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Abstract

In this thesis, we describe new approaches and methods for recon-
structing complex-valued wave fields from digital holograms. We fo-
cus on Fresnel holograms recorded in an off-axis geometry, for which
operational real-time acquisition setups readily exist.

The three main research directions presented are the following.
First, we derive the necessary tools to port methods and concepts
of wavelet-based approaches to the field of digital holography. This
is motivated by the flexibility, the robustness, and the unifying view
that such multiresolution procedures have brought to many applica-
tions in image processing. In particular, we put emphasis on space-
frequency processing and sparse signal representations. Second, we
propose to decouple the demodulation from the propagation prob-
lem, which are both inherent to digital Fresnel holography. To this
end, we derive a method for retrieving the amplitude and phase of the
object wave through a local analysis of the hologram’s interference
fringes. Third, since digital holography reconstruction algorithms in-
volve a number of parametric models, we propose automatic adjust-
ment methods of the corresponding parameters.

We start by investigating the Fresnel transform, which plays a cen-
tral role in both the modeling of the acquisition procedure and the
reconstruction of complex wave fields. The study of the properties
that are central to wavelet and multiresolution analysis leads us to de-
rive Fresnelets, a new family of waveletlike bases. Fresnelets permit
the analysis of holograms with a good localization in space and fre-
quency, in a way similar to wavelets for images. Since the relevant
information in a Fresnel off-axis hologram may be separated both in
space and frequency, we propose an approach for selectively retriev-
ing the information in the Fresnelet domain. We show that in certain
situations, this approach is superior to others that exclusively rely on
the separation in space or frequency.

We then derive a least-squares method for the estimation of the
object wave’s amplitude and phase. The approach, which is reminis-
cent of phase-shifting techniques, is sufficiently general to be applied
in a wide variety of situations, including those dictated by the use of
microscopy objectives.

Since it is difficult to determine the reconstruction distance man-
ually, we propose an automatic procedure. We take advantage of our
separate treatment of the phase retrieval and propagation problems
to come up with an algorithm that maximizes a sharpness metric re-
lated to the sparsity of the signal’s expansion in distance-dependent
Fresnelet bases.

Based on a simulation study, we suggest a number of guidelines
for deciding which algorithm to apply to a given problem. We com-
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pare existing and the newly proposed solutions in a wide variety of
situations. Our final conclusion is that the proposed methods result
in flexible algorithms that are competitive with preexisting ones and
superior to them in many cases. Overall, they may be applied in a
wide range of experimental situations at a low computational cost.
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Version Abrégée

Fresnelettes, franges d’interférences et holographie digitale

Dans cette these, nous proposons de nouvelles approches et mé-
thodes pour la reconstruction de champs d’ondes a valeurs complexes
a partir d’hologrammes digitaux. Nous nous concentrons sur des ho-
logrammes de type Fresnel, enregistrés dans une géométrie hors axe,
pour laquelle des systemes d’acquisition en temps réel existent ac-
tuellement.

La recherche présentée est articulée selon trois axes principaux.
Premierement, nous dérivons les outils nécessaires pour transférer
des méthodes et concepts de 'approche multirésolution au domaine
del’holographie digitale. Cette démarche est motivée par la flexibilité,
la robustesse et la vision unificatrice que les ondelettes ont apportées
a de nombreuses applications en traitement d’'images. Nous nous in-
téressons en particulier au traitement espace-fréquence et aux repré-
sentations concises de signaux. Deuxiemement, nous proposons de
découpler les deux problemes inhérents a ’holographie digitale de
Fresnel, & savoir ceux liés a la démodulation et a la propagation. A
cette fin, nous dérivons une méthode d’estimation de I'amplitude et
de la phase de I'onde objet a 'aide d’'une analyse locale des franges
d’interférence de I'hologramme. Troisiemement, les algorithmes de
reconstruction en holographie digitale étant basés sur plusieurs mo-
deles paramétriques, nous proposons des méthodes automatiques
d’ajustement des parametres impliqués.

Nous commencons par étudier la transformée de Fresnel qui joue
un role majeur tant dans la modélisation de la procédure d’acquisi-
tion que dans la reconstruction de champs d’ondes a valeurs com-
plexes. L'étude des propriétés centrales a la théorie des ondelettes et
de I'analyse multirésolution nous conduit a dériver les Fresnelettes,
une nouvelle famille de bases de type ondelette. Les Fresnelettes per-
mettent’analyse des hologrammes avec une bonne localisation dans
I'espace et les fréquences, comme les ondelettes pour le traitement
d'images. Comme l'information encodée dans un hologramme hors
axe de type Fresnel peut étre séparée a la fois dans I’espace et les fré-
quences, nous proposons une approche pour la récupérer de maniere
sélective dans le domaine des Fresnelettes. Comparée a d’autres mé-
thodes basées exclusivement sur la séparation dans I’espace ou dans
le domaine des fréquences, cette approche conduit a une qualité de
reconstruction supérieure dans de nombreuses situations.

Nous dérivons ensuite une méthode d’estimation par moindres
carrés de 'amplitude et de la phase de 'onde objet. Cette approche,
qui rappelle certaines techniques de décalage de phase, est suffisam-
ment générale pour étre appliquée dans une grande variété d’arrange-
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ments expérimentaux, y compris ceux avec un objectif de microscope.

Comme il est difficile de déterminer la distance de reconstruction
manuellement, nous proposons une procédure automatique. Notre
traitement séparé des problemes d’estimation de phase et de propa-
gation nous permet de proposer un algorithme qui maximise une mé-
trique de netteté apparentée a la capacité de représenter le signal de
maniere concise dans des bases de Fresnelettes dépendantes de la
distance.

Enfin, nous donnons des directives pour guider le choix de I'algo-
rithme en fonction d'un probleme donné. A cet effet, nous effectuons
une étude de simulation et comparons des méthodes existantes a
celles nouvellement proposées dans une large palette de situations.
Nous concluons que ces dernieres résultent en des algorithmes a la
fois flexibles et dont la qualité de reconstruction est compétitive voire
en de nombreux cas supérieure a celle d’autres approches. De ma-
niere générale, ils peuvent étre appliqués dans une gamme élargie de
situations expérimentales tout en limitant les cotits de calcul.
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Zusammenfassung

Uber Fresnelets, Interferenzmuster und digitale Holographie

Vorliegende Dissertation befasst sich mit neuen Konzepten und
Methoden fiir die Rekonstruktion komplexer Wellenfelder, ausgehend
von digitalen Hologrammen. Wir beschrdanken uns auf Fresnelholo-
gramme, die in einer off-axis Anordnung aufgenommen wurden und
wofiir Echtzeit Datenerfassungssysteme bereits bestehen.

Die hier vorgestellte Forschungsarbeit hat drei Hauptschwerpunk-
te. Erstens leiten wir die notwendigen Hilfsmittel her, um Methoden
und Konzepte der Multiresolutionsanalyse auf das Gebiet der digita-
len Holographie zu tibertragen. Dieses Vorgehen wird durch die Fle-
xibilitdt, Robustheit, sowie die vereinheitlichende Darstellungsweise
motiviert, welche den Wavelets bereits zu zahlreichen Anwendungen
in der Bildverarbeitung verholfen haben. Insbesondere interessieren
wir uns fiir die Verarbeitung im Raum- und Frequenzbereich und fiir
sparsame Signaldarstellungen. Zweitens schlagen wir vor, die beiden
Probleme der digitalen Fresnel Holographie, ndmlich das Demodula-
tionsproblem und das Propagationsproblem, zu entkoppeln. Zu die-
sem Zweck leiten wir eine Methode zur Ndherung der Amplitude und
der Phase der Objektwelle mittels einer lokalen Analyse der Interfe-
renzstreifen des Hologramms her. Drittens konzentrieren wir uns auf
automatische Justierungsmethoden der auftretenden Parameter, zu-
mal Holographie Rekonstruktionsalgorithmen auf mehreren parame-
trischen Modellen basieren.

Wir beginnen mit der Betrachtung der Fresnel Transformation, die
sowohl beim Modellieren des Akquisitionsverfahrens, als auch bei der
Rekonstruktion komplexer Wellenfelder eine zentrale Rolle spielt. Die
Untersuchung der Eigenschaften, die fiir die Wavelet- und Multireso-
lutionsanalyse von Bedeutung sind, fiihrt uns auf die Herleitung ei-
ner neuen Familie von Wavelet-artigen Basen: der Fresnelets. In dhn-
lichem Masse wie Wavelets fiir Bilder, ermoglichen Fresnelets die Ana-
lyse von Hologrammen mit guter Lokalisierung in Raum- und Fre-
quenzbereich. Da die relevanten Informationen in einem Fresnel off-
axis Hologramm sowohl im Raum-, wie auch im Frequenzbereich ge-
trennt werden konnen, schlagen wir eine Methode vor, um die Infor-
mation im Fresnelet Bereich selektiv wiederzugewinnen. In zahlrei-
chen Situationen weisen wir die Uberlegenheit dieses Verfahrens ge-
geniiber anderen nach, die ausschliesslich auf der Trennung im Raum-
oder Frequenzbereich beruhen.

Wir entwickeln danach eine Methode zur Schéatzung der Ampli-
tude und der Phase der Objektwelle im Sinne der kleinsten Quadra-
te. Das Konzept, das an gewisse Phasenverschiebungstechniken ge-
mahnt, ist hinreichend allgemein, um in einer grossen Vielfalt von Si-
tuationen anwendbar zu sein, einschliesslich solcher, welche die An-
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wesenheit von Mikroskop Objektiven umfassen.

Da es schwierig ist die Rekonstruktionsdistanz manuell zu ermit-
teln, schlagen wir hierfiir ein automatisches Verfahren vor. Dabei ge-
reicht es uns zum Vorteil, dass wir die Probleme der Phasen Rekon-
struktion und der Propagation separat behandeln. Dies is ndmlich
Voraussetzung eines neuen Algorithmus zur Maximierung einer Schir-
femetrik, die verbunden ist mit der Eigenschaft der distanzabhdngi-
gen Fresnelet Basen, ein Signal mit moéglichst wenig Koeffizienten dar-
zustellen.

Schliesslich schlagen wir Richtlinien vor, zur Auswahl angemes-
sener Algorithmen fiir jeweils gegebene Probleme. Dazu vergleichen
wir in einer Simulationsstudie, das Verhalten von herkommlichen und
den neu vorgeschlagenen Methoden in einer Vielfalt von Situationen.
Wir halten fest, dass die vorgeschlagenen Methoden zu flexiblen und
rechensparsamen Algorithmen fiihren. Sie konnen in einer breiten Pa-
lette von experimentellen Situationen angewandt werden und erwei-
sen sich in vielen Féllen den herkommlichen iiberlegen.
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Chapter 1

Introduction

1.1 Digital Off-Axis Holography

Whenever an object is illuminated with a coherent light source, the
transmitted or reflected wave carries information on the sample’s op-
tical and physical properties. In the close vicinity of the object, the
light intensity is related to its reflectance or attenuation while the
phase is related to its topography or thickness. Light sensors, such
as photographic film or digital cameras, may be used to measure the
intensity of the incoming light, but they fail to capture its phase. This
crucial information is therefore lost. From a mathematical point of
view, this type of measurement is equivalent to evaluating the squared
modulus of a complex number, an operation which clearly discards
the phase.

When Gabor proposed “a new two-step method of optical imagery”
[63] more than fifty years ago, his aim was to improve the resolution
of electronic microscopes, which suffer from limiting aberrations, no-
tably because of the lack of concave electron lenses [205, p. 133]. In
the sequel, holography has become a major pillar of modern optics
and imaging. The two steps that form the essence of holography are:

* Therecording of information about a wave field, the object wave,
in a form and on a medium suitable for later reconstruction.

* The reconstruction or retrieval of the original object wave from
the information stored during the first step, and some a priori
knowledge on the recording conditions.

The wave field’s phase, polarization, coherence, etc., are characteris-
tics that may typically be stored in a hologram. The fact that these
quantities cannot be measured directly with conventional detectors,
which are only sensitive to the wave field’s intensity, makes holographic
techniques particularly attractive. The acquisition process consists in
recording (for example on a photographic plate) the interference be-
tween the object wave and a reference wave. This requires the two
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Fig. 1.1.  Digital holography in a nutshell. We are interested in retrieving the
complex-valued wave front ¥ (x) in the vicinity of the object from the real-valued
measurements of the intensity I(x) = |V (x) + R®)|? (the hologram), where ¥ (x) is
the propagated object wave (propagation is modeled by the Fresnel transform), and
R(x) = AX) expli(kxx + kyy)] the reference wave, both evaluated in the CCD plane.

waves to be coherent.! The reconstruction may be achieved optically,
by illuminating the (chemically processed) hologram with a replica of
the reference wave.?

This thesis investigates several aspects of one particular instance
of holography, namely digital holography. The interference pattern—
the hologram—is recorded by a digital camera (CCD) and the retrieval
of the object wave is done numerically. We focus on new approaches
and methods to perform the second, reconstruction step.

As a prerequisite, we need a model that faithfully describes the ac-
quisition process. Leith and Upatnieks [123] showed that “[the] con-
struction of the hologram constitutes a sequence of three well-known
operations: a modulation, a frequency dispersion, and a square-law
detection” (see Fig. 1.1). In light of this analysis, they have proposed
an acquisition procedure, which allows for an unperturbed reconstruc-
tion by illuminating the hologram with the reference wave: In the
so-called off-axis geometry, the object and reference wave travel in
different directions. The object wave is thus separated from the ref-
erence wave. In image processing terms, this geometry implies the
presence of interference fringes in the recorded hologram or, equiva-
lently in signal processing terms, the presence of a carrier frequency
or modulation. We will consider off-axis geometries throughout this
thesis. One arrangement that is often used is to record the distribu-
tion of intensity in the hologram plane at the output of a Michelson
interferometer where one of the mirrors is slightly tilted (for a sneak
preview, see Fig. 2.6, p. 47). The digital reconstruction of the complex
wave (amplitude and phase) near the object is based on the Fresnel
transform, an approximation of the diffraction integral [72].

IThe lack of powerful coherent sources until the availability of the first lasers
[138] explains why holographic techniques have only truly taken off in the Sixties.

2The reconstructing wave need not be the same as the reference (it need not even
necessarily be of high coherence). However, there needs to be a special acquisition
setup for recording holograms that are to be reconstructed with white light [10].
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1.2 Motivations and Contributions

Digital holography brings along many advantages. There is no chem-
ical film processing. Acquisition can be performed in real-time, in-
cluding during the alignment and adjustment procedure of the opti-
cal elements. Digital reconstructions offer quantitative access to the
physical quantities of interest. The processing possibilities (aberra-
tion compensation, etc.) are almost limitless.

Although the Greek etymology of the word hologram seems to
presuppose a system capable of recording the entire (holos) message
(gramma) carried by the wave, the amount of information that may
actually be accessed is limited. Compared to photographic film which
may be used for recording very fine fringes ( ~ 5000 lines/mm), cur-
rently available CCDs offer poor performances ( ~ 500 lines/mm for a
CCD with pixel size ~ 10 um). The recording medium is of lower di-
mensionality than the information to be stored on it: it corresponds
to a 2D array of positive real numbers, whereas the wave field is com-
plex valued, 3D, and possibly vectorial if polarization is taken into ac-
count. A large sampling step therefore implies that it is only partially
possible to compensate for this mismatch. Additional digital hologra-
phy constraints are:

* Digital cameras offer limited resolution (discussed above).
* The support size of currently available cameras is small.

* A computer is used for reconstruction and storage; speed and
storage capacity therefore play an important role.

* All optical elements and phenomena (including propagation,
the presence of lenses or imperfect optics) need to be modeled
accurately; this is not required when the reconstruction is done
optically, since an aberration may be compensated by an opti-
cal element.

* Noise may corrupt the result and the algorithms may become
unstable.

These constraints, which are specific to digital holography, are com-
mon to many image processing problems. The design of effective
reconstruction algorithms should therefore take advantage of recent
developments in this field; the methods we present in the subsequent
chapters aim at pushing back the above constraints.

Wavelets and, more generally, multiresolution approaches have
contributed recently to dramatic advances in several areas of image
processing. These range from image compression standards® to ro-

3The recently adopted JPEG 2000 image compression standard [90] recommends
to code wavelet coefficients rather than discrete cosine transform coefficients, as in
the old standard.
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bust, elegant, and flexible multiresolution algorithms that lead to in-
verse problem solutions for applications such as computerized tomog-
raphy [12, 19, 85], image registration [203], denoising [45, 221], etc.
This has motivated our efforts to adapt some of these techniques to

digital holography. In order to derive the necessary tools for achieving

this, we need to analyze one of the two ingredients of digital Fresnel

holography: the Fresnel transform.

Most digital hologram reconstruction algorithms mimic the phys-
ical reconstruction procedure and suffer from a number of artifacts
that need to be treated separately. Our approach follows the flow
graph of the acquisition model (see Fig. 1.1), but in reverse order.
First, we solve the square-law detection and demodulation problem
and, in a second step, the propagation problem. This decoupling is
made possible thanks to a new algorithm that can retrieve the ampli-
tude and phase in several non-standard situations (e.g. including the
presence of a microscope objective). Since the procedure relies on a
parametric acquisition model, we can term it parametric fringe anal-
ysis.

A convenient by-product of the decoupling approach is that it pro-
vides us with a procedure for the simulation of the forward model,
which allows us to try out a wide range of experimental situations and
compare reconstruction algorithms on a quantitative basis.

Digital holography reconstruction algorithms rely on parametric
models. Once the model is set, the parameters involved need to be
tuned, which might be tedious if done manually. We therefore con-
centrate on methods for their automatic adjustment.

1.3 Related Work

To give a general picture of available digital holography reconstruc-
tion methods, we review the main developments carried out since
their conception. Because wavelets play a central role in our formu-
lation, we also give an overview of wavelet applications and theory in
optics, especially in the restricted context of propagation, demodula-
tion, and fringe analysis. We refer to further literature in later chap-
ters whenever appropriate.

1.3.1 Reconstructing Digital Holograms: an Overview

The reconstruction of holograms by computer goes back to the late
Sixties, some twenty years after the publication of Gabor’s landmark
papers [62-64]. Methods were first proposed by Goodman and Law-
rence [73], Kronrod et al. [109] and Yaroslavsky and Merzlyakov [225].

Important steps in the evolution of the technique and algorithms
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have been: the use of a CCD camera to acquire the hologram [185],
acquisition through endoscopic devices [34], the reconstruction of
the phase in addition to the amplitude [36, 37, 39], the measurement
of polarization states [32], and stress analysis [170]. The use of dig-
ital holography at high wavelength has been demonstrated recently
[2]. Other developments include phase imaging without 27 ambigu-
ity by multi-wavelength digital holography [68]. Several aberration
compensation techniques [37, 41, 52,53, 89, 122, 168, 198] have been
described. Digital holography has also been used extensively for de-
termining particle location in 3D [152, 156, 163, 167].

A recent evolution of digital holography is its application to mi-
croscopy, which allows for truly noninvasive examination of biologi-
cal samples. The power of digital holography techniques for biomed-
ical applications has been recognized early on [11, 22, 121]. Tomo-
graphic reconstruction using a wavelength scanning technique have
also been reported [100].

Highly promising results have been obtained by Cuche, Marquet
and co-workers who were able to monitor changes in the morphol-
ogy of living organisms in real time using digital holographic micros-
copy [31,37]. The technique has been further refined to allow the vi-
sion in turbid media by use of low coherence sources [143]. Its per-
formances are close to confocal and electron microscopy but it has
numerous advantages:

e Itis noninvasive (low intensity, safe radiation).
¢ It allows for 3D measurements.
e It offers high resolution (subwavelength in the axial direction).

 Since no scanning is involved, it is faster than most other mi-
croscopy techniques and may operate in real time.

e No vacuum is required.

* It works in the presence of ambient light.

From the algorithmic point of view, much effort has been put into
algorithms that aim at removing the zero and minus 1 order terms
from the reconstructions [38, 106, 133] or at avoiding their presence
[43]. These terms still remain a determining factor that limits the qual-
ity of the reconstructions. Sampling is a central issue in digital algo-
rithms, and it has been studied extensively [3, 4, 49, 93, 107, 108, 116,
118,161]. Methods that solve specific problems include a Gerchberg-
Saxton-like iterative algorithm to improve the reconstructions [77] or
specific implementations of the Fresnel transform [226,227]. Finally,
a general methodology for reconstructing digital holograms that in-
herently takes into account the statistical nature of the measured data
[197] has also been proposed recently.
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It is interesting to note that parallel developments have been car-
ried through within several research communities, which consider
different radiations. Although the algorithms are often similar, the
literature is distinct. For instance, X-Ray holography requires algo-
rithms that perform mainly in in-line geometries [28, 102] because
of the lack and expense of efficient mirrors and are sometimes remi-
niscent of crystallographic techniques [145]. Aside from X-rays, algo-
rithms have been developed for acoustical holography [84, 228, 230],
but the techniques most similar to optical digital holography can be
found in electron microscopy [205]. Techniques have been developed
for both in-line [131] and off-axis holography [120,151]. Commercial
software packages are available for the latter (217, 218]. Beside the
more conventional Fourier techniques [214], there are approaches
based on neural networks [149], genetic algorithms [119] or linear
programming [80]. The ability of (digital) holography to correct for
aberration has also been exploited [119, 134]. Investigations to deter-
mine the optimal sampling conditions [91, 92, 99], including simula-
tions [154], have been carried out as well.

As the range of applications gets broader, demands toward better
image quality increases. Suppression of noise, higher resolution of
the reconstructed images, precise parameter adjustment and faster,
more robust algorithms are the essential issues.

1.3.2 Wavelet Applications and Theory in Optics

The use of wavelets in the field of optics dates back to the early years
of wavelet theory. We do not cover all applications of wavelets in op-
tics* but concentrate on those relevant to digital holography, propa-
gation, fringe analysis, and demodulation.

In optics, wavelets usually appear either under the form of optical
implementations of the wavelet transform, or in connection to prop-
agation theory or image processing. Optical implementation of the
(continuous) wavelet transform have been proposed at an early stage
of wavelet development [59,191]. Lebrun et al. [117] proposed a holo-
gram reconstruction technique based on an optical implementation
of the continuous wavelet transform. Hologram reconstruction by
use of a digital CWT implementation had been proposed previously
by Onural and Kocatepe [162]. An interesting result that comes out of
their analysis is that the 3D structure can be completely recovered if
one gets access to measurements in several successive planes. Onural
and Ozgen used a related transform, the Wigner transform, for similar
purposes [163]. The wavelet transform was also applied to hologram
analysis, again for determining the 3D location of particles [24].

“A more detailed picture of the development until 1996 is available in the review
article by Li et al. [125].
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Theoretical developments have been reported mainly in the do-
main of wave propagation. Kaiser [97] proposed solutions to the Max-
well equations in terms of a superposition of spherical wavelets in-
stead of the more conventional plane waves. Onural [160], Onural
and Kocatepe [162] proposed a formulation of the Fresnel diffraction
formula that makes it isomorphic to the continuous wavelet trans-
form, provided the commonly-used admissibility condition is appro-
priately extended. Sheng et al. [190] showed that the wavelets pro-
posed by Kaiser reduce to Huygens wavelets, thus making a formal
link between the Huygens principle and the continuous wavelet the-
ory some 300 years after Huygens' Traité de la lumiére appeared.®
Under the Fresnel approximation, these wavelets then become those
proposed by Onural [160], and Onural and Kocatepe [162]. Battle [9]
designed spherically harmonic Huygen([s] wavelets that form an or-

A common misbelief is that the term ‘wavelet’ was introduced by Huygens in
1678. This is probably due to the fact that the term ‘Huygens wavelet’ is widely used
in most optics books (including the classical text by Born and Wolf [20], who use the
term ‘wavelet’ since their first edition in 1959 to describe the Huygens principle).
It is unlikely, however, that Huygens introduced this term, since it is absent from
the original manuscript, which he wrote in French. There, he uses the term on-
des élémentaires [87, p. 18] (elementary waves). Fresnel, who completed Huygens’
principle by combining it with that of interferences, was neither using the word
wavelet (nor ondelette). Probably because his reasoning (like Huygens’) was based
on vibrating ether particles, he used the term vibrations élémentaires [58, p.209] (el-
ementary vibrations). In 1869, E. Verdet, who published and commented Fresnel’s
work [58] calls the principle “principe des ondes enveloppes [215]” and uses the term
ondes élémentaires (elementary waves) rather than ondelettes which seems not to
have been used at that time. Rayleigh [200] (1887) speaks of ‘secondary waves'.
Poincaré [172, p. 79] (1889) uses the term ondes élémentaires. Kirchhoff [101, p.
22] (1891), who put the diffraction theory on a sound basis and proposed a reason-
ing mainly based on differential equations, banishes the idea of elementary waves
altogether. At the beginning of the Twentieth Century, textbooks in French were not
using the term ondelette neither: Wallon [219, p. 6] speaks of centres d’ébranlement
secondaires. The term wavelet is present in Ch. E Meyer’s book [148, p. 266] (1934)
aswell as in L. De Broglie’s [40, p.180]. The latter speaks of ondelettes cohérentes (co-
herent wavelets) that emanate from secondary sources located on the wave front’s
surface. But the use of the term wavelet seems not to be universal yet. Sommerfeld,
who authored a mathematical theory on diffraction in 1896 [194], introduces the
Huygens principle in these terms (1967) [195, p 195], ‘[...] Each point of this surface
emits a spherical wave and by constructing the envelope of all these spherical waves
[...]" (1967). Sabra [182, p. 212] speaks of “Huygens’ waves”, and the ‘concept of sec-
ondary waves’. It seems therefore that the term wavelet must have been associated
to Huygens sometime in the beginning of the Twentieth Century.

The Oxford English Dictionary [164] points to a poem by Shelley [189] as one of
the first instances of the word wavelet (about 1813). The diminutive -let is a con-
struction borrowed from French [164]. The French word ondelette probably orig-
inates, in turn, from the Latin diminutive undula [65], that Roman philosopher
Boethius (c.480-¢.525 CE) used in his De musica [16, p. 200] to describe the propa-
gation of sound. It translates to German with Wellchen [17, p. 18], while the English
translation [15, p. 21] calls it a weaker impulse. This is the oldest occurrence of a
wavelet we could trace back.
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thonormal wavelet basis. The latter wavelets are generated dynami-
cally, that is, rather than using translates of a single prototype func-
tion, he uses the classical wave equation in three dimensions to gen-
erate the family. Potvliege [173] proposed waveletlike basis functions,
based on polar basis functions.

The developments of wavelet theory linked to propagation are also
intertwined with that of the fractional-order Fourier transform [144,
157, 165]. There is a tight relation between Fresnel diffraction and
the fractional-order Fourier transform [169]: while the former is eval-
uated on a plane, the latter is evaluated on a spherical surface, whose
radius is related to the fractional order. Mendlovic, et al. [146] intro-
duced a fractional wavelet transform (not to be confused with the frac-
tional wavelets proposed by Unser and Blu [211]). It is essentially a
fractional Fourier transform, followed by a continuous wavelet trans-
form. The fractional order is determined in such a way as to maximize
the mean-square error between the input and the reconstructed sig-
nal. The implementation is optical.

There also exist a number of formulations of the Fresnel transform
in terms of simple building blocks. Hamam and Bougrenet de la Toc-
naye [79] interpret the Fresnel diffraction as the composition of repli-
cas of the original propagated field at well chosen distances related
to Talbot planes. In the same spirit, Hamam [78] proposed a formula-
tion of the Fresnel transform using functions that are self-similar and
localized. It is however limited to periodic functions.

Another, application of wavelets in optics, closely related to our
problem, is the demodulation of interference signals. These signals
are usually 1D, or at least, they are treated as if they were 1D. Wave-
let techniques to determine the local frequency of a signal are mainly
based on the fact that the phase of the continuous wavelet transform
of an interference pattern using an analytical wavelet is related to the
phase of the signal’s analytical counterpart [42]. White light interfero-
grams have been analyzed by Sandoz [183], and Recknagel and Notni
[178]. Watkins et al. [220] proposed a phase distribution determina-
tion algorithm based on the integration of a phase gradient which
is, in turn, determined by a continuous wavelet transform. A con-
tinuous wavelet transform (using Paul wavelets) has also been used
to evaluate optical phase distributions by Afifi et al. [1]. Cherbuliez
et al. [26,27] used continuous wavelet transforms for dynamic phase
shifting, a technique where the object’s deformation or motion is re-
sponsible for creating the phase shifts. The analysis is performed on
the temporal signal acquired at every pixel. Tomassini et al. [204] an-
alyzed laser plasma interferograms with a continuous wavelet trans-
form ridge extraction technique. More recently, a method that com-
bines spectral interferometry and wavelength multiplexing was intro-
duced for 3D imaging [60]. The decoding relies on the signal analysis
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based on its continuous wavelet transform.

More traditional applications of waveletlike denoising can also
be found in situations that are specific to coherent imaging systems,
namely speckle noise. Wavelet thresholding algorithms for speckle
noise suppression have been proposed and compared [50, 51, 66, 67,
98,112,136].

The approach we follow in Chapter 2 is in many aspects close to
the concept of unitary equivalence proposed by Baraniuk and Jones
[5]. The idea is to go into a transformed domain (via a change of ba-
sis using a unitary transform) thus converting the traditional systems
into new systems with different properties that are possibly better
adapted to existing image processing techniques.

Finally, this review would not be complete without a glimpse at
Gabor wavelets. Meyer [150, Chap. 5] acknowledges Gabor as the
first person to have introduced time-frequency wavelets. However,
he also notices that “difficulties appear when a signal is to be decom-
posed into Gabor wavelets. As long as only continuous decomposi-
tions are considered [...] Gabor wavelets may be used as if they were
an orthonormal basis, but the corresponding discrete algorithms are
either inexistent or require considerable tricks that make them too
complicated”. The stability of Gabor expansions [61] has notably been
studied by Bastiaans [7] and Janssen [94]. Coifman and Meyer showed
that modulated Gaussians can form unconditional Wilson bases of
L, [30]. Yet, the above cited examples lack a representation of func-
tions in stable and nonredundant multiresolution bases. A way to cir-
cumvent this problem is the topic of Chapter 2.

1.4 Organization of the Thesis

The thesis is organized as follows.

In Chapter 2, we present a new family of waveletlike functions:
Fresnelets. They are a conceptual, mathematical, and practical tool
that is of use whenever the Fresnel transform is involved. We give
the mathematical foundations and applications to hologram simu-
lation and reconstruction. An important result that we derive is a
Heisenberg-like uncertainty principle for the Fresnel transform. This
also allows us to review the Fresnel transform’s main properties since
they are involved for the construction of the Fresnelet bases. Two
properties that are inherent to Fresnelets, their space-frequency local-
ization and their energy compaction ability, will be the starting points
for applications described in Chapters 3 and 5, respectively.

In Chapter 3, we take advantage of the first joint localization prop-
erty and come up with a zero-order term and twin-image removal al-
gorithm that takes full advantage of the space-frequency information
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repartition in the Fresnelet domain.

In Chapter 4, we propose an alternative procedure to the optical-
reconstruction-inspired algorithm, that is, the separation of the re-
construction problem into two distinct problems: phase and ampli-
tude retrieval (a fringe analysis, respectively spatial phase-shifting in-
terferometry problem) and propagation simulation. To this end, we
propose a parametric amplitude and phase retrieval method that can
be viewed as a generalization of widely-used (both spatial and tempo-
ral) phase-shifting algorithms. Its main advantage is that it is applica-
ble for complicated setups, including those that include a microscope
objective.

In Chapter 5, we take advantage of the second important property
of Fresnelets, namely their ability to produce sparse representations
of Fresnel fields and holograms. We use this concept to implement
an effective and robust autofocus method, that is, a way to set the
distance parameter automatically.

Finally, in Chapter 6, we compare a number of algorithms (previ-
ously existing and newly proposed ones) in a variety of situations by
quantitative simulation experiments. We conclude that the proposed
methods result in flexible algorithms that are competitive with preex-
isting ones and superior to them in many cases. They are also applica-
ble over a wide range of situations while keeping the computational
cost low.

Chapters 2, 3, and 4 are based on the published Refs. [127-129]. A
paper based on Chapter 5 has been submitted for publication [130].

1.5 Conventions

We use the following definition of the Fourier transform f (v) of a func-
tion f(x)

f :f f(x) exp(—2inxv)dx, (1.1)
flx) = f f(v) expRinvx)dv. (1.2)
With this definition, || f|| = || f . We recall several relevant properties

in Appendix A.
We use the following form of the free-space propagation operator
R4, defined for functions of two variables as the Fresnel transform

pikid
ild

Ry f1x) = f f f&mn eXp{%[(f—X)z +(n— y)zl} dédn,

(1.3)
where A is the wavelength of the light, k) = 27/A its wave number, d
the propagation distance and x = (x, y).
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Chapter 2

Fresnelets: New Multiresolution
Wavelet Bases for Digital Holography

Abstract®— We propose a construction of new waveletlike bases that are well suited for the re-
construction and processing of optically generated Fresnel holograms recorded on CCD-arrays.
The starting point is a wavelet basis of L, to which we apply a unitary Fresnel transform. The
transformed basis functions are shift-invariant on a level-by-level basis but their multiresolution
properties are governed by the special form that the dilation operator takes in the Fresnel do-
main. We derive a Heisenberg-like uncertainty relation that relates the localization of Fresnelets
with that of their associated wavelet basis. According to this criterion, the optimal functions
for digital hologram processing turn out to be Gabor functions, bringing together two separate
aspects of the holography inventor’s work.

We give the explicit expression of orthogonal and semi-orthogonal Fresnelet bases correspond-
ing to polynomial spline wavelets. This special choice of Fresnelets is motivated by their near-
optimal localization properties and their approximation characteristics. We then present an ef-
ficient multiresolution Fresnel transform algorithm, the Fresnelet transform. This algorithm al-
lows for the reconstruction (backpropagation) of complex scalar waves at several user-defined,
wavelength-independent resolutions. Furthermore, when reconstructing numerical hologrames,
the subband decomposition of the Fresnelet transform naturally separates the image to recon-
struct from the unwanted zero-order and twin image terms. This greatly facilitates their sup-
pression. We show results of experiments carried out on both synthetic (simulated) data sets as
well as on digitally acquired holograms.

“This chapter is based on Ref. [127].

2.1 Introduction

In digital Fresnel holography, the hologram results from the interfer-
ence between the wave reflected or transmitted by the object to be
imaged and a reference wave. One arrangement that is often used is
to record the distribution of intensity in the hologram plane at the out-
put of a Michelson interferometer. The digital reconstruction of the
complex wave (amplitude and phase) near the object is based on the
Fresnel transform, an approximation of the diffraction integral [72].
Since Fresnel holography is in essence a lens-less process, sharp de-
tails like object edges tend to be spread out over the entire image
plane. Therefore, standard wavelets, which are typically designed to
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process piecewise smooth signals, will give poor results when applied
directly to the hologram. We present a new family of wavelet bases
that is tailor-made for digital holography.

While analytical solutions to the diffraction problem can be given
in terms of Gauss-Hermite functions [72], those do not satisfy the
completeness requirements of wavelet theory [199] and are therefore
of limited use for digital processing!. This motivates us to come up
with basis functions that are well-suited for the problem at hand. The
approach that we are proposing here is to apply a Fresnel transform
to a wavelet basis of L, to simulate the propagation in the hologram
formation process and build an adapted wavelet basis.

We have chosen to concentrate on B-spline bases for the following
reasons:

* The B-splines have excellent approximation characteristics (in
some asymptotic sense, they are 7 times better than Daubechies
wavelets [13]).

e The B-splines are the only scaling functions that have an analyt-
ical form in both time and frequency domains; hence, there is
at least some hope that we can derive their Fresnel transforms
and associated wavelets explicitly.

* The B-splines are nearly Gaussians and their associated wave-
lets very close to Gabor functions (modulated Gaussians) [207].
This property will turn out to be crucial because we will show
that these functions are well localized with respect to the holo-
graphic process.

This chapter is organized as follows. In Section 2.2, we define the
unitary Fresnel transform in one and two dimensions. In section 2.3
we review several of its key properties that are needed in order to de-
fine the new bases. We also investigate the spatial localization prop-
erties of the Fresnel transform and derive a Heisenberg-like uncer-
tainty relation. In Section 2.4, we define the Fresnelet bases. We
briefly review B-splines and their associated wavelet bases and show
how to construct the corresponding Fresnelet bases. We derive an
explicit closed-form expression for orthogonal and semi-orthogonal
Fresnelet bases corresponding to polynomial spline wavelets. We also
discuss their properties including their spatial localization and mul-
tiresolution structure. In Section 2.5, we show how to implement our
multiresolution Fresnel transform. Finally, in Section 2.6, we apply
our method to the reconstruction of holograms using both simulated
and real-world data.

!In particular, they lack a two-scale relation.
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2.2 Fresnel Transform

2.2.1 Definition

We define the unitary Fresnel transform with parameter 7 € R; of a
function f € L, (R) as the convolution integral

l/texp(im(x/7)?) 7>0

. 2.1
e 4§ (x) 7=0. 1

ﬁm=h*ﬂmmmhuh{
which is well defined in the L, sense. Our convention throughout this
paper will be to denote the Fresnel transform with parameter 7 of a
function using the tilde and the associated index 7. The frequency
response of the Fresnel operator is:

fer(v) = el 17, (2.2)

with the property that |k;(v)| = 1, ¥v € R. As the transform is unitary,
we get a Parseval equality:

Vi geL®  (f,&=(f &) 2.3)
and for f = g a Plancherel equality:
VieL®  Ifl=Ifl. (2.4)

Therefore, we have that f, € L»(R). The inverse transform in the space
domain is given by:

1/texp(—im(x/1)?) >0
e 15 (x) 7=0.
(2.5)
It is simply derived by conjugating the operator in the Fourier do-
main:

F0) = (frxk; Y (x) with k71 (x) = &k (x) = {

) = o= i% eIV’ _ k (v). (2.6)

2.2.2 Example: Gaussian Function

The Fresnel transform of the Gaussian function:
g(x) = e oY @2.7)

is again a Gaussian, modulated by a chirp function:

—nm(xloh? im(xIT)?

gx)=ae e (2.8)

where a = e!™4 (g /(02 + i7%)'/?) is the complex amplitude, o'* = (0 +
%) /02 is the new variance and 7% = (0* + 7%)/72 is the chirp param-
eter. As the parameter 7 increases, the variance and therefore the
spatial spreading of the transformed function increases as well. We
further investigate this particular aspect of the Fresnel transform in
Subsection 2.3.5.
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2.2.3 Two-Dimensional Fresnel Transform

We define the unitary two dimensional Fresnel transform of parame-
ter T € R* of a function f € L,(R?) as the 2D convolution integral

f® =0y =(f*K)® 2.9)

where the kernel is:
L in(ixiim?
Kx)=—e . (2.10)
T

A key property is that it is separable:
1 .
K, (x) = ; el7r(||X||/T)2 — ]C-[()C) kr(y) 2.11)

Thus, we will be able to perform most of our mathematical analysis
in one dimension and simply extend the results to two dimensions by
using separable basis functions.

Up to a complex multiplicative constant, this definition is equiva-
lent to the free-space propagation formula in the Fresnel approxima-
tion, which relates the complex values of a propagating wave, mea-
sured in two planes perpendicular to the direction of propagation and
separated by a distance d. Specifically, we have

ikyd .
Ud(x,y)zel.]L y f U(é,n)exp(%((é—x)2+(n—y)2) dédn (2.12)
=—ie™ 0. (x,y), 1=VAd, (2.13)

where A is the wavelength of the light an k) = 27/ its wavenumber.
In other words, the amplitudes and phases of the wave at two differ-
ent depths are related to each other via a 2D Fresnel transform.

2.3 Properties of the Fresnel Transform

Conventional wavelet bases are built using scaled and dilated versions
of a suitable template. For building our new wavelet family, it is thus
essential to understand how the Fresnel transform behaves with re-
spect to the key operations in multiresolution wavelet theory; i.e. dila-
tion and translation. In Subsections 2.3.1 to 2.3.4, we recall properties
of the Fresnel transform that are central to our discourse but are also
documented in the optics literature [72, pp. 114-119]. In Subsection
2.3.5, we give a new result, which is an uncertainty relation for the
Fresnel transform. For clarity, the results are presented for 1D func-
tions but, using the separability property, they can easily be extended
to 2D functions.

0000100000 © 9



2.3.1 Duality

To compute the inverse of the Fresnel transform we can use following
dual relation:

FFo=(R), ®, felL®. (2.14)

Computing the inverse Fresnel transform of a function is therefore
equivalent to taking its complex conjugate, computing the Fresnel
transform and again taking the complex conjugate. In other words,
the operator f — (f;)* is involutive.

2.3.2 Translation

As the Fresnel transform is a convolution operator, it is obviously shift-
invariant:

(fC—x))7 (%) = fi(x—x0), X €R. (2.15)

2.3.3 Dilation

The Fresnel transform with parameter 7 of the dilated function f(x/s)
is:

(f(é));(x) :ﬁ/s(f), seR. (2.16)

This relation involves a dilation by s of the Fresnel transform of f with
a rescaled parameter 7/ = 7/s. This ratio also appears in the defini-
tion of the so-called Fresnel number Nr = (s/1)%, where 12 = Ad; it
is used to characterize the diffraction of light by a square aperture of
half-width s and at a distance d [72].

2.3.4 Link with the Fourier Transform

So far, we have considered the Fresnel transform as a convolution op-
erator. Interestingly, there is also a direct multiplicative relation with
the Fourier transform [72]. Computing the Fresnel transform g; of a
function g € L,(R) can be done by computing the Fourier transform
of an associated function f(x) = 7k;(x)g(x). The frequency variable
is then interpreted as an appropriately scaled space variable:

gm=hmﬂ§} 2.17)

2.3.5 Localization Issues

Our approach for the construction of a Fresnelet basis will take a wave-
let basis and transform it. This still leaves many possibilities to choose
the original basis. A suitable basis should take into account one of
the least intuitive aspects of holography, namely that the propagation
process tends to spread out features that are initially well localized in
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the object domain. Getting a better understanding of the notion of
resolution in holography and setting up a criterion that will guide us
in the choice of an optimal wavelet is what we are after in this section.

The tight link between the Fresnel and the Fourier transform (2.17)
suggests that they should both have similar (de)localization proper-
ties. Here we derive an uncertainty relation for the Fresnel transform
that is the analog of the Heisenberg inequality [81] for the Fourier
transform.

In the sequel, we denote the average ur of the squared modulus
of a function f € L, (R) by:

1 0 2
= d
“f|vwfm”ﬂ”'x

2

and its variance o I

around this average by:

2. 1 fm( If )P d
0ot =—— xX— x)|“dx.
IR
Theorem 1 (Uncertainty relation for the Fresnel transform) Let g €
Ly (R) and g; € Ly(R) its Fresnel transform with parameter . We have
following inequality for the product of their variances:

4

e (2.18)
878 " 1672’ )

This inequality is an equality if and only if there exist xy, wy, b real and
a complex amplitude a such that:

g(x) = aeiwoxe—b(x—xo)z e—in(x/r)2 2.19)

Furthermore, if g(x) is real valued, the following relation holds:

4

2 2 T 4
O¢0g > 1672 +0g. (2.20)

This inequality is an equality if and only if there exist xy, a, b real, such
that: ,
g(x) = ae”bx—x0) (2.21)

Also, (2.20) implies a lower bound on the variance for o, that is inde-
pendent of g:
2

2 >
2

o

=k

The proof of Theorem 1 is given in Appendix 2.A.

This result implies that narrow functions yield functions with a
large energy support when they are transformed. It suggests that Gaus-
sians and Gabor-like functions, modulated with the kernel function
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as in (2.19) should be well suited for processing and reconstructing
holograms as they minimize the spatial spreading of the energy. This
is especially satisfying because it brings two separate aspects of Ga-
bor’s research together: he is both the inventor of holography [62] and
of the Gabor transform [61, 94], which is a signal representation as a
linear combination of atoms of the form (2.19). We are not aware of
anyone having pointed out this connection before.

We will base our Fresnelets construction on wavelet bases that
are close to these optimal functions. Practically, in the case of a digi-
tal hologram measurement where a transformed function is available
over a finite support and with a given sampling step, we may use the
above uncertainty relation to get a bound on the maximal resolution
to expect when reconstructing the original function.

A direct illustration of the second part of this Theorem can be
found in the example of Subsection 2.2.2; indeed, it can be verified
that the product of the variance of the Gaussian and that of its Fres-
nel transform achieves the lower bound in (2.20).

2.4 Fresnelet Bases

To construct our new Fresnelet bases, we will apply a Fresnel trans-
form to a wavelet basis. Here, we will explain what happens when
we apply the transform to a general Riesz basis of L,(Q2), where the
dimension of the domain Q is arbitrary e.g. Q = R or R?.

2.4.1 Fresnel Transform of a Riesz Basis

Let {u;},., be a Riesz basis of L,(Q2) and {v;},, its dual. Then, Vf €
L, (€2), we can write following expansion:

f=) {frvpuw=) (f,upv (2.22)
; Cll ! Zl 1Y

Let @i; = % u; where % is a unitary operator (e. g. the Fresnel
transform). First, it is easy to see that %/ maps the biorthogonal set
S ={u;, vi},., into another biorthogonal set S = {i;, 71},

<ﬁlr am) = <%Ulr%um>

= (JZ/%T v, Up) = 6l,m-
1

Here %" denotes the adjoint of %. Let us now show that S is also
complete. For the set S, we define the sequence:

N
fn=) Afrvdu, Y elQ)
=1
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and have the completeness equation:
lim [ f - ful*=0. (2.23)
N—oo

Note that the Riesz basis hypothesis ensures that fy € L,(Q2). Because
% is unitary, we have:

(frvp=XUf,%%vy)
=(f, i) (2.24)

and therefore:
If = fnll? =1 f = fwll?
which proves that the transformed set S is complete as well.
Similarly, the Parseval relation (2.24) can also be used to prove that

S and S have the same Riesz bounds. The Riesz bounds are the tight-
est constants A> 0 and B < oo that satisfy the Riesz inequality:

AllCw, I, < IFIF, < Blw, P,

They are the same for the transformed set:
AloL PIZ, <1 FIF, < BIKDy, P,
’ 12 L ’ 12

Thus, we can conclude that the Fresnel transform, which is a uni-
tary operator from L, (Q2) into L, (Q2), maps Riesz bases into other Riesz
bases, with the same Riesz bounds. Similarly, if we only consider a
subset of basis functions that span a subspace of L,(Q) (e.g. a mul-
tiresolution subspace) we can show that it maps into a transformed
set that is a Riesz basis of the transformed subspace with the same
Riesz bounds.

Relation (2.24) is important for this proof but it is also most rel-
evant for the reconstruction of an image f given its transform f. It
indicates that we can obtain the expansion coefficients in (2.22) di-
rectly by computing the series of inner products (f, 7;). This is one of
the key ideas for our construction.

2.4.2 B-splines

The uncertainty relation for the Fresnel transform suggests the use
of Gabor-like functions. Unfortunately, these functions cannot yield
a multiresolution basis of L,(R). They don't satisfy the partition of
unity condition, implying that a representation of a function in term
of shifted Gaussians won'’t converge to the function as the sampling
step goes to zero [206]. Furthermore, they don’t satisfy a two-scale
relation which is required for building wavelets and brings many ad-
vantages regarding implementation issues.
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Fig.2.1. B-splines of degree n=0,1,2,3.

We will therefore base our construction on B-splines which are
Gaussian-like functions that do yield wavelet bases; they are also well
localized in the sense of the uncertainty principle for the Fresnel trans-
form (2.20).

B-splines [213] are defined in the Fourier domain by :

—2imvy i+l

l1-e ) .
= sinc

n+l1 —inv(n+1)

Ao
B v) = ( ST (v)e
where sinc(x) = sin(x)/(wx) and n € N.
The corresponding expression for the B-spline of degree n in the
time domain (see Fig. 2.1) is:
()}
n _ AN+l +
preo=aT"s n!
where (x)" = max(0, x)" (one-sided power function); A"*1 is the (n +
1)th finite-difference operator:

n+1
A™ = 3 (¥ " -k
k=0 k

which corresponds to the (7 + 1)-fold iteration of the finite difference
operator (see [213]): A = §(x) —6(x —1). Explicitly, we have following
expression for the B-spline of degree n:

n+l (n+1) (x—k)¥} (2.25)

Ny = N (K
,B(x)—kzzo( 1y K -

This definition is equivalent to the standard approach where the B-
splines of degree n are constructed from the (n + 1)-fold convolution
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of a rectangular pulse:

————
n+1 times
1, O0<x<l1
,Bo(x) = %, x=0orl
0, otherwise.

2.4.3 Polynomial Spline Wavelets

The B-splines satisfy all the requirements of a valid scaling function
of L,(R), that is, they satisfy the three necessary and sufficient condi-
tions [199]:

RieszBasis:  0<A< Y |p"(v+ k)| <B<oco
kez
Two-scale relation: ﬁ”(g) =) hk)p"(x-k) (2.26)
kez
Partition of unity: Z Bl x—k) =1

keZ

where the filter (k) is the binomial filter h(k) = 3 (";'). These condi-
tions ensure that B-splines can be used to generate a multiresolution
analysis of L, (R).

Unser et al. [208] have shown that one can construct a general fam-
ily of semi-orthogonal spline wavelets of the form:

w”(f) =) gk)p"(x~ k) (2.27)
2 k

such that the functions

n _ -l neo—j..
{wj»k_zz prE X k)}jez,kez (2.28)

form a Riesz basis of L, (R). These wavelets come in different brands:
orthogonal, B-spline (of compact support), interpolating, etc...They
are all linear combinations of B-splines and are thus entirely specified
from the sequence g(k) in equation (2.27). Here, we will consider B-
spline wavelets [209], which have the shortest support in the family.
The main point here is that by using the properties of the Fresnel

transform (linearity, shift invariance and scaling), we can easily derive

the family of functions {(1//’? k) =k xy' k} , , provided that we
K]t B Jj€Z,keZ

know the Fresnel transform of their main constituent, the B-spline.
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2.4.4 Fresnelets

In this section, we introduce our new wavelets: Fresnelets. They will
be specified by taking the Fresnel transform of (2.27). Thus, the re-
maining ingredient is to determine the Fresnel transform of the B-
splines.

F-splines

We define the Fresnel spline, or F-spline of degree n € N and parame-
ter 7 € R} (denoted B (x)) as the Fresnel transform with parameter ©
of a B-spline " (x) of degree n:

B (x) = (B" * k;) (x).

Theorem 2 The F-spline of degree n and parameter T has the closed
form:

~ n+1 1
rx)=) (—1)’6(”;6r )un,,(x— k) (2.29)
k=0

where:

Up,r(X) = fo Skl ker () d&. (2.30)

n!

The proof of Theorem 2 is given in Appendix 2.B.

F-splines have many similarities with B-splines. For example, to
get (2.29), one just substitutes the one-sided power function used in
the definition of the B-spline (2.25) with the functions u,, ;.

Theorem 3 The functions u, ; can be calculated recursively:

7 n—-1 T X
Upr(X) = ——X - Up—27(X) +—Up_1,7(X). (2.31)
2inn! 2inn n
For n =0 we have:
2 2
Uy (x)=—|C \/——x +1iS £x
’ V2 T T

where C(x) and S(x) are the so-called Fresnel integrals:

Y _
C(x)—f0 cos(zt)dt, S(x)—f0

For n =1 we have:

X

sin (g t2) dt

72 1
ul,r(x) =X uO,T(x) - (kr(x) - _) .
2im T
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The proof of Theorem 3 is given in Appendix 2.C.

This gives us a straightforward way to evaluate the F-splines as the
Fresnel integrals can be computed numerically [174]. Furthermore,
we can also transpose the well-known B-spline recursion formula:

1—-x

B"(x) = %ﬁ”‘l(xﬂ%ﬁ"‘l(x—l) (2.32)

to the Fresnel domain.

Theorem 4 We have following recursion formula for the F-splines:

BN x) + (n+1-x)B" N (x-1)
n

B (x) =

i7> 5an2
+—A"BI°(x). (2.33)
2nn

The proof of Theorem 4 is given in Appendix 2.D.

Fresnelet Multiresolutions

Let us now transpose the classical multiresolution relations of wave-
let theory to the Fresnelet domain. The two scale relation (2.26) be-

comes:
X

ﬁf,z(g) =Y h(k)B(x— k) (2.34)
k

In classical wavelet theory, embedded multiresolution spaces are
generated through dilation and translation of one single function. The
Fresnel transform preserves the embeddedness of those spaces. The
important modification comes from the dilationrelation (2.16) which
changes the generating function from one scale to the next. The differ-
ence is that in the transformed domain there is one generating func-
tion for each scale.

Formally, we consider, for j € Z, the sequence of spaces {Vj,f} de-
fined as:

Vi =span{Bl, 2 x- b} L®
kez

corresponding to the sequence of spaces {V;} defined as:

Vi =span{"2 "/ x- B} nL,®).
kez

The subspaces V; satisty the requirements for a multiresolution anal-
ysis [199]:

1. ViyicViand NV; =0and UV; = L»(R) (completeness).

2. Scale invariance: f(x) € V; © f(2x) € Vj_;.
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3. Shiftinvariance: f(x) € V) © f(x—k) e Vj.
4. Shift-invariant basis: V; has a stable Riesz basis {8" (x — k)}.

For the sequence {V; ;} the shift-invariance is preserved within each
scale but requirement 2 is clearly not fulfilled because of the scaling
property (2.16) of the Fresnel transform. We nevertheless get a modi-
fied set of multiresolution analysis requirements for the Fresnel trans-
form:

1) Visiz<cVjrand NV =0and UVj; = L(R) (completeness).
2’) Scale invariance: f(x) € Vj; o f 5,(2x) € Vj_1 .
3’) Shift invariance: f(x) € Vp; < f(x—k) € Vp ;.

4’) Shift-invariant basis: V; has a stable Riesz basis {ﬁf(x - k)}.

Condition 2’ is obtained by observing that f(x) € Vj; < fx*k;' € V.
As we require the V; to satisfy the scale invariance condition 2, we
have f* k;'(2x) € Vj_; hence (f * k; ' (2-)) * k;(x) € V;_; ;. And finally:
(F ke 1 @) Ker) =(f 5 k) % Kar (2)
=eli f 5 (2x).

Specifically, the generating functions corresponding to the B-spline
wavelets of (2.27) are:

#ia(5) = Lshpr -k

where 7 (x) is given by (2.29). The corresponding Fresnelets are such
that:

span {7 (5 = )} LspanB (5 - )}

For the multiresolution subspaces, we have that the residual spaces
W; ; defined as:

W= span{tﬁfz_j @ /x- k)}.
kezZ
are such that
M/j+l,‘[ L Vj+1,T

and
Wii1:@ Vis1r=Vjr.

The above expressions extend the meaning of multiresolution to the
fresnelet domain.
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(2) (b)

Fig. 2.2.  B-Spline multiresolution and its Fresnel counterpart. (a) B-splines: 2(-//2p3(27/x), j =
-2,-1,0,1,2,3,4. (b) Corresponding F-splines: 207/ % 27/ x). In this illustration, 7 = 0.9. The real
part is displayed with a continuous, the imaginary part with a dashed line. For the F-splines, we also
show the envelopes of the signals.

Fresnelet multiresolution example

In Fig. 2.2 we show a sequence of dyadic scaled B-splines of degree
n = 3 and their counterpart in the Fresnel domain. The effect of the
spreading is clearly visible: as the B-splines get finer (j = 1,2, 3,4) the
corresponding F-splines get larger. In contrast to the Fourier trans-
form, as the B-splines get larger (j = —1,-2), the corresponding F-
splines’ support doesn’t get smaller than the B-splines’. This behavior
is in accordance with relation (2.20).

The main practical consequence for us is: if we want to recon-
struct a hologram at a fine scale, that is, express it as a sum of nar-
row B-splines, the equivalent basis functions on the hologram get
larger. Our special choice of Fresnelet bases limits this phenomenon
as much as possible; it is nearly optimal in the sense of our uncer-
tainty relation for real functions (2.20) as they asymptotically converge
to Gabor functions [207].

2.5 Implementation of the Fresnelet Transform

In this section we derive a numerical Fresnelet transform algorithm
based on our Fresnelets decomposition.

We consider a function f;(x) which is the Fresnel transform of a
function f € L,(R), i.e., f;(x) = k; * f(x). In a digital holography exper-
iment, this would be the measured phase and amplitude of a propa-
gated wave (without interference with a reference wave). Given some
measurements of f, the goal is thus to find the best approximation of
f in our multiresolution basis. For instance, one can start the process
by determining the coefficients c; that give the closest approximation
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of f (in the L, sense) at the finest scale of representation:

=Y ceulx—k), c={(f,vix-k)={(f,ilx-k)
k

where u and v (respectively &z and ¥) are dual bases that are linear
combinations of B-splines 8" (respectively F-splines f;).

Therefore we only need to compute the inner-products of the trans-
formed function with the shifted F-splines that have been appropri-
ately rescaled:

dk:<f,%ﬁ”(i—k)>:<f,,%ﬁf,h(;h—k)>. (2.35)

Our present implementation is based on a convolution evaluated in
the Fourier domain using FFTs. It can be justified as follows. Using
Plancherel’s identity for the Fourier transform, we express the inner
products (2.35) as:

2

dp = <]§T’,6?/h(h) e—2inkh.>

:fﬁ(v)ﬁf/h(hv) e 2k gy,

In practice, we don’t know f;(x) in a continuous fashion, but we can
easily compute a sampled version of its Fourier transform by apply-
ing the FFT to the measured values. If we also approximate the above
integral by a Riemann sum, we end up with the implementation for-
mula:

1 N2os hl

dy = ~7 z:_%’gﬂﬁ(ﬁ)‘é?/h(NT) o-2imkhl/(NT)

where T is the sampling step of the measured function. We can make
use of the FFT a second time to compute this sum if we consider sam-
pling steps on the reconstruction side that are multiples of the sam-
pling step of the measured function: h=mT, m=1,2,..., then:

1 2 s l

di = ~T zz_%gﬂﬁ(ﬁ)ﬁg“mn(mﬁ) o-2inmkl/N

The algorithm is thus equivalent to a filtering followed by downsam-
pling by m. It is also possible to proceed hierarchically by applying
the standard wavelet decomposition algorithm once we have the fine
scale coefficients dj.

See also the FFT implementation of the fractional spline wavelet
transform proposed by Blu and Unser [14].
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1 W

() (b) ©

Fig. 2.3. (a) Amplitude and (b) phase of the test target. The bars width is 256um. The sampling step is
T = 10um and 512x512 samples are evaluated. The amplitude is equal to 1 (dark gray) or v/2 (light gray).
The phase is equal to 0 (black) or /4 (light gray). (c) Perspective view. The grayscale is representative for
the amplitude and the elevation for the phase.

it "].ll'

(2) (b) (©)

~\.\\\‘&\"} )

Fig. 2.4. Propagated target’s (a) amplitude and (b) phase. d = 30 cm and A = 632.8 nm. The sampling
step is T = 10 um and 512x512 samples are evaluated. (c) Perspective view.

2.6 Applications and Experiments

We will now validate our multiresolution Fresnelet-based algorithm
and illustrate it in practice on experimental digital holographic data.

2.6.1 Simulation: Propagation of a Test Wave Front

First, we will use our Fresnelet formalism to compute the Fresnel trans-
form of a test pattern that will be used as gold standard to evaluate our
algorithm. Although our methodology is more general, for explana-
tory purposes we consider the case of a plane wave that is being re-
flected on a test target. The test target is given by three bars. They
are of a given thickness and have a different reflectivity than the back-
ground they lie on. A plane wave that travels in a normal direction
to the target is reflected. In a plane close to the target, the reflected
wave’s phase is directly proportional to the target’s topology whereas
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the wave’s amplitude characterizes the target’s reflectivity. The key
motif of this test pattern is a bar b(x, y) expressed as a tensor product
of two B-splines of degree 0:

b(x,y):eig”/4ﬁ°(i)ﬁ0(l)+\/§

Wy wy

e’?, onthe bar
= 2.36
{ V2, outside. (2.36)
Its Fresnel transform of parameter 7 is:
~ . ~ X ~ .
br(x,y) =3 B0 (—) A (l +V2eim/2, 2.37)
“\ wy v\ wy

The amplitude and phase of the target and of the propagated target
are shown in Figs. 2.3 and 2.4. More complex targets or different phases
and amplitudes can be implemented easily with this method.

2.6.2 Backpropagation of a Diffracted Complex Wave

In this experiment, we took the analytical propagated target we just
described as the input for our multiresolution Fresnelet transform
algorithm. We reconstructed the original target at dyadic scales. In
concrete terms, we computed the inner products with F-splines of
varying widths: B7  (x/2)f"  (y/27), j =0,1,2,3,4, n = 3. We then
reconstructed the corresponding images using the underlying spline
model. This is also equivalent to running the inverse wavelet trans-
form algorithm up to a specified scale. The results are presented in
Fig. 2.5. At the finest scale (j = 0), the sampling step is the same as the
one used to sample the propagated wave. To ensure that the recon-
structed wave agrees with the initial analytical target, we computed
the peak signal to noise ratio (PSNR) of the reconstructed amplitude
and phase for the finest reconstruction scale j = 0. We took following
definition of the PSNR:

(max{| f1} — min{| f|})?
vz T (K D = /e, DI?

were f is our (complex) gold standard target and f’ the reconstructed
target. We obtain a PSNR of 23.10 dB. We can thus say that our algo-
rithm reconstructs the target reasonably well.

2.6.3 Hologram Reconstruction

For this experiment, we considered true holographic data, recorded
using a similar system as in [36]. We give a simplified diagram of the
experimental setup in Fig. 2.6.
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Amplitude

Phase

Fig. 2.5. Reconstructed amplitude (top) and phase (bottom).

An object (United States Air Force 1951 (USAF 1951) target) was
illuminated using a He-Ne laser (A = 632.8nm). The reflected wave
was then directed to the 776 x 572 pixels CCD camera. The camera
recorded the interference (hologram) of this propagated wave with a
plane reference wave in an off-axis geometry. The sampling step of
the CCD was T = 10um.

We denote f(x, y) the reflected wave in the vicinity of the object
and f;(x,y) the complex amplitude of the propagated wave in the
CCD plane. The hologram is the intensity /(x, y) measured by the
camera and results from the interference of the propagated wave f;
and the reference (plane) wave R(x, y) = Ae!(kxx+ky»);

I(x,9) =1/ (x, ) + R, P> = 1{I? + IR+ R* f, + R(f)*.  (2.38)

The measured hologram is reproduced in Fig. 2.7.
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Fig. 2.6. Experimental digital holography setup. A He-Ne LASER (1 = 632.8nm)
beam is expanded by the beam expander (BE) system made of two lenses L1 and L2
and diaphragms. The beam-splitter BS splits the beam. One part illuminates the
object. The reflected wave f propagates to the CCD camera at a distance d of the
object. In the camera plane the propagated wave is f, where 72 = Ad. The second
part of the beam is reflected by a slightly tilted mirror and impinges on the CCD
with a certain angle i.e., its wave vector k = (ky, ky, k;) has nonzero components ky
and k,. The plane reference wave evaluated in the plane of the CCD is R(x,y) =
Aelk=x+kyY) The interference of f; and R gives the hologram I = |R + f;|2.

The two first terms in (2.38) are known as the zero-order, the third
and fourth terms as the image and twin image terms respectively [72].
In the frequency domain, their energy is concentrated around three
frequencies: (0,0) for the zero-order, (—ky,—k,) for the image and
(kx, ky) for the twin image. This is clearly visible in Fig. 2.8.

Prior to reconstructing f(x,y) we multiplied the hologram by a
numerical reference wave R’ = e! K< ¥+K'y ).

RI=R|f;*+R|R*+RR f;+R(})"R.

The values k', and k', were adjusted precisely to the experimental val-
ues ky, ky, such that the third term (which is the one we are interested
in) becomes R'R* f; = af, where a is some complex constant. We ap-
plied zero padding to the hologram (resulting in a 2048 x 2048 input
image) to ensure a clear spatial separation of the three reconstructed
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Fig. 2.7. Measured hologram. There are 776 x 572 samples. The sampling step is
10pm. (Data courtesy of T. Colomb, E Montfort and Ch. Depeursinge, IOA/EPFL)

Fig. 2.8. Absolute value of the Fourier transform of the hologram. The frequency
origin is in the center.

terms.

We then applied our Fresnelet transform to this (de-)modulated
hologram R'I. The reconstruction distance d was adjusted to 35 cm
resulting in the proper parameter 7 = v'Ad. In Fig. 2.9 we show the
Fresnelet coefficients corresponding to the inner products of R'I with
the tensor product basis functions

7 612 B (129,
7 12D (120,
By 120y, (12D,
and ﬁ;’/z,(x/zf).ﬁf/z,(y/Zl)

forn=3, j=0,...,] and J = 4. These coefficients are complex and
we are only showing their modulus. From these coefficients we could
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Fig. 2.9.  Fresnelet transform of the modulated hologram R'I (coefficient’s amplitude). There are
2048x2048 coefficients.

recover the reconstructed signal (amplitude and phase) at any dyadic
scale as it is shown in the pyramids of Fig. 2.10. It is important to re-
member that all the information to get a finer scale from the coarsest
scale (top left) is contained in the subbands of the Fresnelet transform
of Fig. 2.9.

The experiment shows that the three hologram terms are spatially
separated in the reconstruction: the zero-order term in the center,
the image below left and the twin image up right (not visible). One
can also notice how the zero-order term vanishes as the reconstruc-
tion scale gets coarser. This is visible in both the pyramid (Fig. 2.10)
where more and more energy goes into the image term as the image
gets coarser, and in the Fresnelet transform (Fig. 2.9) where the zero-
order term coefficient’s energy is mainly in the highpass subbands.
The explanation for this behavior is the following. As mentioned ear-
lier, the hologram’s energy is concentrated around the three frequen-
cies (—ky, —ky), (0,0), and (ky, ky), corresponding respectively to the
image, the zero-order, and the twin image.When we multiply the holo-
gram by R'(x, y) = R(x, y) = e/(&*+k)) the different terms are shifted
by (ky, ky) in frequency and their new respective locations are (0,0),
(kx, ky) and (2ky,2ky). As the energy corresponding to the zero or-
der and twin image terms is shifted to high frequencies, it is mainly
encoded in the fine scale (highpass) Fresnelet coefficients. Coarse
scale reconstructions (which discard the high frequency information)
will therefore essentially suppress the zero order or twin image terms,
which is a nice feature of our algorithm.
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Amplitude Phase

Fig. 2.10. Reconstructed amplitude and phase from the Fresnelet coefficients in Fig. 2.9 for j =0, 1,2, 3, 4.
The contrast was stretched for each image to the full grayscale range, except for the amplitude at j = 0. At
the finest scale (j = 0) the size of the images is 2048 x 2048.
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2.7 Discussion

We have seen that the wavefronts reconstructed with the Fresnelet
transform from the simulated data agree with the theoretical gold
standard and that the algorithm can be applied successfully to recon-
struct real-world holographic data as well. Although ringing artifacts
may be distinguished at fine scales, they tend to disappear as the
scale gets coarser.

The presented method differs from the traditional reconstruction
algorithms used in digital holography which implement an inverse
Fresnel transform of the data. The Fresnel transform algorithms fall
into two main classes [108]. The first approach [Fig. 2.11(a)], as de-
scribed in [108], uses the convolution relation (2.1). It is implemented
in the Fourier domain and needs two FFTs. The transformed func-
tion’s sampling step T’ is the same as that of the original function.
The three terms—the image, the twin image (that is suppressed at
all scales in the Fresnelet algorithm) and the zero-order)—are visible
in Fig. 2.11(a). The second method [Fig