be chosen because there was not alternate way to carry
out the computations within reasonable time. Such considerations
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have undoubtedly led to the design of experimental setups optimized
for the fastest algorithm. However, methods that were abandoned be-
cause they did not meet the speed requirements have not necessar-
ily been reevaluated in the light of the currently available computing
power. An algorithm should be adapted to the problem and not the
other way around.

As a consequence, we put strong emphasis on how flexible an algo-
rithm is. It should be ready for technological improvements of digital
cameras, such as lower sampling steps, larger camera size and the in-
creased storage capacity and clock speed to be expected from future
computers.

There have been only few attempts to quantitatively compare and
evaluate the performance of different digital hologram reconstruc-
tion algorithms in an extended number of situations. Most valida-
tion tests have been carried out on experimental data for which the
true gold standard is difficult to access. A noteworthy exception is
a validation proposed by Cuche et al. [36, 39], who compared the re-
constructed phase (respectively, the profile) of a USAF test target to
the height measured by scanning a contact-stylus probe profilometer
over the same sample. Repeating such an experimental procedure in
a large number of configurations would be of highest interest, mainly
because it takes into account the whole optical system. However, the
time required by such a study would most likely be prohibitive. What
we propose here instead is to evaluate the algorithms at hand on a
quantitative basis, by restricting the number of influent parameters
and by using an exact gold standard. This is made possible by sim-
ulating the acquisition process. Even if this does not replace experi-
mental validation, it gives precious insight on the respective impact
of each single parameter on the overall performance of the different
algorithms.

The situations we present in the following sections are not meant
to constitute an exhaustive set of all possible parameter combina-
tions. Rather, they have been carefully selected to illustrate the algo-
rithms’ strengths or possible weaknesses. For quantitative evaluation,
we rely on adapted versions of the signal-to-noise ratio. Whenever vi-
sual comparison was possible we have favored this option, since sig-
nal to noise ratios do not necessarily reflect visual artifacts.

This chapter is organized as follows. In Section 6.2, we give a list of
parameters that influence the acquisition and reconstruction of digi-
tal holograms. In Section 6.3, we discuss issues related to the quan-
titative evaluation of the algorithms and define the chosen criteria.
In Sections 6.4 and 6.5, we compare the newly proposed algorithms
with previous ones in a number of situations and discuss their rela-
tive advantages in the case of lensless digital holography and digital
holographic microscopy. In Section 6.6, we propose a synthesis of
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the gathered findings. Finally, in Section 6.7, we have a general look
back on the contributions and main results presented throughout the
thesis as well as a look forward at future refinements, extensions and
possible research directions.

6.2 Parameter Influence for the Reconstruc-
tion of Holograms

Once the hologram is stored in digital form (a 2D array of (quan-
tized) numbers), we may start with the reconstruction. The simula-
tion methodology may include various aspects of the experimental
acquisition procedure. In particular, the following parameters may
be taken into account.

• Light (source)

– spatial coherence
– temporal coherence
– wavelength
– intensity profile

• Optical elements and setup

– parasitic reflections
– nonideal system response
– finite apertures
– dust on optical elements
– discrepancy from model

• Object (wave)

– distance d from focused image
– aberration due to lens (parabolic) Dx , Dy

– finest details/bandwidth
– spatial extent

• Reference wave, geometry

– angle to object wave
– plane/parabolic wave
– intensity: power ratio, intensity profile

• Acquisition device

– Sampling step T
– Number of samples Nx , Ny

– Nonlinear response; Gamma factor γ
– Frequency response of acquisition device (nonideal sam-

pling)
– Noise sources
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– Quantization
– Corrupted regions, treatment of regions of interest

In the next sections, we will investigate the reconstruction algorithms’
performances by varying several of these parameters.

6.3 Quality Measures for Reconstructed Wave
Fronts

In this section we propose three quality measures for comparing re-
constructed wave fronts to a gold standard in a simulation procedure.
We therefore consider the comparison of two 2D complex-valued,
sampled functions f (x) and f ′(x).

We first need to recall that phase retrieval algorithms that rely on
a single fringe pattern and no a priori knowledge are subject to a sign
ambiguity and phase offset inherent to the interference patterns: a
general interference pattern given by

|a exp(iα)+b exp(iβ)|2 = a2 +b2 +2ab cos(α−β), (6.1)

may equivalently be produced by the phase couples α′,β′:

α′ =+α+δ and β′ =+β+δ, (6.2)

or α′ =−α+δ and β′ =−β+δ, (6.3)

with δ ∈R. The sign ambiguity may be alleviated by using some a pri-
ori knowledge; the phase offset is arbitrarily set to zero. Furthermore,
only the principal argument of the complex number Z = a exp(iφ) ∈
C, a ∈R+,φ ∈R is available and not the phase per se. The phase is said
to be wrapped [70]:

W
{
φ

}= argZ =φ+2kπ, k ∈Z : −π<W
{
φ

}≤π. (6.4)

We make use of the following congruence property when comparing
phases:

W
{
W

{
φ1

}−W
{
φ2

}}=W
{
φ1 −φ2

}
, if −π<φ1 −φ2 <π. (6.5)

Thus, if the difference is sufficiently small, we may evaluate the recon-
struction quality without having to unwrap the result.

We define three quality measures for comparing complex-valued
images. The first definition of the Signal to noise ratio (SNR) is as fol-
lows:

SNR = 10log10

∑
k
| fk|2∑

k
| fk − f ′

k |2
(6.6)

10
4

-
6.

CO
MP

AR
IS

ON
S

AN
D

CO
NC

LU
SI

ON

0001101000



x

y

z

k  y
k  x

k  z
q

j CCD

O

R

d

Object

Fig. 6.1. Setup for lensless digital Fresnel off-axis holography.

where fk = ak eiφk ∈ C is the gold standard image and f ′
k = a′

k eiφ′
k ∈ C

the reconstructed image. Since results in digital holography are usu-
ally given in terms of amplitude and phase, we also define the two
following quality measures, for the amplitude and the phase, respec-
tively:

SNRamp = 10log10

∑
k
| fk|2∑

k

(| fk|− | f ′
k |

)2 (6.7)

SNRph = 10log10

∑
k
|φk|2∑

k

(
W

{
W

{
φk

}−W
{
φ′

k

}})2 . (6.8)

The indices k are taken over a suitable portion of the image. In all sub-
sequent experiments, it covers a centered square whose size is 60% of
the total image width to factor out boundary effects.

6.4 Lensless Fresnel Off-Axis Holography: a
Comparison

In this section we examine digital hologram reconstruction algo-
rithms in the case of a lensless setup, as shown in Fig. 6.1. We
set the wavelength to λ = 632.8 nm. The reference wave vector is
kλ = (kx , ky , kz) and the wavenumber kλ = 2π/λ = (k2

x + k2
y + k2

z )1/2.
The camera has a sampling step T = 10 µm and Nx ×Ny = 512×512
pixels. We simulated the propagated wave at a distance d from the ob-
ject and added a complex reference wave with parameters Kx = kx/T
and Ky = ky /T . We then computed the squared modulus of the re-
sulting field. We sampled the latter on the area corresponding to the
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(a) (c) (e) (g)

(b) (d) (f)

Fig. 6.2. Gold standard test target object wave. Amplitude [0.5,1.5] (a) and phase [−0.2π,0] (b) in the
vicinity of the object. Amplitude (c) and phase (d) in the CCD plane. Reference wave amplitude (max
amplitude: 10) (e) and (wrapped) phase (f). (g) Hologram. Parameters are T = 10 µm, Nx = Ny = 512,
λ= 632.8 nm, d = 0.05 m and Kx = Ky =−0.6.

camera’s support, again with a sampling step T . In Fig. 6.2 we show
the steps that lead to the gold standard test target.

We investigate the influence of the following parameters: nonuni-
form amplitude, distance between the object and the CCD, angle be-
tween the object and the reference wave. We also consider situations
where only a limited region of interest is reconstructed, either be-
cause only a limited region of interest is available, or, because whole
areas are severely corrupted by noise.

6.4.1 Fresnelet Pyramid Versus Chirp-Fourier Fresnel
Transform

The central part of every Fresnel hologram reconstruction algorithm
is the computation of the Fresnel transform.

One particular algorithm, referred to as the Chirp-Fourier Fresnel
transform (ChFFrT), is widely used. Its implementation corresponds
to the sampling of Eq. (2.17), while assuming that the signals are ban-
dlimited1. Its main advantage is that it may be implemented by com-
puting a single FFT rather than the two required by the discretization
of convolution-based approaches2.

1Several variations of this method are described in Refs. [226,227] in a more gen-
eral context. We consider only the simplest form in this comparison.

2Note that the Fresnelet pyramid may be implemented directly in the space do-
main. We didn’t follow this approach though, because it is competitive only for
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(a)

(b)
SNRamp = 13.52

(d)
SNRamp = 20.72

(f)
SNRamp = 20.44

(h)
SNRamp = 20.15

(c)
SNRph = 9.93
SNR = 10.75

(e)
SNRph = 14.49

SNR = 17.23

(g)
SNRph = 14.53

SNR = 17.14

(i)
SNRph = 17.96

SNR = 17.41

Fig. 6.3. Chirp-Fourier Fresnel transform versus Fresnelet pyramid. (a) Hologram, 512×512 pixels,
Kx = Ky = 1.1, d = 0.323 m. ChFFrT reconstructed (b) amplitude (c) phase. ChFFrT reconstruction with
Fourier method of zero order removal (d) amplitude and phase (e). Fresnelet pyramid reconstruction (f)
amplitude, (g) phase. LSE phase retrieval and Fresnelet pyramid (h) amplitude (i) phase. All reconstruc-
tions are 128×128 pixels in size (m = 22 = 4).

We have already seen the advantages of the Fresnelet pyramid
over the ChFFrT, in terms of the strong constraints that the ChFFrT
puts on the sampling step (See Section 2.7). Comparisons of the rel-
ative merits and disadvantages of the convolution approach (includ-
ing different convolution kernels) and the ChFFrT are also discussed
in Ref. [108].

Here, we propose a further experiment. Since the Fresnelet trans-
form is a multiresolution procedure, we can select situations where
the Fresnelet pyramid at scale m (with sampling step mT ) has the
same sampling step as the ChFFrT (sampling step T ′ = λd/(NT )). In
this case, it is possible to compare the two on a pixel-per-pixel basis.

small distances and coarse resolutions.
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To get a similar sampling step for both reconstructions, we impose:

mT = λd

NT
(6.9)

which determines

d = mNT 2/λ. (6.10)

For example, if we set m = 4, N = 512, T = 10 µm, and λ = 632.8 nm,
then we must set d = 323.640 mm to achieve (6.9). We chose Kx =
Ky = 1.1.

In Fig. 6.3 we show the inverse Fresnel transforms starting from
the simulated hologram. The SNR is slightly higher for the Fresnelet
pyramid approach. We can also see that the zero-order is visible in
Figs. 6.3(b) and 6.3(c) and can be removed by the Fourier method
(Figs. 6.3(d) and 6.3(e)). As can be seen in Figs 6.3(f) and 6.3(g),
The Fresnelet pyramid does not require any further treatment for it
already corresponds to a low pass filter . Since only a limited por-
tion of the hologram is available (i.e. of the size of the CCD) we
have multiplied the hologram with an apodization window prior to
reconstruction to avoid artifacts introduced by the boundaries. Fi-
nally, in Figs 6.3(h) and 6.3(i), we show the reconstruction using the
least-squares estimation (LSE) method followed by a Fresnelet trans-
form, as described in Chapter 4. Since no apodization window is re-
quired, the reconstruction is free of the characteristic distortions in
the phase.

One should also note that, if the ChFFrT method is at most twice
as fast (for the same image size) than a convolution-based approach,
which requires two instead of only one FFT, this is no longer true
when the reconstruction is to be performed several times, e.g. dur-
ing adjustment of the distance parameter. In the latter case, the con-
volution approach only requires one FFT since the hologram’s FFT re-
mains unchanged and makes the method even faster than the ChFFrT
method. A simple parallelization may also allow to keep the speed of
both algorithms the same.

However, the argument turns in favor of the ChFFrT when zero-
padding is required to avoid the overlap of the different orders (as is
the case in the convolution based reconstructions presented in Figs.
6.3(d) to 6.3(g)). But again, when the demodulation is tackled sepa-
rately from the propagation, this argument is no longer relevant: nei-
ther zero-padding nor apodization is required because the zero and
-1 order terms are not present, as for example in Figs 6.3(h) and 6.3(i).

Because of its speed, the ChFFrT is of high interest if the setup
(reconstruction distance, angle) is tuned in consequence. The sam-
pling constraints are, however, so strong that it is less interesting in
the general case. We will use a Fresnelet (convolution) type Fresnel
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(a) (b)

(c)
SNRamp = 13.75

(e)
SNRamp = 20.31

(g)
SNRamp = 20.93

(d)
SNRph = 16.62

SNR = 12.78

(f)
SNRph = 16.62

SNR = 17.77

(h)
SNRph = 17.63

SNR = 18.42

Fig. 6.4. Nonuniform amplitude hologram (a) obtained from a nonuniform am-
plitude reference wave (b), d = 0.2 m, Kx = Ky =−1.0. Fourier method reconstruc-
tion of amplitude (c) before, and (e) after division by the reference’s amplitude (b).
(d), (f): Corresponding phase. Reconstructed amplitude (g) and phase (h) with the
least-squares procedure.

transform to compare all methods from now on, since it has the ad-
vantage of keeping a constant sampling step T .

6.4.2 Nonuniform Amplitude

Before we proceed further into the comparison of the different algo-
rithms, we need to shed some light on an often overlooked liability of
many digital holography methods. Algorithms that filter out the pos-
itive order produce an output signal that is the product of the object
wave’s amplitude and the reference, i.e., |R(x)O(x)|. If the reference
wave is assumed to be constant, the result is simply a scaled version
of the object wave’s amplitude. Although plane waves with a constant
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amplitude are conceptually convenient, they cannot be produced in
practice. The output of a laser is typically a Gaussian beam, that is,
the intensity has a Gaussian profile if measured in a plane perpendic-
ular to the propagation direction3. A simple procedure to recover the
true object wave amplitude would be to measure the reference wave
amplitude separately and point-wise divide the hologram by |R(x)|
prior to reconstruction. Yet, this would require one supplementary
(possibly time-consuming) measurement. The LSE algorithm, on the
other hand, is able to retrieve the phase and the amplitude of the ob-
ject wave from a single hologram. The only requirement is that the
intensity of the object wave be lower than that of the reference. An-
other possible approach to overcome the amplitude indetermination
is to also consider a parametric model for the amplitude.

In Figs. 6.4(c) and 6.4(e), we show the reconstructions obtained
from the Fourier filtering (the phenomenon is the same for the Fres-
nelet approximation procedure of Chapter 3) algorithm before and
after dividing the retrieved amplitude by that of the reference. We see
that the amplitude of the reconstruction is influenced by the nonuni-
form reference wave. The LSE method yields the proper amplitude
directly. The retrieval of the phase is not affected by the uncertainty
on the reference’s amplitude.

Since we aim at comparing the algorithms quantitatively, we will
assume in further experiments that the amplitude of the reference
wave is known (e.g. through a supplementary measurement), except
when we use the LSE algorithm, which does not require this assump-
tion.

6.4.3 Distance and Angle

In this subsection, we investigate the influence on the reconstruction
quality of the distance parameter d and the angle between the refer-
ence and the object wave. We have considered that the distance be-
tween the object and the CCD varies between 0.01 m and 0.4 m and
generated the corresponding holograms. We have reconstructed the
amplitude and phase images using the following algorithms: a plain
Fresnel transform, a Fourier filtering followed by Fresnel transform,
the Fresnelet approximation (see Chapter 3) and the LSE followed by
a Fresnel transform.

In Fig. 6.5, we show the SNR quality curves for the tested situa-
tions. In Figs. 6.6, 6.7, and 6.8 we show the reconstructed amplitudes
and phases with the different algorithms for various angles between
the reference and the object wave.

3In practice, the presence of a pinhole (to filter the appropriate mode(s)) further
truncates the Gaussian.
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Fig. 6.5. Reconstruction quality [SNR]=dB as a function of distance [d]=m. From top to bottom Kx = Ky =
−0.6,−0.8,−1,−1.2.
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(a)

(b)
SNRamp =−19.44

(d)
SNRamp = 16.73

(f)
SNRamp = 16.23

(h)
SNRamp = 17.62

(d)
SNRph =−9.77
SNR =−20.30

(e)
SNRph = 13.05

SNR = 14.60

(g)
SNRph = 8.83
SNR = 12.27

(i)
SNRph = 14.74

SNR = 15.58

Fig. 6.6. Reconstructions (top amplitude, bottom phase) for d = 0.05 m and Kx = Ky =−0.6. Algorithms
from left to right: Plain Fresnel transform, Fourier filtering and Fresnel transform, Fresnelet approxima-
tion, LSE and Fresnel transform.

We notice that the curves are similar for the overall quality and the
amplitude. We see that a larger distance can compensate for a lower
angle. When no filtering is used, it is the product (kx+ky )1/2λd which
is crucial: the reconstruction is uncorrupted by the zero-order term
only if this value is well above the object’s support.

One can see that the Fresnelet approximation gives better results
(amplitude reconstructions) when a compromise between space and
frequency filtering is achievable. This corresponds to regimes where
the product dλ(k2

x + k2
y )1/2/(2π) is larger than zero (the different or-

ders do completely overlap) but smaller than the support of the image
(the different orders are completely separated in the space domain).
As soon as the different orders are well-separated in space, neither the
Fourier filtering nor the Fresnelet approximation bring an advantage
over the plain Fresnel transform. When the distance is zero, only the
Fourier filtering and the LSE algoriths are capable of retrieving mean-
ingful information. It is also noteworthy that the LSE method outper-
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(a)

(b)
SNRamp =−5.78

(d)
SNRamp = 22.40

(f)
SNRamp = 22.64

(h)
SNRamp = 21.78

(d)
SNRph =−3.62

SNR =−7.53

(e)
SNRph = 18.32

SNR = 19.76

(g)
SNRph = 17.09

SNR = 19.30

(i)
SNRph = 19.35

SNR = 19.86

Fig. 6.7. Reconstructions (top amplitude, bottom phase) for d = 0.15 m and Kx = Ky =−1.2. Algorithms
from left to right: Plain Fresnel transform, Fourier filtering and Fresnel transform, Fresnelet approxima-
tion, LSE and Fresnel transform.

forms the other approaches, especially for low Kx,y ; i.e., for low angles.
For the higher angles, the Fourier filtering method yields better ampli-
tude results. The latter amplitude, however, needs to be compensated
to be meaningful (see Subsection 6.4.2). Also, this is true only if we
limit the part of the image that is taken into account for computing
the SNR to the center rather than taking the whole field of view.

Overall, the reconstruction quality decreases as the distance in-
creases. This is due to the fact that the CCD has a limited support;
it therefore misses important information that spreads outside its
boundaries. In certain cases, however, a nonzero distance is unavoid-
able because of space constraints dictated by the optical elements.

Generally speaking, we observe that the quality increases as the
angle increases. There is of course an upper bound on the maximal
angle that is dictated by the CCD’s sampling step.
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(a)

(b)
SNRamp = 2.81

(d)
SNRamp = 21.33

(f)
SNRamp = 21.47

(h)
SNRamp = 20.87

(d)
SNRph = 1.48

SNR = 0.35

(e)
SNRph = 17.38

SNR = 18.53

(g)
SNRph = 16.85

SNR = 18.40

(i)
SNRph = 18.15

SNR = 18.84

Fig. 6.8. Reconstructions (top amplitude, bottom phase) for d = 0.2 m and Kx = Ky = −1.2. Algorithms
from left to right: Plain Fresnel transform, Fourier filtering and Fresnel transform, Fresnelet approxima-
tion, LSE and Fresnel transform.

6.4.4 Regions of Interest

In this experiment we investigate the performance of the different al-
gorithms when the hologram is severely corrupted in several, well de-
limited regions. For convenience, we set the distance d = 0 m. Such
a situation may be realized experimentally if the hologram is taken in
the image plane of an object-lens system, and the reference wave is
such as to produce parallel fringes. One could also think of a situa-
tion where several CCDs are used to record the holograms, with gaps
in-between where no data is available.

In Fig. 6.9, we show the hologram thus-obtained and the respec-
tive reconstructions with the Fourier filtering, Fresnelet approxima-
tion and LSE method (the plain Fresnel transform was left out be-
cause the distance is zero). We see that the corrupted regions do
not interfer with the LSE reconstruction. This is not the case for the
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(a)

(b)
SNRamp = 15.35

(d)
SNRamp = 5.34

(f)
SNRamp = 16.07

(d)
SNRph = 4.90

SNR = 9.9

(e)
SNRph = 2.5
SNR = 2.40

(g)
SNRph = 5.82
SNR = 10.74

Fig. 6.9. Reconstructions from a severely corrupted hologram (top amplitude, bot-
tom phase) for d = 0 m and Kx = Ky = −1. Algorithms from left to right: Fourier
filtering and Fresnel transform, Fresnelet approximation, and LSE method.

Fourier filtering algorithm: The local defects deteriorate the recon-
structed wave’s quality well beyond their boundaries. The Fresnelet
approximation shows slightly better visual results in several regions
of the amplitude reconstruction because it allows for a better trade-
off between space and frequency filtering. However, its overall quality
is worse. The space selectivity is also insufficient to compete with the
LSE method. The boundary conditions can be treated much more
easily with the latter. The advantage of having a local procedure is
striking: there are no artifacts.

It is even more interesting that the LSE procedure, since it is lo-
cal, allows to reconstruct the phase only in certain regions of interest:
There is no point in spending computational effort for retrieving the
phase in areas where there is no hope of getting a sound result. The
regions may also be user-defined and possibly tuned to the needs of
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Fig. 6.10. Setup for digital holographic microscopy.

specific applications that don’t require computing the amplitude and
phase over the whole image. As an immediate consequence for the
LSE algorithm, the computational cost drops proportionally to the
surface of the region of interest.

6.5 Digital holographic Microscopy: Com-
parisons

In this Subsection, we investigate and compare the proposed algo-
rithms in situations that contain a microscope objective. We consider
that the object wave is magnified by a microscope objective. The
model we use is as follows. We consider a general wavefront that
is a function that has undergone free-space propagation (a Fresnel
transform of parameter τ1), is scaled by a factor s1 and multiplied by
a quadratic phase term of parameter ρ1 ∈R+:

g (x) = 1

ρ1
eiπ(x/ρ1)2

f̃τ1

( x

s1

)
. (6.11)

Its Fresnel transform with parameter τ is again a function of the same
form but with parameters τ2, s2, and ρ2

g̃τ = 1

ρ2
eiπ(x/ρ2)2

f̃τ2

( x

s2

)
(6.12)

with ρ2
2 = τ2+ρ2

1, s2 = s1ρ
2
2/ρ2

1 and τ2
2 =

(
(τρ1)/(s1ρ2)

)2+τ2
1. In an ideal

imaging system, the wavefront coming from the object undergoes
free-space propagation over a distance dO after which the lens intro-
duces a quadratic phase shift (we consider an infinite aperture, thin
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Fig. 6.11. Hologram spectrum in the presence of a lens. (a) Hologram, (b) Holo-
gram spectrum.

lens). Just behind this ideal lens, the wavefront has the general form
of Eq. (6.11) with parameters τ2

1 = λdO , s1 = 1 (no scaling), ρ1 = −λ f .
It is easy to verify that the wave’s three parameters at distance dI from
the lens, with the imaging condition:

1

f
= 1

dI
+ 1

dO
(6.13)

and the definition of the magnification M = dI /dO > 0 are τ2 = 0 (i.e.
not defocus), ρ2

2 =λM f and s2 =−M .
If we put the camera at a distance d in front of the image plane,

the wavefront is given by (using Eq. (6.11))

O(x) = exp

(
iπ

‖x‖2

ρ2

)
f̃pλd ′

( x

−M ′′
)

(6.14)

with

πD = ρ2 =λ(M f −d) (6.15)

M ′′ =M −d/ f (6.16)

d ′ = d − d2

f M
. (6.17)
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(a) (c)
SNRamp =−13.20

(e)
SNRamp = 16.44

(g)
SNRamp = 19.75

(b) (d)
SNRph = 0.144
SNR =−13.70

(f)
SNRph = 7.25
SNR = 12.23

(h)
SNRph = 17.81

SNR = 18.01

Fig. 6.12. Reconstructions from the hologram (a) with camera in front of image plane. (b) Hologram
spectrum. Reconstructions with plain Fresnel transform (c) amplitude (d) phase, Fourier filtering and
Fresnel transform (e), (f), LSE variable window-size least-squares method (g), (h). The following parame-
ters were used: d = 0.1 m, Kx = Ky =−1, Dx = Dy = ρ2/(πT 2) = 350, X0 = Y0 = x0/T = y0/T = 250. Maximal
corresponding K-vector norm: 1.71.

If we put the camera at a distance d behind the image plane, we have

πD = ρ=λ(M f +d) (6.18)

M ′′ =M +d/ f (6.19)

d ′ = d + d2

f M
. (6.20)

The composition of the hologram’s spectrum is radically different
from the lensless case: the zero-order is localized around the fre-
quency origin, whereas the ± 1 order terms spread across the fre-
quency plane, which is visible in Fig. 6.11. The hologram is measured
with a camera of dimensions Lx × Ly . That is, we actually measure
(the reasoning is done only for the x direction)

O′(x) = rect(x/Lx)O(x). (6.21)

The approximate width of the spectrum (which may be calculated us-
ing the Heisenberg uncertainty relation for the Fourier, respectively
Fresnel transform) is:

Bx = Lx/ρ2. (6.22)

If we consider the hologram obtained with a reference wave R(x) =
exp[i (kx x + ky y)] with the upper right corner positioned at location
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(a) (c)
SNRamp =−20.59

(e)
SNRamp = 19.62

(g)
SNRamp = 19.83

(b) (d)
SNRph =−10.14

SNR =−21.38

(f)
SNRph = 12.15

SNR = 16.51

(h)
SNRph = 18.19

SNR = 18.19

Fig. 6.13. Reconstructions from the hologram (a) with camera in the image plane. (b) Hologram spec-
trum. Reconstructions with plain Fresnel transform (c) amplitude (d) phase, Fourier filtering and Fresnel
transform (e), (f), LSE variable window-size least-squares method (g), (h). The following parameters were
used: d = 0 m, Kx = Ky = −1, Dx = Dy = ρ2/(πT 2) = 350, X0 = Y0 = x0/T = y0/T = 250. Maximal corre-
sponding K-vector norm: 1.71.

(x0, y0), the positions of the centers of the ± 1 order terms in the
Fourier domain are

±
(

x0 +Lx/2

ρ2
− kx

2π

)
. (6.23)

This means that the use of the Fresnelet approximation procedure is
no longer justified and we will therefore not include it in the forth-
coming experiments.

For our next simulation, we consider a microscope objective, with
a magnification M = 40× and, assuming a normalized tube length
Ltube = 160 mm, a focal length f = Ltube/M = 4 mm.

We compare the plain Fresnel transform, the Fourier filtering and
Fresnel transform, and the LSE phase estimation algorithms in two sit-
uations. In Fig. 6.12 the camera was placed at a distance d = 0.1 m in
front of the image plane. The reconstruction is possible with the plain
Fresnel transform. The zero-order term limits the field of view. The
Fourier filtering method allows for the suppression of the zero-order
term as well as of the twin image up to a certain point. In Fig. 6.13,
the camera was placed in the image plane. The plain Fresnel trans-
form cannot be used in this configuration. In both experiments, the
LSE phase retrieval method gives much better results, both in terms
of field of view as in terms of SNR.
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Method C
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Sampling step λd/(NT ) T mT
Complexity L logL L logL L logL
Computation time 1 +++ + ++
Computation time 2 and more ++ + +++
Space-frequency compromise no no yes

TABLE 6.I

FRESNEL TRANSFORM IMPLEMENTATIONS COMPARISON. THE MORE +, THE BETTER.

6.6 Synthesis

In this Section, we synthesize the results and observations that we
gathered in the previous section.

6.6.1 Fresnel Transforms

We have compared the ChFFrT and the Fresnelet pyramid approach
to computing the Fresnel transform. While comparing the two meth-
ods in particular situations (i.e. the sampling step is the same) shows
that they perform similarly, the Fresnelet pyramid approach is more
flexible. In particular, the sampling step does not depend on the wave-
length, the reconstruction distance or the number of samples. This
is important for applications that reconstruct holograms of the same
object obtained with different wavelengths since the reconstruction
sampling step does not depend on the wavelength. The Fresnelet
approach offers the advantage that it is a multiresolution procedure,
therefore, it is particularly useful for removing the zero-order and
twin image terms in certain situations. Table 6.I shows the principal
characteristics of the different algorithms.

6.6.2 Digital Holography Methods

We have compared four digital hologram reconstruction methods in
various situations. Table 6.II should allow help selecting the appropri-
ate algorithm for a particular setup at hand.
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Method P
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Fo
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&

Fr
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n
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W
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w
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ow
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&

Fr
es

n
el

Tr
an

sf
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rm

Number of holograms 1 (2)a 1 (2) 1 (2) 1
Handles d = 0 no yes yes yes
kx,y /(2π)λd < support no yes yes yes
kx = ky = 0 no no no no
Lens yes yes no yes
General reference no no no yes
Minimal Complexity O L logL L logL L logL LM̃
Processing time +++ ++ + + (+++ if d = 0)
Requ. params set before no no no yes
Get amplitude (yes)b (yes) (yes) yes
Suppresses Reflections no yes yes no
Nonlinear camera (harmonics) no yes yes yes
Local defects + + + +++
Regions of Interest + + + +++
Border Conditions + + + +++
Field of view + ++ ++ +++

TABLE 6.II

COMPARISON OF HOLOGRAM RECONSTRUCTION ALGORITHMS. THE MORE +, THE BETTER.

aTo compensate amplitude.
bRequires a supplementary measurement.

6.7 Conclusion and Outlook

6.7.1 General Conclusion

In this thesis, we have explored the interplay between image process-
ing, fringe analysis, and digital holography.

We have developed mathematical tools to carry the benefits of
multiresolution image processing over to digital holography. We have
proposed two applications that are based on Fresnelets. The non-
linear space-frequency approximation procedure is able, for certain
experimental configurations, to take advantage of the particular na-
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ture of holograms. The autofocus algorithm is based on the prop-
erty that Fresnel holograms have a sparse representation in distance-
dependent Fresnelet bases; it was shown to be effective on experimen-
tal data.

The least-square method (LSE) for the estimation of amplitude
and phase has proved to be most flexible and reliable. Its results are
highly satisfying, in particular regarding the field of view and the over-
all quality. However, such high quality reconstructions are only pos-
sible if an accurate a priori model of the reference wave is available
before reconstruction. For lensless digital holography off-axis holog-
raphy, the LSE method is of particular interest when the product be-
tween the distance and the fringes K-vector in the hologram plane is
small or when the reference wave model is complicated.

6.7.2 Outlook for Future Research

The research presented here opens several interesting avenues for fur-
ther investigations that we are now starting to explore. Some of them
are listed below.

Fresnelet frames The Fresnelet decomposition allows for the selec-
tive suppression of terms with good localization in both time and fre-
quency. Using redundant decompositions into Fresnelet-frames (an
over-complete family of functions) might allow to get a finer resolu-
tion in frequency. This is motivated by the fact that, in lensless holog-
raphy, the frequencies are possibly well separated and the compro-
mise between space and frequency may be tuned more selectively.

Automatic 3D particle localization The autofocus method gives a
means of deciding whether an image is well-focused. This principle
might also be adapted to localize particles in 3D scenes with multiple
focus planes.

Parameter estimation and compensation Estimating the parame-
ters remains the most delicate aspect of digital holography. This as-
pect should be further studied to allow for minimal user interaction
during setup.

Phase unwrapping The reconstructed phase may possibly exceed
the domain [−π,π) and therefore require 2D phase unwrapping. Gen-
eral algorithms [70] may be simplified if they included the a priori
knowledge that parametric models carries. The same holds true for
aberration compensation algorithms.
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Fast implementations of the variable window size LSE algorithm
The variable window size least-squares algorithm requires the com-
putation of weighted averages at every location where the complex
wave is to be retrieved. If the window size is constant, this opera-
tion corresponds to a convolution. For certain weighting functions
(i.e. B-splines), there exist fast methods for computing these convo-
lutions [210]. This would allow for a faster implementation of the
weighted (constant window size) least-squares algorithm.

Although this approach is only usable for fixed window sizes, we
may still make use of it in the case of the variable window size al-
gorithm. We compute the weighted averages at several resolutions
(say over a couple of dyadic scales). When actually implementing the
complex-wave retrieval at a particular point, we may either choose
one of the weighted averages that corresponds to the right size, or we
may combine the averages from two resolutions to yield an interme-
diary one, in a way similar to mipmaps in texture analysis.

Higher order models for the phase retrieval algorithm One of the
complex-wave retrieval algorithm’s hypotheses is that the quantities
to retrieve are constant over the neighborhood of the pixel of interest.
Higher-order models could be considered.

Alternate norm minimization The minimization in Eq. (4.4) is a
least-squares minimization, which corresponds to a L2 norm. We are
working on methods to retrieve solutions that minimize generalized
Lp-norms, in particular for p = 1. This should allow to overcome a typ-
ical drawback of least-squares fits, namely that a single outlier may
completely corrupt the result.

Comparison with other phase retrieval algorithms There exist a
wide range of phase retrieval algorithms that are able to demodulate
interferograms with closed fringes [114, 115, 188]. It would be instruc-
tive to compare these algorithms with the approach we propose in
Chapter 4.

Extend the experiments It is only recently that phase retrieval tech-
niques have been generalized to be applied in conjunction with white
light microscopy [6,29,115]. These methods aim at using white light il-
lumination to retrieve phase information using specific assumptions
and techniques (phase gradient, transport of energy equation).

The phase retrieval algorithm we have presented may be gener-
alized to higher dimensions (e.g. several holograms). This supple-
mentary information may be used to solve interferometry problems
in more general situations, e.g. white light, low coherence.

0001111011 12
3

-
6.

CO
MP

AR
IS

ON
S

AN
D

CO
NC

LU
SI

ON



Furthermore, the algorithm is suitable for even more general se-
tups than those containing lenses. More general reference waves, for
example, generated by the light’s diffraction by a single point or slit,
may be considered. This may possibly permit to relax the require-
ments on the light source’s (temporal) coherence. In particular, a con-
figuration for three-dimensional holographic micro-imaging at visi-
ble, ultraviolet and X-ray wavelength that would fit into this model is
that proposed by Boyer et al. [22].
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Appendix A

Fourier Transform Properties

Definitions
Fourier transform:

f̂ (ν) =
∫ +∞

−∞
f (t )exp(−2πi tν)dt , f ∈ L1(R) (A.1)

Inverse Fourier Transform:

f (t ) =
∫ +∞

−∞
f̂ (ν)exp(2πi tν)dν a. e. (A.2)

Properties
In the sense of distributions [179], we have:

∀φ ∈ S, 〈 f̂ ,φ〉 = 〈 f , φ̂〉. (A.3)

Parseval and Plancherel Formulas:

〈 f , g 〉 = 〈 f̂ , ĝ 〉 (A.4)

‖ f ‖2 = ‖ f̂ ‖2. (A.5)

Heisenberg uncertainty relation Let f ∈ L2(R). We have following
inequality:

σ2
f σ

2
f̂
≥ 1

16π2
. (A.6)

This inequality is an equality if and only if there exist t0,ω0, b real and
a complex amplitude a such that:

f (t ) = a eiω0t e−b(t−t0)2
. (A.7)

Other properties are summarized in Table A.I. In Table A.II we
have gathered some useful Fourier transform pairs.
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Property Function Fourier Transform

f (t ) f̂ (ν)

Inverse f̂ (t ) f (−ν) (A.8)

Convolution f1 ∗ f2(t ) f̂1(ν) f̂2(ν) (A.9)

Multiplication f1(t ) f2(t ) f̂1 ∗ f̂2(ν) (A.10)

Translation f (t − t0) exp(−2iπt0ν) f̂ (ν) (A.11)

Modulation exp(2iπν0t ) f (t ) f̂ (ν−ν0) (A.12)

Scaling f

(
t

s

)
|s| f̂ (sν) (A.13)

Time derivatives f (p)(t ) (2iπν)p f̂ (ν) (A.14)

Frequency derivatives (−2iπt )p f (t ) f̂ (p)(ν) (A.15)

Complex conjugate f ∗(t ) f̂ ∗(−ν) (A.16)

Hermitian symmetry f (t ) ∈R f̂ (−ν) = f̂ ∗(ν) (A.17)

TABLE A.I

FOURIER TRANSFORM PROPERTIES

Function Fourier transform

δ(x) 1 (A.18)

δ(x −a) exp(−2πi aν) (A.19)

exp(2πi ax) δ(ν−a) (A.20)

rect(x) =


1 if |x| < 1/2,

1/2 if |x| = 1/2,

0 if |x| > 1/2

sinc(ν) = sin(πν)

πν
(A.21)

sinc(x) = sin(πx)

πx
rect(ν) (A.22)∑

k
δ(x −k)

∑
k
δ(ν−k) (A.23)

TABLE A.II

FOURIER TRANSFORM PAIRS
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Poisson Summation Formula
Eq. (A.3) and Eq. (A.23) imply the Poisson summation formula:∑

n
f (n) =∑

n
f̂ (n). (A.24)

A direct consequence is that

∞∑
n=−∞

δ(x −n) =
∞∑

n=−∞
exp(−2πi nx). (A.25)

If we convolve both sides with f̂ (x), we obtain:

∞∑
n=−∞

f (n)exp(−2πi nν) =
∞∑

n=−∞
f̂ (ν−n). (A.26)

An usefull Dirac delta property is:

δ(sx) = (1/s)δ(x). (A.27)

Compatible Software-Conventions
MATHEMATICA:
fhat[ν_]=FourierTransform[f[t],t,ν,

FourierParameters → {0, -2 π}]
f[t_]=InverseFourierTransform[fhat[ν],ν,t,

FourierParameters → {0,-2 π}]

MATLAB Fast Fourier Transform [33]:
fhat=fft(f);
f=ifft(fhat);
where f and fhat are vectors of length N (indexed from 1 to N) con-
structed as follows:

fhat(n) =
N−1∑
k=0

f(k)exp(−2iπ(n −1)k/N) (A.28)

f(n) = 1

N

N−1∑
k=0

fhat(k)exp(2iπ(n −1)k/N). (A.29)
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Appendix B

Fresnel Transform Properties

Important properties of the Fresnel transform are summarized in Table B.I.

Property Function Transformed Function

f (x) f̃τ(x)

Duality ( f̃τ)∗(x) f ∗(x) (B.1)

Additivity f̃σ(x) f̃(σ2+τ2)1/2 (x) (B.2)

Translation f (x −x0) f̃τ(x −x0) (B.3)

Scaling f
(x

s

)
f̃τ/s

(x

s

)
(B.4)

Modulation ei 2πν0x f (x) ei 2πν0x e−iπν2
0τ

2
f̃τ(x −ν0τ

2) (B.5)

Differentiation (1) f ′(x) ( f̃τ)′(x) (B.6)

Differentiation (2) f ′(x)
2iπ

τ2

(
x f̃τ(x)− (x f )∼τ (x)

)
(B.7)

Convolution ( f ∗ g )(x) e−iπ/4( f̃τ1 ∗ g̃τ2 )(x), τ2
1 +τ2

2 = τ2 (B.8)

Chirp
1

ρ
eiπ(x/ρ)2

f (x)
1√

ρ2 +τ2
e

iπ x2

ρ2+τ2 f̃ τρp
ρ2+τ2

(
ρ2

ρ2 +τ2
x

)
(B.9)

General
1

ρ1
eiπ(x/ρ1)2

f̃τ1

( x

s1

) 1

ρ2
eiπ(x/ρ2)2

f̃τ2

( x

s2

)
ρ2

2 = τ2 +ρ2
1

s2 = s1ρ
2
2/ρ2

1

τ2
2 =

(
τρ1

s1ρ2

)2

+τ2
1 (B.10)
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