6 research outputs found

    Rich-club connectivity dominates assortativity and transitivity of complex networks

    Get PDF
    Rich-club, assortativity and clustering coefficients are frequently-used measures to estimate topological properties of complex networks. Here we find that the connectivity among a very small portion of the richest nodes can dominate the assortativity and clustering coefficients of a large network, which reveals that the rich-club connectivity is leveraged throughout the network. Our study suggests that more attention should be payed to the organization pattern of rich nodes, for the structure of a complex system as a whole is determined by the associations between the most influential individuals. Moreover, by manipulating the connectivity pattern in a very small rich-club, it is sufficient to produce a network with desired assortativity or transitivity. Conversely, our findings offer a simple explanation for the observed assortativity and transitivity in many real world networks --- such biases can be explained by the connectivities among the richest nodes.Comment: 5 pages, 2 figures, accepted by Phys. Rev.

    Geometric explanation of the rich-club phenomenon in complex networks

    Get PDF
    The rich club organization (the presence of highly connected hub core in a network) influences many structural and functional characteristics of networks including topology, the efficiency of paths and distribution of load. Despite its major role, the literature contains only a very limited set of models capable of generating networks with realistic rich club structure. One possible reason is that the rich club organization is a divisive property among complex networks which exhibit great diversity, in contrast to other metrics (e.g. diameter, clustering or degree distribution) which seem to behave very similarly across many networks. Here we propose a simple yet powerful geometry-based growing model which can generate realistic complex networks with high rich club diversity by controlling a single geometric parameter. The growing model is validated against the Internet, protein-protein interaction, airport and power grid networks

    Core-Periphery in Networks: An Axiomatic Approach

    Full text link
    Recent evidence shows that in many societies worldwide the relative sizes of the economic and social elites are continuously shrinking. Is this a natural social phenomenon? What are the forces that shape this process? We try to address these questions by studying a Core-Periphery social structure composed of a social elite, namely, a relatively small but well-connected and highly influential group of powerful individuals, and the rest of society, the periphery. Herein, we present a novel axiom-based model for the forces governing the mutual influences between the elite and the periphery. Assuming a simple set of axioms, capturing the elite's dominance, robustness, compactness and density, we are able to draw strong conclusions about the elite-periphery structure. In particular, we show that a balance of powers between elite and periphery and an elite size that is sub-linear in the network size are universal properties of elites in social networks that satisfy our axioms. We note that the latter is in controversy to the common belief that the elite size converges to a linear fraction of society (most recently claimed to be 1%). We accompany these findings with a large scale empirical study on about 100 real-world networks, which supports our results

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page
    corecore