4 research outputs found

    Design of agile supply chains including analysing the trade-off between number of partners and reliability

    Get PDF
    The reliability of supply partners is particularly vital in agile supply chains as it is vulnerable to the inability of a supply partner to meet its high responsiveness and flexibility requirements resulting in the disruption of the whole network. Disruption can have expensive and extensive results for the entire agile supply chain. To mitigate the risk of disruption and improve the reliability of the whole agile supply chain, decision-makers need to pay more attention to supply chain design and construction, whilst simultaneously taking into account the sourcing strategy decisions. This paper proposes a series of models for the design of agile supply chains using dynamic programming modelling. These provide decision-makers with a systematic way of analysing one of the key decisions of sourcing strategy, namely the trade-off between the number of supply partners and reliability. The efficacy of the models is demonstrated through their application to a Chinese bus and coach manufacturer by way of an empirical illustration. The results show that this approach is effective for this application and it can be applied in other related decision-making scenarios. The methods offered in this paper provide managers with a practical tool to design their agile supply chains while considering the trade-offs between the number of partners and the reliability of the entire agile supply chain

    Automated Reconstruction of Dendritic and Axonal Trees by Global Optimization with Geometric Priors

    Get PDF
    We present a novel probabilistic approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, ours builds a set of candidate trees over many different subsets of points likely to belong to the optimal tree and then chooses the best one according to a global objective function that combines image evidence with geometric priors. Since the best tree does not necessarily span all the points, the algorithm is able to eliminate false detections while retaining the correct tree topology. Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge datasets are used to evaluate the performance of our method. We used the DIADEM metric to quantitatively evaluate the topological accuracy of the reconstructions and showed that the use of the geometric regularization yields a substantial improvement

    Mathematical Programming Models for Influence Maximization on Social Networks

    Get PDF
    In this dissertation, we apply mathematical programming techniques (i.e., integer programming and polyhedral combinatorics) to develop exact approaches for influence maximization on social networks. We study four combinatorial optimization problems that deal with maximizing influence at minimum cost over a social network. To our knowl- edge, all previous work to date involving influence maximization problems has focused on heuristics and approximation. We start with the following viral marketing problem that has attracted a significant amount of interest from the computer science literature. Given a social network, find a target set of customers to seed with a product. Then, a cascade will be caused by these initial adopters and other people start to adopt this product due to the influence they re- ceive from earlier adopters. The idea is to find the minimum cost that results in the entire network adopting the product. We first study a problem called the Weighted Target Set Selection (WTSS) Prob- lem. In the WTSS problem, the diffusion can take place over as many time periods as needed and a free product is given out to the individuals in the target set. Restricting the number of time periods that the diffusion takes place over to be one, we obtain a problem called the Positive Influence Dominating Set (PIDS) problem. Next, incorporating partial incentives, we consider a problem called the Least Cost Influence Problem (LCIP). The fourth problem studied is the One Time Period Least Cost Influence Problem (1TPLCIP) which is identical to the LCIP except that we restrict the number of time periods that the diffusion takes place over to be one. We apply a common research paradigm to each of these four problems. First, we work on special graphs: trees and cycles. Based on the insights we obtain from special graphs, we develop efficient methods for general graphs. On trees, first, we propose a polynomial time algorithm. More importantly, we present a tight and compact extended formulation. We also project the extended formulation onto the space of the natural vari- ables that gives the polytope on trees. Next, building upon the result for trees---we derive the polytope on cycles for the WTSS problem; as well as a polynomial time algorithm on cycles. This leads to our contribution on general graphs. For the WTSS problem and the LCIP, using the observation that the influence propagation network must be a directed acyclic graph (DAG), the strong formulation for trees can be embedded into a formulation on general graphs. We use this to design and implement a branch-and-cut approach for the WTSS problem and the LCIP. In our computational study, we are able to obtain high quality solutions for random graph instances with up to 10,000 nodes and 20,000 edges (40,000 arcs) within a reasonable amount of time

    Large-deviation analysis and applications Of learning tree-structured graphical models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 213-228).The design and analysis of complexity-reduced representations for multivariate data is important in many scientific and engineering domains. This thesis explores such representations from two different perspectives: deriving and analyzing performance measures for learning tree-structured graphical models and salient feature subset selection for discrimination. Graphical models have proven to be a flexible class of probabilistic models for approximating high-dimensional data. Learning the structure of such models from data is an important generic task. It is known that if the data are drawn from tree-structured distributions, then the algorithm of Chow and Liu (1968) provides an efficient algorithm for finding the tree that maximizes the likelihood of the data. We leverage this algorithm and the theory of large deviations to derive the error exponent of structure learning for discrete and Gaussian graphical models. We determine the extremal tree structures for learning, that is, the structures that lead to the highest and lowest exponents. We prove that the star minimizes the exponent and the chain maximizes the exponent, which means that among all unlabeled trees, the star and the chain are the worst and best for learning respectively. The analysis is also extended to learning foreststructured graphical models by augmenting the Chow-Liu algorithm with a thresholding procedure. We prove scaling laws on the number of samples and the number variables for structure learning to remain consistent in high-dimensions. The next part of the thesis is concerned with discrimination. We design computationally efficient tree-based algorithms to learn pairs of distributions that are specifically adapted to the task of discrimination and show that they perform well on various datasets vis-`a-vis existing tree-based algorithms. We define the notion of a salient set for discrimination using information-theoretic quantities and derive scaling laws on the number of samples so that the salient set can be recovered asymptotically.by Vincent Yan Fu Tan.Ph.D
    corecore