4 research outputs found

    Machine Learning And Deep Learning Based Approaches For Detecting Duplicate Bug Reports With Stack Traces

    Get PDF
    Many large software systems rely on bug tracking systems to record the submitted bug reports and to track and manage bugs. Handling bug reports is known to be a challenging task, especially in software organizations with a large client base, which tend to receive a considerable large number of bug reports a day. Fortunately, not all reported bugs are new; many are similar or identical to previously reported bugs, also called duplicate bug reports. Automatic detection of duplicate bug reports is an important research topic to help reduce the time and effort spent by triaging and development teams on sorting and fixing bugs. This explains the recent increase in attention to this topic as evidenced by the number of tools and algorithms that have been proposed in academia and industry. The objective is to automatically detect duplicate bug reports as soon as they arrive into the system. To do so, existing techniques rely heavily on the nature of bug report data they operate on. This includes both structural information such as OS, product version, time and date of the crash, and stack traces, as well as unstructured information such as bug report summaries and descriptions written in natural language by end users and developers

    Software Engineering in the Age of App Stores: Feature-Based Analyses to Guide Mobile Software Engineers

    Get PDF
    Mobile app stores are becoming the dominating distribution platform of mobile applications. Due to their rapid growth, their impact on software engineering practices is not yet well understood. There has been no comprehensive study that explores the mobile app store ecosystem's effect on software engineering practices. Therefore, this thesis, as its first contribution, empirically studies the app store as a phenomenon from the developers' perspective to investigate the extent to which app stores affect software engineering tasks. The study highlights the importance of a mobile application's features as a deliverable unit from developers to users. The study uncovers the involvement of app stores in eliciting requirements, perfective maintenance and domain analysis in the form of discoverable features written in text form in descriptions and user reviews. Developers discover possible features to include by searching the app store. Developers, through interviews, revealed the cost of such tasks given a highly prolific user base, which major app stores exhibit. Therefore, the thesis, in its second contribution, uses techniques to extract features from unstructured natural language artefacts. This is motivated by the indication that developers monitor similar applications, in terms of provided features, to understand user expectations in a certain application domain. This thesis then devises a semantic-aware technique of mobile application representation using textual functionality descriptions. This representation is then shown to successfully cluster mobile applications to uncover a finer-grained and functionality-based grouping of mobile apps. The thesis, furthermore, provides a comparison of baseline techniques of feature extraction from textual artefacts based on three main criteria: silhouette width measure, human judgement and execution time. Finally, this thesis, in its final contribution shows that features do indeed migrate in the app store beyond category boundaries and discovers a set of migratory characteristics and their relationship to price, rating and popularity in the app stores studied
    corecore