2 research outputs found

    Revisiting the correspondence between cut-elimination and normalisation

    Get PDF
    Cut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to β\beta-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is.Fundação para a Ciência e a Tecnologia (FCT)

    Towards a canonical classical natural deduction system

    Get PDF
    Preprint submitted to Elsevier, 6 July 2012This paper studies a new classical natural deduction system, presented as a typed calculus named lambda-mu- let. It is designed to be isomorphic to Curien and Herbelin's lambda-mu-mu~-calculus, both at the level of proofs and reduction, and the isomorphism is based on the correct correspondence between cut (resp. left-introduction) in sequent calculus, and substitution (resp. elimination) in natural deduction. It is a combination of Parigot's lambda-mu -calculus with the idea of "coercion calculus" due to Cervesato and Pfenning, accommodating let-expressions in a surprising way: they expand Parigot's syntactic class of named terms. This calculus and the mentioned isomorphism Theta offer three missing components of the proof theory of classical logic: a canonical natural deduction system; a robust process of "read-back" of calculi in the sequent calculus format into natural deduction syntax; a formalization of the usual semantics of the lambda-mu-mu~-calculus, that explains co-terms and cuts as, respectively, contexts and hole- filling instructions. lambda-mu-let is not yet another classical calculus, but rather a canonical reflection in natural deduction of the impeccable treatment of classical logic by sequent calculus; and provides the "read-back" map and the formalized semantics, based on the precise notions of context and "hole-expression" provided by lambda-mu-let. We use "read-back" to achieve a precise connection with Parigot's lambda-mu , and to derive lambda-calculi for call-by-value combining control and let-expressions in a logically founded way. Finally, the semantics , when fully developed, can be inverted at each syntactic category. This development gives us license to see sequent calculus as the semantics of natural deduction; and uncovers a new syntactic concept in lambda-mu-mu~ ("co-context"), with which one can give a new de nition of eta-reduction
    corecore