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Abstract

The design and analysis of complexity-reduced representations for multivariate data
is important in many scientific and engineering domains. This thesis explores such rep-
resentations from two different perspectives: deriving and analyzing performance mea-
sures for learning tree-structured graphical models and salient feature subset selection
for discrimination.

Graphical models have proven to be a flexible class of probabilistic models for ap-
proximating high-dimensional data. Learning the structure of such models from data is
an important generic task. It is known that if the data are drawn from tree-structured
distributions, then the algorithm of Chow and Liu (1968) provides an efficient algo-
rithm for finding the tree that maximizes the likelihood of the data. We leverage this
algorithm and the theory of large deviations to derive the error exponent of structure
learning for discrete and Gaussian graphical models. We determine the extremal tree
structures for learning, that is, the structures that lead to the highest and lowest ex-
ponents. We prove that the star minimizes the exponent and the chain maximizes the
exponent, which means that among all unlabeled trees, the star and the chain are the
worst and best for learning respectively. The analysis is also extended to learning forest-
structured graphical models by augmenting the Chow-Liu algorithm with a thresholding
procedure. We prove scaling laws on the number of samples and the number variables
for structure learning to remain consistent in high-dimensions.

The next part of the thesis is concerned with discrimination. We design computa-
tionally efficient tree-based algorithms to learn pairs of distributions that are specifi-
cally adapted to the task of discrimination and show that they perform well on various
datasets vis-à-vis existing tree-based algorithms. We define the notion of a salient set
for discrimination using information-theoretic quantities and derive scaling laws on the
number of samples so that the salient set can be recovered asymptotically.

Thesis Supervisor: Professor Alan S. Willsky
Title: Edwin Sibley Webster Professor of Electrical Engineering and Computer Science
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Markus Svénsen and John Guiver in Cambridge, UK and David Heckerman, Jonathan
Carlson and Jennifer Listgarten in Los Angeles for making me feel part of their research
groups and for many fruitful interactions. I thank Adnan Custovic, Angela Simpson and
Iain Buchan from the University of Manchester for hosting me and for our collaboration
on the asthma project. I thank Majid Fozunbal and Mitch Trott for hosting me at HP
Labs in Jan 2010.

I am thankful for financial support by the Public Service Commission and the
Agency for Science, Technology and Research (A*STAR), Singapore. I am also thankful
for the friendship of the Singaporean community at MIT, especially Henry and Shireen.

I am extremely grateful to my parents for their support in all my endeavors. Lastly,
and most importantly, words simply cannot express my love and gratitude to my wife
Huili without whom this thesis would certainly have been impossible to complete. Her
unwavering support for me in my pursuit of my graduate studies has kept me going in
the toughest of times. I hope to be equally supportive in future.



Contents

List of Figures 13

List of Tables 15

1 Introduction 17

1.1 Motivation for This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Overview of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Chapter 3: Large Deviations for Learning Discrete Tree Models . 21
1.2.3 Chapter 4: Large Deviations for Learning Gaussian Tree Models 22
1.2.4 Chapter 5: Learning High-Dimensional Forests . . . . . . . . . . 22
1.2.5 Chapter 6: Learning Graphical Models for Hypothesis Testing . 23
1.2.6 Chapter 7: Conditions for Salient Subset Recovery . . . . . . . . 24
1.2.7 Chapter 8: Conclusions . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Background 27

2.1 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Entropy and Conditional Entropy . . . . . . . . . . . . . . . . . 29
2.1.3 Maximum Entropy and Exponential Families . . . . . . . . . . . 30
2.1.4 Relative Entropy and Mutual Information . . . . . . . . . . . . 32
2.1.5 Data Processing Inequalities . . . . . . . . . . . . . . . . . . . . . 35
2.1.6 Fano’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 The Method of Types and Asymptotics . . . . . . . . . . . . . . . . . . 36
2.2.1 The Method of Types . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Large Deviations and Sanov’s Theorem . . . . . . . . . . . . . . 39
2.2.3 Asymptotics of Hypothesis Testing . . . . . . . . . . . . . . . . . 41
2.2.4 Asymptotics of Parameter Estimation . . . . . . . . . . . . . . . 44

2.3 Supervised Classification and Boosting . . . . . . . . . . . . . . . . . . . 46
2.3.1 Some Commonly Used Classifiers . . . . . . . . . . . . . . . . . . 47

7



8 CONTENTS

2.3.2 Boosting and AdaBoost . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 Undirected Graphical Models . . . . . . . . . . . . . . . . . . . . 52
2.4.3 Tree-Structured Graphical Models . . . . . . . . . . . . . . . . . 53
2.4.4 Gaussian Graphical Models . . . . . . . . . . . . . . . . . . . . . 55

2.5 Learning Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.1 Review of Existing Work . . . . . . . . . . . . . . . . . . . . . . 56
2.5.2 The Chow-Liu algorithm . . . . . . . . . . . . . . . . . . . . . . . 58

3 Large Deviations for Learning Discrete Tree Models 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 System Model and Problem Statement . . . . . . . . . . . . . . . . . . . 63
3.3 LDP for Empirical Mutual Information . . . . . . . . . . . . . . . . . . 64
3.4 Error Exponent for Structure Learning . . . . . . . . . . . . . . . . . . . 68

3.4.1 Dominant Error Tree . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Conditions for Exponential Decay . . . . . . . . . . . . . . . . . 71
3.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 73
3.4.4 Relation of The Maximum-Likelihood Structure Learning Prob-

lem to Robust Hypothesis Testing . . . . . . . . . . . . . . . . . 74
3.5 Euclidean Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 Extensions to Non-Tree Distributions . . . . . . . . . . . . . . . . . . . . 79
3.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.1 Accuracy of Euclidean Approximations . . . . . . . . . . . . . . 84
3.7.2 Comparison of True Crossover Rate to the Rate obtained from

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7.3 Comparison of True Crossover Rate to Rate obtained from the

Empirical Distribution . . . . . . . . . . . . . . . . . . . . . . . . 86
3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.A Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.B Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.C Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.D Proof of Theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.E Proof of Proposition 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.F Proof of Theorem 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Large Deviations for Learning Gaussian Tree Models 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Problem Statement and Learning of Gaussian Tree Models . . . . . . . . 100
4.3 Deriving the Error Exponent . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Crossover Rates for Mutual Information Quantities . . . . . . . . 102



CONTENTS 9

4.3.2 Error Exponent for Structure Learning . . . . . . . . . . . . . . . 103
4.4 Euclidean Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Simplification of the Error Exponent . . . . . . . . . . . . . . . . . . . . 105
4.6 Extremal Structures for Learning . . . . . . . . . . . . . . . . . . . . . . 108

4.6.1 Formulation: Extremal Structures for Learning . . . . . . . . . . 109
4.6.2 Reformulation as Optimization over Line Graphs . . . . . . . . . 110
4.6.3 Easiest and Most Difficult Structures for Learning . . . . . . . . 110
4.6.4 Influence of Data Dimension on Error Exponent . . . . . . . . . 113

4.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.7.1 Comparison Between True and Approximate Rates . . . . . . . . 115
4.7.2 Comparison of Error Exponents Between Trees . . . . . . . . . . 115

4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.A Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.B Proof of Corollary 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.C Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.D Proof of Lemma 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.E Proofs of Theorem 4.7 and Corollary 4.9 . . . . . . . . . . . . . . . . . . 122

5 Learning High-Dimensional Forest-Structured Models 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Notation and Problem Formulation . . . . . . . . . . . . . . . . . . . . . 128
5.3 The Forest Learning Algorithm: CLThres . . . . . . . . . . . . . . . . . . 129
5.4 Structural Consistency For Fixed Model Size . . . . . . . . . . . . . . . 131

5.4.1 Error Rate for Forest Structure Learning . . . . . . . . . . . . . 132
5.4.2 Interpretation of Result . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3 Proof Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.4 Error Rate for Learning the Forest Projection . . . . . . . . . . . 134

5.5 High-Dimensional Structural Consistency . . . . . . . . . . . . . . . . . 135
5.5.1 Structure Scaling Law . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5.2 Extremal Forest Structures . . . . . . . . . . . . . . . . . . . . . 136
5.5.3 Lower Bounds on Sample Complexity . . . . . . . . . . . . . . . 137

5.6 Risk Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6.1 Error Exponent for Risk Consistency . . . . . . . . . . . . . . . . 139
5.6.2 The High-Dimensional Setting . . . . . . . . . . . . . . . . . . . 139

5.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.7.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.7.2 Real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.A Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.B Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.C Proof of Corollary 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.D Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



10 CONTENTS

5.E Proof of Corollary 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.F Proof of Theorem 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.G Proof of Theorem 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.H Proof of Corollary 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.I Proof of Theorem 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Learning Graphical Models for Hypothesis Testing 161

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.2 The J-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Discriminative Learning of Trees and Forests . . . . . . . . . . . . . . . 164
6.3.1 The Tree-Approximate J-divergence . . . . . . . . . . . . . . . . 165
6.3.2 Learning Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . 167
6.3.3 Connection to the Log-Likelihood Ratio . . . . . . . . . . . . . . 169
6.3.4 Learning Optimal Forests . . . . . . . . . . . . . . . . . . . . . . 170
6.3.5 Assigning Costs to the Selection of Edges . . . . . . . . . . . . . 171

6.4 Learning a Larger Set of Features via Boosting . . . . . . . . . . . . . . 172
6.4.1 Real-AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4.2 Learning a Larger Set of Pairwise Features via Real-AdaBoost . 173

6.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.5.1 Discriminative Trees: An Illustrative Example . . . . . . . . . . 175
6.5.2 Comparison of DT to Other Tree-Based Classifiers . . . . . . . . 177
6.5.3 Extension to Multi-class Problems . . . . . . . . . . . . . . . . . 178
6.5.4 Comparison of BGMC to other Classifiers . . . . . . . . . . . . . 179

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.A Proof of Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.B Proof of Proposition 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7 High-Dimensional Salient Subset Recovery 185

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2 Notation, System Model and Definitions . . . . . . . . . . . . . . . . . . 186

7.2.1 Definition of The Salient Set of Features . . . . . . . . . . . . . 187
7.2.2 Definition of Achievability . . . . . . . . . . . . . . . . . . . . . . 189

7.3 Conditions for the High-Dimensional Recovery of Salient Subsets . . . . 190
7.3.1 Assumptions on the Distributions . . . . . . . . . . . . . . . . . . 190
7.3.2 Fixed Number of Variables d and Salient Variables k . . . . . . . 190
7.3.3 An Achievability Result for the High-Dimensional Case . . . . . 191
7.3.4 A Converse Result for the High-Dimensional Case . . . . . . . . 192

7.4 Specialization to Tree Distributions . . . . . . . . . . . . . . . . . . . . . 194
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.A Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.B Proof of Proposition 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



CONTENTS 11

7.C Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.D Proof of Corollary 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.E Proof of Theorem 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.F Proof of Corollary 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.G Proof of Corollary 7.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.H Proof of Proposition 7.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8 Conclusion 207

8.1 Summary of Main Contributions . . . . . . . . . . . . . . . . . . . . . . 207
8.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . 207

8.2.1 Optimality of Error Exponents . . . . . . . . . . . . . . . . . . . 208
8.2.2 Learning with Hidden Variables . . . . . . . . . . . . . . . . . . . 208
8.2.3 Learning Loopy Random Graphical Models . . . . . . . . . . . . 209
8.2.4 Online Learning of Graphical Models . . . . . . . . . . . . . . . . 210
8.2.5 Estimating the Correct Number of Salient Features . . . . . . . . 211

Bibliography 213



12 CONTENTS



List of Figures

1.1 A graphical model based on the asthma example . . . . . . . . . . . . . 18
1.2 Illustration of the typical behavior of the probability of error . . . . . . 22

2.1 Illustration of Sanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Illustration of the Chernoff-information . . . . . . . . . . . . . . . . . . 43
2.3 A star and a path graph (chain) . . . . . . . . . . . . . . . . . . . . . . 51
2.4 Line graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Illustration of the factorization of graphical models . . . . . . . . . . . . 53
2.6 Separation of subsets of nodes . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7 Markov property in Gaussian graphical models . . . . . . . . . . . . . . 55

3.1 The star graph with d = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Dominant replacement edge . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Illustration for Example 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 The partitions of the simplex . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 A geometric interpretation of (3.8) . . . . . . . . . . . . . . . . . . . . . 75
3.6 Convexifying the objective results in a least-squares problem . . . . . . 76
3.7 Reverse I-projection onto trees . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Non-uniqueness of reverse I-projection . . . . . . . . . . . . . . . . . . . 80
3.9 Graphical model used for our numerical experiments . . . . . . . . . . . 83
3.10 Comparison of True and Approximate Rates. . . . . . . . . . . . . . . . 85
3.11 Comparison of True, Approximate and Simulated Rates . . . . . . . . . 86
3.12 Comparison of True, Approximate and Empirical Rates . . . . . . . . . 87
3.13 Illustration of Step 2 of the proof of Theorem 3.1. . . . . . . . . . . . . . 89
3.14 Illustration of the proof of Theorem 3.4. . . . . . . . . . . . . . . . . . . 90

4.1 Error probability associated with the extremal structures . . . . . . . . 100
4.2 Correlation decay in a Markov chain . . . . . . . . . . . . . . . . . . . . 105
4.3 Properties of J̃(ρe, ρe′) in Lemma 4.4 . . . . . . . . . . . . . . . . . . . . 106
4.4 Illustration for Theorem 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Intuition for Corollary 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13



14 LIST OF FIGURES

4.6 Illustration of Proposition 4.10 . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Comparison of true and approximate crossover rates . . . . . . . . . . . 115
4.8 Symmetric star graphical model . . . . . . . . . . . . . . . . . . . . . . . 116
4.9 A hybrid tree graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Simulated error probabilities and error exponents . . . . . . . . . . . . . 117
4.11 Illustration for the proof of Corollary 4.2 . . . . . . . . . . . . . . . . . . 119
4.12 Illustration for the proof of Corollary 4.2 . . . . . . . . . . . . . . . . . . 119
4.13 Plot of d

dxgy(x) for different values of y . . . . . . . . . . . . . . . . . . . 123
4.14 Illustration of the proof of Theorem 4.7 . . . . . . . . . . . . . . . . . . 124
4.15 Example for the proof of Theorem 4.7(b) . . . . . . . . . . . . . . . . . 125

5.1 Graphical interpretation of the condition on εn . . . . . . . . . . . . . . 133
5.2 Forest-structured distribution . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3 The error probability of structure learning for β ∈ (0, 1). . . . . . . . . 141
5.4 The overestimation and underestimation errors for β ∈ (0, 1). . . . . . . 142
5.5 Mean, minimum and maximum of the KL-divergence . . . . . . . . . . . 143
5.6 Log-likelihood scores on the SPECT dataset . . . . . . . . . . . . . . . . 144
5.7 Learned forest graph of the SPECT and HEART datasets . . . . . . . . 145
5.8 Log-likelihood scores on the HEART dataset . . . . . . . . . . . . . . . 146
5.9 Illustration of the proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . 149
5.10 Forests in directed form . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1 Illustration of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . 168
6.2 Class covariance matrices Σp and Σq . . . . . . . . . . . . . . . . . . . . 175
6.3 Structures of p̂(k) at iteration k = d− 1 . . . . . . . . . . . . . . . . . . 176
6.4 Tree-approximate J-divergence and Pr(err) . . . . . . . . . . . . . . . . 177
6.5 Pr(err) between DT, Chow-Liu and TAN using a pair of trees . . . . . . 178
6.6 Pr(err)’s for the MNIST Digits dataset for a multi-class problem . . . . 179
6.7 Discrimination between the digits 7 and 9 in the MNIST dataset . . . . 180
6.8 Pr(err) against n for various datasets . . . . . . . . . . . . . . . . . . . . 182

7.1 Illustration of Assumption A5 . . . . . . . . . . . . . . . . . . . . . . . . 194

8.1 A latent tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.2 Illustration of online learning . . . . . . . . . . . . . . . . . . . . . . . . 210



List of Tables

3.1 Table of probability values for Example 3.2. . . . . . . . . . . . . . . . 80

15



16 LIST OF TABLES



Chapter 1

Introduction

� 1.1 Motivation for This Thesis

IMAGINE the following scenario: There are 1000 children participating in a longitudi-
nal study of childhood asthma. These children are recruited prenatally and followed

up prospectively at various fixed ages, allowing clinician scientists to analyze the com-
plex interplay between environmental, genetic and physiological factors on a child’s
susceptibility to asthma. Because a single blood sample provides a multitude of genetic
information, in the form of single-nucleotide polymorphisms1 (or SNPs), there are close
to 106 variables in the dataset. How can the clinician scientist make useful inferences
about the structure of the data given the overwhelming number of variables? By struc-
ture we mean the relationships between the variables, the nature of the salient features
and also the existence of the latent variables that may be inferred from the data. This
example is modeled on the Manchester Asthma and Allergy Study2 [55, 181].

Motivated by the above example, we observe that learning the structure, interde-
pendencies and salient features of a large collection of random variables from a dataset
is an important and generic task in many scientific and engineering domains. See
[87, 127, 153, 209, 215] and references therein for many more examples. This task is
extremely challenging when the dimensionality of the data is large compared to the
number of samples. Furthermore, structure learning and dimensionality reduction of
high-dimensional distributions is also complicated as it is imperative to find the right
balance between data fidelity and overfitting the data to the model. One typically sim-
plifies this difficult structure learning problem by making two assumptions: Firstly, that
there are very few interdependencies between the variables, so for example, only a few
genes result in a particular positive physiological measurement. Secondly, one assumes
that the number of salient features is small relative to the total number of variables, so
for instance, asthma is influenced by only ten primary genetic factors within the large
dataset. This thesis focuses on exploring these two aspects of model order reduction
from an information-theoretic [47] perspective. In particular, we leverage on the use of
the theory of large deviations [59, 62], which is the study of the probabilities of sequences

1A single-nucleotide polymorphism is a DNA sequence variation in which a nucleotide in the genome
differs between members of a species.

2See http://www.maas.org.uk for more details.

17



18 CHAPTER 1. INTRODUCTION

x

x

x

x
@
@

@
@
@
@
@ E

A

G

S

Figure 1.1. A graphical model based on the asthma example. In this case, we have identified the four
salient variables to be asthma (A), an allergen-specific skin prick test (S), a particular gene (G) and a
particular environmental factor (E). These variables are interlinked via a sparse undirected graph with
three edges.

of events that decay exponentially fast.
This thesis analyzes the above-mentioned modeling problems under the unified for-

malism of probabilistic graphical models [69, 117, 127, 209], which provide a robust frame-
work for capturing the statistical dependencies among a large collection of random
variables. Indeed, graphical models derive their power from their ability to provide a
diagrammatic representation of the multivariate distribution in the form of an undi-
rected3 graph G = (V,E). The sparsity of the underlying graph structure allows for the
design of computationally efficient algorithms for the purpose of performing statistical
inference. Referring to the asthma example again, we can model the variables as the
nodes in a graph V and their dependencies via the edges of the graph E (See Fig. 1.1).
Learning the subset of salient variables to include in the model as well as the edges
provides the clinicians deeper insight into the statistical features of the large dataset.
Graphical models have found many applications in many areas of science and engineer-
ing including bioinformatics [4, 83], image processing [131, 217], iterative decoding [121],
multiscale modeling [39, 40], computer vision [184], natural language processing [109]
and combinatorial optimization [98, 169].

It is known that the set of trees, i.e., distributions which are Markov on acyclic
graphs, is a tractable class of undirected graphical models. When the underlying struc-
ture is a tree, then it is known that statistical inference can be performed efficiently
and accurately using the belief propagation or sum-product algorithm [122, 153]. In-
deed, the learning task is also greatly simplified by appealing to the decomposition of a
tree-structured graphical model into node and pairwise marginals. Given an arbitrary
distribution P , the algorithm proposed by Chow and Liu [42] in their seminal paper
shows how to efficiently search for the tree-structured graphical model Q̂ that minimizes
the Kullback-Leibler divergence D(P ||Q) via a max-weight spanning tree [45] (MWST)
procedure. When samples are available and one seeks to find the maximum-likelihood
fit of the samples to a tree model, the same paper shows how to convert the problem
to a MWST optimization where the edge weights are the empirical mutual information
quantities, which can be easily estimated from the data.

3For the most part of the thesis, we focus on undirected graphs but directed graphical models (or
Bayesian networks) also form an active area of research. See [56, 143, 153] for thorough expositions on
this subject.
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In the first part of this thesis, we ask (and answer) the following question: Given
that data are independently drawn from P , a tree-structured graphical model, how well
can the procedure of Chow and Liu estimate the model? Posed in a slightly different
manner, how many samples (or in the asthma example, children involved in the study)
does one need in order to drive the probability of error in structure learning below
some pre-specified level δ > 0? The results, which are proven using elements from the
theory of large deviations, shed light on the nature of various classes of tree-structured
distributions, and in particular, the ease or difficulty of learning them in terms of
the sample complexity. While there has been significant research interest in learning
graphical models from data (as will be thoroughly reviewed in Section 2.5.1), we derive
a single figure-of-merit known as the error exponent which completely and precisely
characterizes the ease of learning various tree models.

Of course, if there are many redundant (or non-salient) variables in the dataset, even
modeling the variables via sparse graphs such as trees may lead to severe overfitting.
A natural pre-processing step is to judiciously remove these variables prior to graphical
modeling, i.e., to do dimensionality reduction. While there are many established meth-
ods to perform dimensionality reduction such as principal component analysis (PCA)
[154], Isomap [196], local linear embedding [165] as well as work on combining this task
with decision-making [204], we ask two fundamental questions in the second part of
this thesis: How many samples are necessary and sufficient for asymptotically extract-
ing the so-called salient feature subset for the purpose of hypothesis testing? How can
one extract such salient features in a computationally efficient fashion? The successful
search for such a subset of variables as a pre-processing step drastically reduces the
complexity of the ensuing lower-dimensional model or classifier. It is an added advan-
tage if the search of the salient feature set can be done efficiently. We show that this
is indeed the case assuming the true distributions belong to the class of tree-structured
graphical models. This is one other task in which trees have proven to afford significant
computational savings.

� 1.2 Overview of Thesis Contributions

This section provides a glimpse of the main technical contributions in the subsequent
chapters. Chapter 2 provides the mathematical preliminaries. The rest of the thesis is
divided coarsely into two main themes.

• Modeling: Chapters 3 to 5 deal with the analysis of modeling high-dimensional
data with tree- or forest-structured distributions.

• Saliency: Chapters 6 and 7 deal with the problem of learning lower-dimensional
or salient representations of data for the purpose of binary hypothesis testing.

Chapter 8 concludes the thesis, mentions some on-going research and suggests promising
directions for further research.
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� 1.2.1 Chapter 2: Background

Chapter 2 provides the necessary background on five related topics:

• Fundamentals of information theory

• The method of types, large deviations and asymptotics

• Classification and boosting

• Graphical models

• Learning graphical models.

The first two topics set the stage for the use of information-thereotic ideas throughout
the thesis. The properties of the entropy of a random variable, the KL-divergence
(or relative entropy) between two probability measures and mutual information are
reviewed. We state Fano’s inequality [73] for the purpose of proving converses in the
sequel. We also provide a flavor of Euclidean information theory [26], which states that
if two probability measures P and Q are close, then the KL-divergence D(P ||Q) can
be approximated by a weighted Euclidean norm. This approximation comes in handy
when we seek to develop qualitative insights into the nature of the error exponents.
Next, we describe the method of types [49], a powerful combinatorial technique to
study the large-sample behavior of types or empirical distributions. It has proven to
be useful for proving coding theorems and also in the study of large deviations. We
state an important result, Sanov’s theorem [171], which is used extensively to prove
large deviation bounds in the rest of the thesis. The binary hypothesis testing section
derives the optimal decision rule under the Neyman-Pearson and Bayesian settings –
the likelihood ratio test. It also provides the form of the error exponents under these
two settings.

In the next topic on classification and boosting, we set the stage for Chapter 6 by
describing a prototypical problem in machine learning – supervised classification [21,
66, 96]. In supervised classification, the learner is provided with i.i.d. training samples
of pairs of feature vectors and labels from some unknown joint distribution. Using this
dataset, the learner would like to build a decision rule to discriminate unlabeled test
samples. One way to do this, as we describe, is to judiciously combine weak-classifiers
in a popular technique known as boosting [79]. Boosting has a variety of appealing
theoretical properties which we describe in this section.

The final two topics are on graphical models [127, 209], which are also known as
Markov random fields. Graphical models provide parsimonious representations for mul-
tivariate probability distributions. The subject brings together graph theory [213] and
probability theory [19] to provide a diagrammatic representation of complex probability
distributions over many variables. The structure of the graph allows for the design and
analysis of efficient graph-based algorithms for statistical inference [153]. We review
some basic definitions in graph theory and key ideas in graphical modeling.
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An important line of analysis in the study of graphical models is the learning the
structure of the graph from i.i.d. samples [107]. This problem has received a lot of
attention of late and the relevant work is reviewed in the last topic. We also state
and describe results from Chow and Liu [42] who provided an efficient implementation
of the search for the maximum likelihood tree structure. Their work shows that the
optimization reduces to a max-weight spanning tree problem with the empirical mutual
information quantities as the edge weights. This algorithm is analyzed in detail in
Chapters 3 and 4.

� 1.2.2 Chapter 3: Large Deviations for Learning Discrete Tree Models

Chapter 3, which forms the basis for Chapters 4 and 5, is devoted to the study of
error exponents for learning tree-structured models where each random variable can
only take on a finite number of values. Consistency for structure learning for trees
was established by Chow and Wagner [43]. However, while consistency is an important
qualitative property, the error exponent provides a careful and precise quantitative
measure of the ease of learning the structure of the graphical model. The problem
is posed formally as follows: There is an unknown discrete tree-structured graphical
model P Markov on TP = (V,EP ), where |V | = d is the number of nodes (variables)
in the graph. The learner is given access to i.i.d. samples xn := {x1, . . . ,xn} and using
the Chow-Liu algorithm, he can reconstruct the set of edges of the maximum-likelihood
tree EML. We analytically evaluate the error exponent for structure learning

KP := lim
n→∞

− 1

n
logPn(EML 6= EP ), (1.1)

by using techniques from large-deviations theory and the method of types [47, 59, 62].
We show that for non-degenerate tree models, the error probability decays exponentially
fast as depicted in Fig. 1.2. The exponent KP provides a quantitative measure of the
ease of learning the model. If it is small, then the learner requires a large number of
samples to learn the model and vice versa.

Our main contribution in this chapter is the evaluation of KP in (1.1) by consider-
ing the large-deviation rates of the so-called crossover events, where a non-edge in EML

replaces a true edge in EP . In addition, we analyze the so-called very-noisy learning
regime in which the algorithm is likely to make errors because the true mutual infor-
mation on a non-edge is close to the mutual information of an edge. Because the error
exponent is characterized exactly by a non-convex (and hence intractale) optimization
problem, we then use Euclidean information theory [26] to approximate it. It is shown
that the approximate error exponent can be interpreted as a signal-to-noise ratio for
learning. This provides clear intuition as to what types of parameterizations of the
models lead to difficult learning problems, i.e., problems in which one needs many sam-
ples in order to ensure that the error probability falls below a pre-specified level δ > 0.
Our results also extend to learning the (not necessarily unique) tree-projection of a
non-tree distribution.
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Figure 1.2. Illustration of the typical behavior of the probability of error for learning the structure
of a tree model. The error probability decays with rate KP , which in the case of (connected) trees, is
strictly positive.

� 1.2.3 Chapter 4: Large Deviations for Learning Gaussian Tree Models

Chapter 4 builds on the ideas on the previous chapter but analyzes Gaussian graphical
models [69, 167], a widely-studied class of models for modeling continuous data. Many
of the results from the previous chapter carry through to the Gaussian case albeit
with slightly different proofs. We also leverage on the added structure of multivariate
Gaussians and in particular the Markov property on trees (see Lemma 2.26), which
states that the correlation coefficient of any non-neighbor pair of nodes is equal to the
product of the correlation coefficients along its unique path.

Assuming that the models considered are in the very-noisy learning regime, we are
able to prove what the author regards as perhaps the most interesting result in this
thesis: That star graphs4 are the most difficult to learn while Markov chains are the
easiest. More formally, if we keep the parameterization (in terms of the correlation
coefficients) of the models fixed, then the star minimizes a very-noisy approximation of
the error exponent in (1.1) while the chain minimizes the same quantity. This universal
result does not depend on the choice of the parameterization, i.e., the correlation coef-
ficients. Furthermore, we are able to drastically reduce the computational complexity
to find the exponent. It turns out that only O(d) computations are required, compared
to O(dd−2) using a brute-force search. Even though the problem setups are similar,
the proof techniques used in this chapter are very different from the ones employed in
Chapter 3.

� 1.2.4 Chapter 5: Learning High-Dimensional Forests

This chapter focuses on the analysis for learning forest-structured graphical models,
i.e., models that are Markov on undirected, acyclic (but not necessarily connected)

4We will define these graphs formally in Section 2.4.1 but for the moment, stars are trees where all
but one node has degree one. A Markov chain is a tree where all nodes have degree less than or equal
to two.
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graphs. For this class of models, there exists a subset of variables that are statistically
independent of one another. In this case, the canonical Chow-Liu algorithm [42] being
an ML implementation will, in general, favor richer models and thus overestimate the
number of edges in the true model. The work in this chapter is motivated by high-
dimensional modeling where the number of samples is small relative to the number of
variables and we would like to learn very sparse models to avoid overfitting [132]. We
model the paucity of data by considering learning a sequence of forest-structured models
of increasing number of nodes d (with corresponding increasing sample size n).

There are two main contributions in this chapter: Firstly, we derive a sufficient
condition on the scaling law on n and d and also the true number of edges k such that
the probability of error of structure recovery tends to one when all these three model
parameters scale. Interestingly, we show that even if d and k grow faster than any
polynomial in n, structure recovery is possible in high-dimensions. Our proof relies on
controlling the overestimation and underestimation errors (in k) and draws on ideas
from the area of study known as Markov order estimation [77]. Secondly, we study the
decay of the risk of the estimated model relative to the true model. Our results improve
on recent work by Liu et al. [132] and Gupta et al. [89].

� 1.2.5 Chapter 6: Learning Graphical Models for Hypothesis Testing

This chapters departs from the modeling framework discussed in the previous three
chapters and instead considers learning pairs of distributions to be used in a likelihood
ratio test for the specific purpose of hypothesis testing (or classification). The generative
techniques (such as in [2, 128, 136, 211]) used to approximate high-dimensional distri-
butions are typically not readily adaptable to discrimination or classification. This is
because the purpose of modeling is to faithfully capture the entire behavior of a dis-
tribution, whereas in discrimination, the aim is to discover the salient differences in
a pair of multivariate distributions. However, if the approximating distributions are
trees, then we show that discriminatively learning such models is both computationally
efficient and results in improved classification accuracy vis-à-vis existing tree-based al-
gorithms such as Tree Augmented Näıve Bayes [84]. This chapter is thus devoted to the
development of a new classifier that leverages on the modeling ability of tree-structured
graphical models. As noted in the recent thesis by K. R. Varshney [203], “no one clas-
sifier is always superior”, so the design and performance analysis of new classifiers is
useful [216].

There are three contributions in this chapter. Firstly, given a set of samples, we
develop computationally efficient tree-based algorithms to learn pairs of tree-structured
models to be used in an approximate likelihood ratio test. We do so by maximizing a
quantity known as the tree-approximate J-divergence, which in the discrete case reduces
to a quantity proportional to the empirical log-likelihood ratio. We show that this
maximization can be done efficiently, giving a pair of tree-structured distributions that
are learned specifically for the purpose of discrimination. Secondly, we apply ideas
from boosting [79] to learn thicker models, i.e., models that contain more edges than
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trees do. This provides a systematic procedure to do pairwise feature selection [90]
because the edges selected can be interpreted as the most salient ones for the purpose
of discriminating between the two distributions. Finally, we validate the classification
accuracy of the algorithms by performing extensive experiments on real and synthetic
data.

� 1.2.6 Chapter 7: Conditions for Salient Subset Recovery

This final technical chapter builds on the theme of salient feature selection from the
previous chapter. In particular, we would like to discover what the fundamental
information-theoretic limits are for the recovering the salient feature set given a set
of samples. As in Chapter 5, this chapter also deals with the high-dimensional scenario
in which the number of variables scale with the number of samples. The goal is to
find scaling laws so that the recovery of the salient set, which is defined in terms of
the error exponents of hypothesis testing, is asymptotically achievable. Conversely, we
would also like to determine when it is impossible to recover the salient set, i.e., when
the number of samples is insufficient for performing such a task.

There are three main contributions in this chapter. Firstly, we prove an achievability
result: We show that there exists constants C,C ′ such that if the number of samples n
satisfies

n > max

{
Ck log

(
d− k
k

)
, exp(C ′k)

}
(1.2)

where k and d are the number of salient features and the total number of features
respectively, the error probability in recovering the salient set can be made arbitrarily
small as the model parameters scale. One way to interpret this result is to regard k as
a constant. In this case (1.2) says that the number of samples depends linearly on k
and logarithmically on the “ambient dimensionality” d. Secondly, we prove a converse
result. We show that under appropriate conditions, if

n < C ′′ log

(
d

k

)
, (1.3)

recovery of the salient set is no longer possible. This result follows from an application of
Fano’s inequality. Thirdly, we show that if the probability models are trees, then there
exists an efficient tree-based algorithm based on a dynamic programming procedure to
recover the salient set in time O(dk2).

� 1.2.7 Chapter 8: Conclusions

This concluding chapter summarizes the thesis and suggests many possible directions
for future work based on the material presented in this thesis. For example, one possible
direction is to consider the learning of tree models in an online fashion. This delves
into the realm of online learning [160, 222]. The work in this thesis is focused on the
so-called batch learning scenario where all the data is available for learning. However,
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in many real-time systems the data arrives sequentially. What can be said about the
theoretical properties of the models learned at each time step? Are there any efficient
algorithms to update the models sequentially?

Another possible direction is the learning of tree models with hidden (or latent) vari-
ables where observations are only available from a subset of variables. These problems
have many applications from phylogenetics [71] to computer vision [152] to network to-
mography inference [149, 150]. We have begun our foray into this subject by performing
algorithmic studies in Choi et al. [41], but we have yet to perform unified and detailed
error exponent analysis. We believe that as in Chapter 4 such a line of analysis will lead
to interesting insights as to which classes of latent tree models are easy to learn. These
promising research directions (and more) are described in greater detail in Chapter 8.
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Chapter 2

Background

THIS background chapter describes several topics in applied mathematics, probabil-
ity, and statistics that form the theoretical foundation for the thesis. Five topics

are covered: (i) information theory, (ii) its application to statistics and the method of
types, (iii) supervised classification and boosting (iv) graphical models and (v) learning
graphical models.

The dawn of information theory was due to a landmark paper by C. E. Shan-
non [178]. Standard references in information theory include Cover and Thomas [47],
Yeung [218] and Csiszár and Körner [50]. In the late 1970s, Csiszár and Körner [53]
developed a powerful technique known as the method of types to analyze the properties
of types, also known as empirical distributions. This led to the use of particularly con-
venient combinatorial techniques for proving Shannon’s original coding theorems. The
method of types is also used in the study of large deviations [59, 62, 64, 202], an area
in probability theory that is concerned with the asymptotic behavior of remote tails of
sequences of probability distributions. Supervised classification [21, 66, 96] is a proto-
typical problem in machine learning and boosting [79] is a commonly used algorithm
to combine so-called weak classifiers to form a stronger classifier with better accuracy.

Graphical models, which provide parsimonious representations for multivariate prob-
ability distributions, grew out of the artificial intelligence community [153] and form a
popular area of research in the machine learning [81], statistics [214], signal and image
processing [215, 217] and information theory [122] communities. More recent expositions
on graphical models (also known as Bayesian networks or Markov random fields) can
be found in Lauritzen [127], Wainwright and Jordan [209], Koller and Friedman [117]
and Bishop [21]. There has also been a surge of interest in learning such models from
i.i.d. data samples [107] starting with the seminal work by Heckerman [97]. An efficient
maximum-likelihood implementation for learning tree-structured graphical models was
proposed by Chow and Liu [42]. The treatment of these topics in this chapter is lim-
ited to the scope required for the remainder of this thesis and is thus by no means
comprehensive.

We assume that the reader is familiar with the basic notions in probability theory
at the level of Bertsekas and Tsitsiklis [19] and analysis at the level of Rudin [166].
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� 2.1 Information Theory

Information theory [47, 50, 178] is a branch of applied mathematics and electrical engi-
neering involving the quantification of information. More precisely, information theory
quantifies the fundamental limits of the compression and transmission of data. Since
its inception in the late 1940s, it has broadened to find applications in many other
areas, including statistical inference [53], probability theory and large deviations [49],
computer science (Kolmogorov complexity) [119] and portfolio theory (Kelly gambling)
in economics [114].

This section is devoted to the definition of various information-theoretic quantities,
such as entropy, KL-divergence or relative entropy and mutual information (a special
case of relative entropy). We state various properties of these information quantities
such as the chain rule and the data-processing inequality. We introduce an important
class of distributions known as exponential families by appealing to the maximum en-
tropy principle. Standard converse tools such as Fano’s inequality will also be stated.
These properties and proof techniques will be useful in subsequent chapters. For exam-
ple, the learning of graphical models from data in Chapters 3, 4 and 5 involves various
information-theoretic quantities. The proof of the necessary conditions for salient sub-
set recovery in Chapter 7 uses Fano’s inequality. The exposition here is based largely
on Cover and Thomas [47].

� 2.1.1 Notation

The following conventions will be adopted throughout this thesis. The set of natural
numbers, integers, irrational numbers and real numbers will be denoted as N,Z,Q and
R respectively. Random variables will be in upper case, e.g., X. Scalar variables, such
as a particular value that a random variable takes on, are in lowercase, e.g., x. Vectors
have bold typeface, e.g., x, while scalars do not. Matrices have uppercase bold typeface,
e.g., X. The transpose of X is denoted as XT .

Standard asymptotic order notation [45] such as O(·), Ω(·), Θ(·), o(·) and ω(·) will
be used throughout. We say that f(n) = O(g(n)) if there exists K > 0 and N ∈ N such
that f(n) ≤ Kg(n) for all n > N . We say that f(n) = Ω(g(n)) if there exists K > 0
and N ∈ N such that f(n) ≥ Kg(n) for all n > N . We say that f(n) = Θ(g(n)) if
f = O(g(n)) and f(n) = Ω(g(n)). In addition, f(n) = o(g(n)) if f(n) = O(g(n)) and
f(n) 6= Θ(g(n)). Finally, f(n) = ω(g(n)) if f(n) = Ω(g(n)) and f(n) 6= Θ(g(n)).

Let X be a random variable with alphabet X . For simplicity, our exposition in this
chapter is (mostly) for the case when the alphabet X is finite, but extensions to the
countably infinite case (and uncountable case) are usually straightforward. Let P (x) be
a probability mass function (pmf), i.e., P (x) = Pr(X = x) for all x ∈ X . We will often
denote the pmf by P instead of the more cumbersome PX with the knowledge that
P (x) refers to the pmf associated to random variable X. Thus, the argument specifies
the random variable. As mentioned, the majority of the definitions in this chapter also
apply to continuous random variables with an associated probability density function
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(pdf) p(x). We use the term distribution to mean either the pmf (density with respect
to the counting measure) or the pdf (density with respect to the Lebesgue measure). We
omit the analogous information-theoretic quantities for continuous random variables for
brevity. Important differences between the discrete case and continuous case will be
highlighted.

The expectation operator is denoted as E[·]. When we want to make the expecta-
tion with respect to (wrt) a distribution P explicit, we will instead write EP [·]. The
variance of X and covariance between X and Y are denoted as Var(X) and Cov(X,Y )
respectively. The probability simplex over the alphabet X is denoted as

P(X ) :=
{
P ∈ R|X | : P (x) ≥ 0,

∑

a∈X

P (a)

}
. (2.1)

Thus, all distributions over X belong to P(X ). We say that X is the support of P .
Throughout the thesis, log will mean logarithm to the base e. Thus, the information-

theoretic quantities stated will have units in nats.

� 2.1.2 Entropy and Conditional Entropy

Definition 2.1. The entropy H(X) of a discrete random variable with pmf P is defined
as

H(X) := −
∑

a∈X

P (a) logP (a). (2.2)

More frequently than not, we denote the entropy as H(P ), i.e., we make the de-
pendence of the entropy on the pmf explicit. The entropy can also be written as an
expectation:

H(X) = EP log
1

P (X)
. (2.3)

The entropy is a measure of the randomness or uncertainty of a random variable X.
It has many important operational interpretations. For instance, the entropy H(P ) of
a random variable X with distribution P is a lower bound on the average length of
the shortest description of the random variable. The asymptotic equipartition property
(AEP) also states that most sample n-sequences of an ergodic process have probability
about exp(−nH(X)) and there are about exp(nH(X)) such typical sequences. We will
frequently exploit the latter fact in the subsequent development for learning graphical
models. We now state an important property of entropy for discrete random variables.

Lemma 2.1. 0 ≤ H(P ) ≤ log |X |.

The continuous analog of (2.2) is known as the differential entropy (see Chapter 8
in [47]). Note that unlike the entropy defined for pmfs (or discrete distributions), the
differential entropy can be negative.

The joint entropy and conditional entropies can be defined in exactly the same way.
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Definition 2.2. The joint entropy H(X,Y ) of discrete random variables X,Y with
joint pmf PX,Y is defined as

H(X,Y ) := −
∑

(a,b)∈X×Y

PX,Y (a, b) logPX,Y (a, b). (2.4)

As mentioned previously, we will usually use the notation H(PX,Y ) in place of
H(X,Y ) to make the dependence on the joint distribution PX,Y explicit. There is
nothing new in the definition of the joint entropy. One can easily see that (2.4) reduces
to (2.2) by considering (X,Y ) to be a random variable defined on the alphabet X ×Y.
The definition of the conditional entropy is more subtle.

Definition 2.3. The conditional entropy H(X|Y ) of discrete random variables X,Y
with joint pmf PX,Y is defined as

H(X|Y ) := −
∑

(a,b)∈X×Y

PX,Y (a, b) logPX|Y (a|b). (2.5)

Note that the expectation is taken over the joint distribution PX,Y . In other words,

H(X|Y ) = EPX,Y
log

1

P (X|Y )
(2.6)

and we abuse notation to say that H(PX|Y ) = H(X|Y ) with the understanding that
the conditional entropy also depends on PX . From the above definitions, it is also clear
that

H(X|Y ) =
∑

b∈Y

PY (b)H(X|Y = b)

= −
∑

b∈Y

PY (b)
∑

a∈X

PX|Y (a|b) logPX|Y (a|b). (2.7)

We now state a few useful and simple properties of the various entropy functional
introduced in this section.

Lemma 2.2. (Chain rule for entropy) H(X,Y ) = H(X) +H(Y |X).

Lemma 2.3. (Conditioning reduces entropy) H(X|Y ) ≤ H(X).

� 2.1.3 Maximum Entropy and Exponential Families

In this section, we introduce an important class of distributions, known as exponential
families, by appealing to the maximum entropy principle [104]. The principle of max-
imum entropy states that, subject to a set of constraints, the probability distribution
which best represents the current state of knowledge is the one with largest entropy.
In essence, this is the most random distribution, and reflects the maximum uncertainty
about the quantities of interest.
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Let t = (t1, . . . , tK) : X → RK be a vector-valued statistic of X. That is t is a
(measurable) function of X. Let c = (c1, . . . , cK) ∈ RK be a constant vector. Then the
maximum entropy distribution PME is given by

PME := argmax
P∈P(X )

H(P ) subject to EP tk(X) = ck, k = 1, . . . ,K. (2.8)

The constraint set {P ∈ P(X ) : EP t(X) = c} is called a linear family.

Lemma 2.4. (Maximum Entropy Distribution) The maximum entropy distribution,
if it exists, has the form

PME(x) =
exp

(∑K
k=1 θktk(x)

)

∑
a∈X exp

(∑K
k=1 θktk(a)

) , (2.9)

where θ = (θ1, . . . , θK) ∈ RK is a constant vector chosen to satisfy the constraints
in (2.8).

Lemma 2.4 can be proven using Lagrange multipliers and can be found for example
in [110]. Expressed differently the maximum entropy distribution, parameterized by θ

can be written as
PME(x) = P (x;θ) = exp

(
θT t(x)− Φ(θ)

)
(2.10)

where the log-partition function (also called cumulant generating function)

Φ(θ) := log

[∑

a∈X

exp
(
θT t(a)

)
]
. (2.11)

The family of distributions

E(t) :=

{
P (x;θ) ∝ exp

(
K∑

k=1

θktk(x)

)
, x ∈ X

}
(2.12)

in which each element is parameterized by θ as in (2.10) is called aK-parameter (linear)
exponential family with natural statistic t(·). See Bernando and Smith [17] or Barndorff-
Nielsen [13] for more details on exponential families and their properties. The parameter
θ is known as the natural parameter (or exponential parameter) of the family. Lemma
2.4 says that maximum entropy distributions are members of exponential families. The
log-partition function, a central quantity in statistical physics, has many appealing
properties including those stated in the following lemma.

Lemma 2.5. (Properties of Log-Partition Function) The derivatives of Φ(θ) satisfy

∂Φ

∂θk
= EP tk(X),

∂2Φ

∂θj∂θk
= CovP (tj(X), tk(X)). (2.13)
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Definition 2.4. The Fisher information matrix in X about θ, denoted as Fθ, is the
Hessian matrix of the log-partition function ∂2Φ/∂θ2. Furthermore,1

Fθ = EP

[(
∂

∂θ
logP (X;θ)

)(
∂

∂θ
logP (X;θ)

)T]
(2.14)

= EP

[
− ∂2

∂θ2
logP (X;θ)

]
. (2.15)

The Fisher information matrix, a fundamental quantity in estimation theory [199],
can be interpreted as a measure of curvature: it measures, on average, how “peaky”
logP (x;θ) is as a function of θ. The Cramer-Rao lower bound [199] states that the
(inverse of the) Fisher information matrix serves as a lower bound on the variance of
any unbiased estimator of θ. Intuitively, the “larger” the Fisher information, the better
one can do at estimating θ from data.

� 2.1.4 Relative Entropy and Mutual Information

The relative entropy2 is a measure of the “distance” between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio and thus, the error
exponent for the asymptotics of binary hypothesis testing as we discuss in the next
section. In source coding, the relative entropy D(P ||Q) can also be interpreted as a
measure of the inefficiency (in terms of code length) of assuming that the distribution
is Q when in fact, the true distribution is P .

Definition 2.5. The relative entropy or KL-divergence between two distributions P (x)
and Q(x) is defined as

D(P ||Q) =
∑

a∈X

P (a) log
P (a)

Q(a)
. (2.16)

The convention we use3 is the following: 0 log(0/0) = 0, 0 log(0/q) = 0 and
p log(p/0) = ∞. Thus, D(P ||Q) is finite if and only if (iff) P is absolutely contin-
uous wrt Q. In other words, if there exists a ∈ X such that P (a) > 0 and Q(a) = 0,
then the KL-divergence D(P ||Q) =∞. For the majority of this thesis, we will assume
that the distributions are positive everywhere wrt the alphabet X , i.e., P (a) > 0 for all
a ∈ X . The extension of the definition of KL-divergence in (2.16) to continuous random
variables is straightforward and we refer the reader to [47, Chapter 8].

The relative entropy is not symmetric (and hence is not a metric) but satisfies the
following property, known as the information inequality.

1We assume in (2.14) and (2.15) that the derivatives of the log-likelihood logP (x;θ) exist.
2The relative entropy is also called KL-divergence (for Kullback-Leibler divergence [125]), informa-

tion divergence and minimum discrimination information [33].
3The convention can be justified by continuity arguments.
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Lemma 2.6. (Information inequality) The relative entropy is non-negative, i.e,

D(P ||Q) ≥ 0. (2.17)

Equality in (2.17) holds iff P = Q.

The convexity of relative entropy plays a crucial role in the subsequent development.

Lemma 2.7. (Convexity of relative entropy) The relative entropy is jointly convex in
(P,Q), i.e, for every λ ∈ [0, 1] and two pairs of distributions (P,Q) and (P ′, Q′),

D(λP + (1− λ)P ′ ||λQ+ (1− λ)Q′) ≤ λD(P ||Q) + (1− λ)D(P ′ ||Q′). (2.18)

The relative entropy also satisfies a version of the chain rule.

Lemma 2.8. (Chain rule for relative entropy) For two joint distribution PX,Y and
QX,Y , the relative entropy satisfies

D(PX,Y ||QX,Y ) = D(PX|Y ||QX|Y ) +D(PY ||QY ) (2.19)

where the conditional KL-divergence is defined as

D(PX|Y ||QX|Y ) := EPX,Y
log

PX|Y (X|Y )

QX|Y (X|Y )
. (2.20)

Note that the expectation is over the joint distribution PX,Y . We also state a result
(to be used in Chapter 5) that relates the relative entropy to the `1 norm of the difference
between the distributions (also known as the total variation distance).

Lemma 2.9. (Pinsker’s Inequality [76]) Let

‖P −Q‖1 :=
∑

a∈X

|P (a)−Q(a)| (2.21)

be the `1 norm of the difference between P and Q. Then,

D(P ||Q) ≥ 1

2 log 2
‖P −Q‖21. (2.22)

We will also frequently make use of approximations of the relative entropy functional.
One such well-known connection of the KL-divergence is to the Fisher information
matrix Fθ, introduced in (2.14). Specifically, if P (·;θ) and P (·;θ′) are members of
the same exponential family E(t) with (vector-valued) natural parameters θ and θ′

respectively, then

D(P (·;θ) ||P (·;θ′)) =
1

2
(θ − θ′)TFθ(θ − θ′) + o(‖θ − θ′‖2). (2.23)
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By regarding pmfs as vectors in R|X |, Borade and Zheng [26] derived another useful
approximation of D(P ||Q):

D(P ||Q) =
1

2
‖P −Q‖2P + o(‖P −Q‖2). (2.24)

where the weighted Euclidean norm in (2.24) is defined as ‖y‖2w :=
∑

i y
2
i /wi. In fact,

the subscript P in (2.24) can be changed to any distribution in the vicinity of P and
Q, i.e.,

D(P ||Q) =
1

2
‖P −Q‖2P0

+ o(‖P −Q‖2), (2.25)

if P0 ≈ P ≈ Q. This approximation is valid in the sense that the difference between
D(P ||Q) and the quadratic approximation is small as compared to the magnitude of
the true KL-divergence. Euclidean information theory [26] uses the approximations
in (2.24) and (2.25) to simplify a variety of difficult problems in information theory.
For example, it provides a single-letter characterization of the noisy broadcast channel
problem in the so-called very-noisy scenario. We will use (2.24) and (2.25) as well as
variants thereof to simplify expressions in the very-noisy (learning) regime.

We now introduce the notion of the mutual information between two random vari-
ables X and Y . The mutual information is a measure of the amount of information X
has about Y .

Definition 2.6. Consider two random variables X an Y with joint pmf PX,Y ∈ P(X ×
Y). The mutual information I(X;Y ) is the relative entropy between PX,Y and the
product distribution PXPY , i.e.,

I(X;Y ) := D(PX,Y ||PXPY ) =
∑

(a,b)∈X×Y

PX,Y (a, b) log
PX,Y (a, b)

PX(a)PY (b)
. (2.26)

From the definition and Lemma 2.6, we see that mutual information is also non-
negative and equals to zero iff PX,Y = PXPY , implying that X and Y are independent.
As with entropy, we will frequently use an alternative notation for mutual information.
The notation I(PX,Y ) = I(X;Y ) makes the dependence on the joint distribution ex-
plicit. The mutual information can be written in terms of the entropy and conditional
entropy in the following way:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.27)

That is, I(X;Y ) denotes the reduction in the uncertainty of X given Y . The conditional
mutual information I(X;Y |Z) is defined analogously, i.e.,

I(X;Y |Z) = H(X|Z)−H(X|Y, Z). (2.28)

There is also a corresponding chain rule for mutual information, which is used to prove
the data processing inequality and Fano’s inequality.

Lemma 2.10. (Chain rule for mutual information) The mutual information of X and
(Y, Z) can be decomposed as

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ). (2.29)
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� 2.1.5 Data Processing Inequalities

Data processing inequalities are a family of inequalities that roughly state that informa-
tion necessarily decreases (more precisely, does not increase) if one processes a random
variable. We state two versions of this inequality in this section. To state the mu-
tual information form of the inequality, we need the notion of a (discrete-time) Markov
chain.

Definition 2.7. Random variables X,Y and Z with joint pmf PX,Y,Z are said to form
a Markov chain in that order (denoted X − Y − Z) if X and Z are independent given
Y . That is, the joint pmf can be written as

PX,Y,Z(x, y, z) = PX(x)PY |X(y|x)PZ|Y (z|y). (2.30)

The notion of graphical models, which is introduced in the later part of this chapter,
is simply a generalization of Markov chains to arbitrary undirected graphs. The data
processing inequality is stated as follows.

Theorem 2.11. (Data processing inequality: Mutual information form) If X−Y −Z,
then

I(X;Y ) ≥ I(X;Z) (2.31)

with equality iff I(X;Y |Z) = 0, i.e., X and Y are conditionally independent given Z.

An alternative form of the data processing inequality can be stated as follows: Let
X ,Y be two (finite) sets. If PX , QX ∈ P(X ) are two distributions and WY |X is a
conditional distribution, then we can define another pair of distributions

PY (y) :=
∑

x∈X

WY |X(y|x)PX(x), QY (y) :=
∑

x∈X

WY |X(y|x)QX(x). (2.32)

Note that PY , QY ∈ P(Y). Then, we have the following KL-divergence form of the data
processing inequality.

Theorem 2.12. (Data processing inequality: KL-divergence form) Assume the setup
above. Then

D(PX ||QX) ≥ D(PY ||QY ). (2.33)

Equality holds iff WY |X(y|x) is deterministic channel g(x) and for every b ∈ Y, the
ratio PX(a)/QX(a) = kb is a constant for all a ∈ g−1(b) := {a ∈ X : g(a) = b}.

That is, processing (via a noisy channel WY |X) cannot increase discriminability. In
fact, one can show that the data processing inequality holds for all so-called Ali-Silvey
distances [14] of which KL-divergence is a special case. A special case of Theorem 2.12
will prove to be more useful in the sequel. Let PX,Y , QX,Y ∈ P(X × Y).
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Corollary 2.13. (Data processing inequality: KL-divergence form) Assuming the setup
above, we have

D(PX,Y ||QX,Y ) ≥ D(PX ||QX) (2.34)

with equality iff

PX,Y = PX ·WY |X , QX,Y = QX ·WY |X , (2.35)

i.e., the conditional distributions are identical.

� 2.1.6 Fano’s Inequality

Suppose that X and Y are two correlated random variables. We would like to guess
the value of X given the random variable Y . It can easily be seen that if H(X|Y ) = 0,
i.e., the random variable X = g(Y ) where g(·) is some deterministic function, then we
can estimate X with zero error probability. A natural question to ask is how well can
one do in estimating X if H(X|Y ) > 0. Fano’s inequality provides a lower bound on
the error probability in terms of the conditional entropy. We now describe the setup
precisely.

There are two random variables X,Y with joint distribution PX,Y . Suppose we
wish to estimate the unknown random variable X with pmf PX . We observe Y which
is related to X via the conditional distribution PY |X . From Y , we form an estimate X̂

which takes values in the same alphabet X . A key observation is that X − Y − X̂ is a
Markov chain and so we can appeal to the data processing inequality in Theorem 2.11.
The probability of error perr := Pr(X̂ 6= X). Then the form of Fano’s inequality that
we need is stated below.

Theorem 2.14. (Fano’s inequality) For any X̂ such that X −Y − X̂, with perr defined
above, we have

perr ≥
H(X|Y )− 1

log |X | . (2.36)

Typically lower bounds of error probabilities are harder to prove and so Fano’s
inequality is often the only tool in proving converses in information theory. We employ
Fano’s inequality on several occasions in the sequel.

� 2.2 The Method of Types and Asymptotics

The method of types, pioneered by Csiszár and Körner [49, 50], is a powerful technique
for analyzing the asymptotic behavior of types, or empirical distributions. By using
simple combinatorial tools, the method of types simplifies many proofs in the study of
large deviations, which is a theory for the quantification of probabilities of rare events.
In this section, we state some standard results from the method of types and use these
results in the context of hypothesis testing and maximum likelihood estimation.

The results in this section are used to evaluate the error exponents associated to
learning graphical models from data in Chapters 3, 4 and 5. The notion of a salient
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set, defined in Chapter 7, is motivated by the Chernoff-Stein lemma which is stated in
this section. The exposition here is based on Cover and Thomas [47], Van Trees [199]
and Van der Vaart [63].

� 2.2.1 The Method of Types

In this section, the following notation will be adopted. Let X1, . . . , Xn be a sequence
of i.i.d. random variables drawn from some distribution P = PX ∈ P(X ), where X is a
finite set. We use the notation Xn

1 to denote the sequence of variables. Usually this will
be abbreviated as Xn. We also use the notation xn = (x1, . . . , xn) to denote a sequence
of n symbols (realizations) of the random variables Xn.

Definition 2.8. The type or empirical distribution of a sequence xn is the relative
proportion of occurrences of each symbol in X , i.e.,

P̂ (a;xn) =
1

n

n∑

k=1

I{xk = a} (2.37)

where4 I{xk = a} is equal to 1 if xk = a and 0 otherwise.

The type is clearly a pmf, i.e.,
∑

a∈X P̂ (a;x
n) = 1. In addition, we frequently

abbreviate the notation for the type to be P̂ (a) = P̂ (a;xn). That is, the dependence
on the sequence is suppressed. The type serves as an estimate of the distribution P .
Indeed, for any n, we have

EP [P̂ (·;Xn)] = P (·), ∀ a ∈ X . (2.38)

Definition 2.9. The set of types with denominator n, Pn(X ) ⊂ P(X ) is the set of all
possible types for sequences of length n generated from an alphabet X .
Lemma 2.15. (Cardinality of types) The cardinality of the set of types with denomi-
nator n is

|Pn(X )| =
(
n+ |X | − 1

|X | − 1

)
. (2.39)

Furthermore, a convenient upper bound of |Pn(X )| is (n+ 1)|X |.

This result states that there are only polynomially many types.

Lemma 2.16. (Denseness of types [59]) For any pmf Q ∈ P(X ),

min
P∈Pn(X )

‖P −Q‖1 ≤
|X |
n
, (2.40)

where recall that ‖P − Q‖1 is the `1 norm between the probability vectors P and Q
defined in (2.21).

4The notation I{statement} denotes the indicator function. It is equal to 1 (resp. 0) if the statement
is true (resp. false).
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Lemma 2.16 states that for sufficiently large n, the sets Pn(X ) approximate uni-
formly and arbitrarily well (in the sense of the `1 norm) any probability measure in
P(X ). Thus the union of the sets of n-types Pn(X ) is dense in the simplex P(X ), i.e.,
cl(∪n∈NPn(X )) = P(X ).

Definition 2.10. The type class of a distribution Q ∈ P(X ) is defined as

T(Q) := {xn ∈ X n : P̂ (·;xn) = Q}. (2.41)

That is, the type class of Q consists of all length-n sequences so that the empirical
distribution of each sequence equals Q. Note that the type class T(Q) depends clearly
on n but that dependence is suppressed for notational convenience. Also, if Q ∈ P(X ) is
not a type with denominator n, then the type class T(Q) may be empty. If for instance,
Q(a) /∈ Q for some a ∈ X , i.e., some coordinate of Q is irrational, then T(Q) = ∅. We
now state some well-known results on the probability and the size of a type class.

Lemma 2.17. (Size of type class T(Q)) For any type Q ∈ Pn(X ), the size of the type
class satisfies

1

(n+ 1)|X |
exp(nH(Q)) ≤ |T(Q)| ≤ exp(nH(Q)). (2.42)

This says that the size of any type class is exponential in n with the exponent given
roughly by H(Q), the entropy of the pmf Q. Note that, in contrast, the number of types
is only polynomial in n (cf. Lemma 2.15). For any set A ⊂ X n, the Pn-probability of
A is simply defined as

Pn(A) :=
∑

xn∈A

Pn(xn). (2.43)

Lemma 2.18. (Probability of type class T(Q)) For any type Q ∈ Pn(X ) and any
distribution P , the probability of the type class T(Q) under the product measure Pn is
bounded by

1

(n+ 1)|X |
exp(−nD(Q ||P )) ≤ Pn(T(Q)) ≤ exp(−nD(Q ||P )). (2.44)

This says that the probability of the type class of Q is exponentially unlikely under
P 6= Q. More precisely, the exponent is given by the KL-divergence D(Q ||P ). Thus,
the farther apart the distributions, in terms of divergence, the more unlikely a sequence
drawn from P “looks like” Q.

At this point, it is useful to introduce asymptotic notation so that the subsequent
results appear cleaner but no less precise. We say that two positive sequence {an}n∈N
and {bn}n∈N are equal to first order in the exponent if

lim
n→∞

1

n
log

an
bn

= 0. (2.45)
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Figure 2.1. Illustration of Sanov’s theorem. Note that P ∗ is the I-projection of Q onto the set S.

In this case, we write an
.
= bn. If instead

lim sup
n→∞

1

n
log

an
bn
≤ 0, (2.46)

then we write an
.
≤ bn. The notation

.
≥ is defined analogously.

Using this notation, the results in (2.42) and (2.44) can be re-expressed as

|T(Q)| .
= exp(nH(Q)) (2.47)

Pn(T(Q))
.
= exp(−nD(Q ||P )). (2.48)

We will also frequently use the so-called “largest-exponent-wins” principle [62]. This
says that if an

.
= exp(nA) and bn

.
= exp(nB) for constants A,B ∈ R, then the sequence

with the larger exponent dominates, i.e.,

an + bn
.
= exp(nmax{A,B}). (2.49)

By induction, this simple relation be extended to a finite number of sequences. The
“largest-exponent-wins” principle will be useful in upper bounding error probabilities
in the sequel.

The relations in (2.47) and (2.48) allow us to quantify precisely the asymptotic
behavior of long sequences.

� 2.2.2 Large Deviations and Sanov’s Theorem

The study of large deviations is concerned with the quantification of the probabilities of
rare events. In this section, we state a useful theorem that states precisely the likelihood
that a long i.i.d. sequence Xn drawn from Q has a type P̂ (·;Xn) that belongs to a set
S ⊂ P(X ) whose closure does not contain the generating distribution Q, i.e., Q /∈ cl(S).

If samples Xn are drawn i.i.d. from a probability distribution Q, the probability
of a type class decays exponentially fast as seen in (2.48). Since there are at most
a polynomial number of type classes, the exponential that corresponds to the type
“closest” (in the KL-divergence sense) to Q dominates the sum. See Fig. 2.1. The
following theorem, attributed to Sanov [171] formalizes this reasoning.
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Theorem 2.19. (Sanov’s Theorem) Let S ⊂ P(X ) be a measurable set in the probability
simplex over X . Let Xn be a sequence of i.i.d. random variables drawn from some
distribution Q ∈ P(X ). Then for every n ∈ N,

Qn(P̂ (·;Xn) ∈ S) ≤ (n+ 1)|X | exp(−nD(P ∗ ||Q)) (2.50)

where
P ∗ := argmin

P∈S
D(P ||Q). (2.51)

Furthermore, if S is the closure of its interior5, then the following lower bound holds:

lim inf
n→∞

1

n
logQn(P̂ (·;Xn) ∈ S) ≥ −D(P ∗ ||Q). (2.52)

Recall that P̂ (·;Xn) denotes the type of the sequence of random variables Xn, i.e.,
it is also a sequence of random variables. Note that (2.50) holds for all n. If we take
the normalized logarithm and the lim sup in n, then the following also holds

lim sup
n→∞

1

n
logQn(P̂ (·;Xn) ∈ S) ≤ −D(P ∗ ||Q). (2.53)

Furthermore, if S = cl(int(S)), then using (2.52) and (2.53), we see that the limit exists
and

lim
n→∞

1

n
logQn(P̂ (·;Xn) ∈ S) = −D(P ∗ ||Q). (2.54)

Using the asymptotic notation described in the previous section, (2.54) can be written
as

Qn(P̂ (·;Xn) ∈ S) .= exp(−nD(P ∗ ||Q)). (2.55)

That is, if the set S, roughly speaking, does not have any isolated points, that the Qn-
probability of a type belonging to S is exponentially small and the (Chernoff) exponent
is characterized by P ∗ in (2.51). The optimizing distribution P ∗ in (2.51) is known
as the I-projection [51] of the distribution Q onto the set S. Note that P ∗ does not
necessarily have to be a type.

The exponent in (2.55)

JS(Q) := min
P∈S

D(P ||Q) (2.56)

is also known as the rate function in the theory of large deviations. It depends on both
the set S and the true generating distribution Q. Usually, the set S in Theorem 2.19 is
defined as the preimage of some continuously differentiable function f : P(X )→ R. In
this case, Sanov’s theorem says that for every (measurable) A ⊂ R,

Qn(f(P̂ (·;Xn)) ∈ A) .= exp

(
−n inf

P∈P(X )
{D(P ||Q) : f(P ) ∈ A}

)
. (2.57)

5A set S = cl(int(S)) that satisfies such a topological property is said to be a regular-closed set.
The interior is with respect to the topology in the probability simplex manifold and not the ambient
space R|X|. Thus, the interior should be referred to as the relative interior [28].
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As usual, the infimum of an empty set is defined to be +∞. The relation in (2.57) is a
special case of the so-called contraction principle [59, Theorem 4.2.1] in the theory of
large deviations.

� 2.2.3 Asymptotics of Hypothesis Testing

In this section, we are concerned with the binary hypothesis problem [157, 199] and in
particular, the performance of the optimum test when the number of observations n is
large. The setup is as follows. Let Xn be a sequence of i.i.d. random variables drawn
from Q(x). We consider the two simple6 hypotheses:

H0 : Q = P0, H1 : Q = P1. (2.58)

To avoid trivialities, it is always assumed that P0 6= P1. Traditionally, H0 and H1 are
known as the null and alternative hypotheses respectively. Based on a realization of
Xn, we would like to decide whether Q = P0 or Q = P1. Thus, we would like to design
a decision rule, i.e., a function Ĥ : X n → {H0, H1}. Corresponding to this decision rule
is an acceptance region

An := {xn ∈ X n : Ĥ(xn) = H0}. (2.59)

That is, if we use the rule prescribed by the function Ĥ(·), then xn ∈ An denotes a
decision in favor of H0. The performance of the decision rule Ĥ(·) is measured by two
error probabilities: The probability of false alarm is defined as

αn := Pn0 (A
c
n) (2.60)

where Acn := X n \An denotes the rejection region. The probability of mis-detection is

βn := Pn1 (An). (2.61)

In statistics, αn and βn are known as the type-I and type-II error probabilities re-
spectively. We use the terms false-alarm probability and type-I error probability in-
terchangeably. The terms mis-detection probability and type-II error probability will
also be used interchangeably. We now state the Neyman-Pearson lemma [146] which
provides the optimum test for the hypothesis problem in (2.58).

Lemma 2.20. (Neyman-Pearson) Assume the setup as above. For any η > 0, define
the acceptance region

A∗
n(η) :=

{
xn ∈ X n : l(xn) :=

Pn0 (x
n)

Pn1 (x
n)
> η

}
. (2.62)

Let α∗
n := Pn0 (X n \ A∗

n(η)) and β∗n := Pn1 (A
∗
n(η)) be the type-I and type-II error proba-

bilities respectively. Let Bn be any other acceptance region with type-I and type-II error
probabilities αn and βn respectively. If αn ≤ α∗

n, then βn ≥ β∗n.
6The hypotheses in (2.58) are called simple because each hypothesis only involves a single distribution

(P0 and P1). The study of composite hypothesis testing is vast and we refer the reader to the book by
Lehman [129] for details.
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Thus, the likelihood ratio test (LRT) in (2.62) is the optimum test in the Neyman-
Pearson sense. The LRT minimizes the type-II error over all acceptance regions with
the same (or lower) type-I error probability.

Despite its obvious appeal, Lemma 2.20 lacks symmetry. In the Bayesian setup, one
seeks to find acceptance regions to minimize the overall probability of error:

p(n)err := Pr(H0)αn + Pr(H1)βn. (2.63)

Here, Pr(H0) and Pr(H1) are the prior probabilities of hypothesis H0 and H1 respec-

tively. The following lemma states the decision region that minimizes p
(n)
err .

Lemma 2.21. Given a priori probabilities Pr(H0) and Pr(H1), probability distributions
P0 and P1 as well as the data xn, the minimum probability of acceptance region takes
the form:

A∗
n :=

{
xn ∈ X n : l(xn) :=

Pn0 (x
n)

Pn1 (x
n)
>

Pr(H1)

Pr(H0)

}
(2.64)

i.e., the decision is in favor of H0 if the likelihood ratio l(xn) exceeds the threshold
η := Pr(H1)/Pr(H0).

Hence, similar to the Neyman-Pearson setup, the LRT is again the optimum test in
Bayesian hypothesis testing.

We now examine the asymptotics of hypothesis testing, i.e., we study the asymptotic
decay of the error probabilities αn and βn as n becomes large. We first consider the
Neyman-Pearson setup where the type-I error is kept fixed below some constant (size)
ε > 0. The following lemma is attributed to Chernoff and Stein [38].

Lemma 2.22. (Chernoff-Stein) Let An ⊂ X n be an acceptance region in favor of H0 for
the hypothesis test in (2.58). Let the corresponding type-I and type-II error probabilities
be defined as in (2.60) and (2.61) respectively. Then for any ε > 0, define

βεn := inf
An⊂Xn

{βn : αn < ε} (2.65)

to be the optimum type-II error probability over all acceptance regions such that the
type-I error probability is below a fixed size ε > 0. Then

βεn
.
= exp(−nD(P0 ||P1)). (2.66)

This result says that the exponent governing the decay of the type-II error proba-
bility is D(P0 ||P1). Thus, if the hypotheses are well-separated, D(P0 ||P1) is large and
the rate of decay of the mis-detection probability will also be large.

The Chernoff-Stein lemma lacks symmetry because the type-I error is kept below
ε and the type-II error decays exponentially fast in n, i.e., βn

.
= exp(−nD(P0 ||P1)).

Often times, we may want to minimize the overall error probability, i.e., we would
like ensure that both mis-detection and false alarm error probabilities tend to zero
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Figure 2.2. The distribution Pλ∗ satisfies (2.68). It is equidistant from P0 and P1. The exponential
family joining P0 and P1 has natural statistic t(x) = logP1(x)/P0(x).

exponentially fast. We now state the corresponding asymptotic result for the Bayesian
case where the overall probability of error (2.63) is to be minimized. Define

D∗(P0, P1) := lim
n→∞

inf
An⊂Xn

− 1

n
log p(n)err . (2.67)

Lemma 2.23. (Chernoff) The exponent of the probability of error is D∗ where

D∗ = D∗(P0, P1) = D(Pλ∗ ||P0) = D(Pλ∗ ||P1), (2.68)

and where

Pλ(x) =
P λ0 (x)P

1−λ
1 (x)∑

a∈X P
λ
0 (a)P

1−λ
1 (a)

(2.69)

and λ∗ is chosen so that the equality in (2.68) holds.

The exponent in (2.68), known as the Chernoff information, can also be easily shown
to be

D∗(P0, P1) = − min
λ∈[0,1]

log

(∑

a∈X

P λ0 (a)P
1−λ
1 (a)

)
. (2.70)

Thus, the exponent governing the rate of decay of the overall error probability is D∗

in (2.70). The distribution Pλ∗ is the distribution along the one-parameter exponential
family (with the log-likelihood ratio logP1(x)/P0(x) as the natural statistic) connecting
P0 and P1 such that the equality in (2.68) holds. See Fig. 2.2.

Finally, we mention that there have been many other works on asymptotics of
hypothesis testing for general (non i.i.d.) sources, e.g., Han and Kobayashi [94], Han [92]
and Iriyama [103]. Also see the book by Han [93] which provides a unified perspective.
There are also many results for the hypothesis testing in the minimax setting. See for
example Levitan and Merhav [130] and Feder and Merhav [75]. Finally, the asymptotic
optimality of the generalized LRT and the Hoeffding test for composite hypothesis
testing are discussed in Zeitouni et al. [221] and Hoeffding [99].
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� 2.2.4 Asymptotics of Parameter Estimation

In this section, we study the asymptotics of parameter estimation, specifically the be-
havior of the maximum likelihood (ML) estimate as the number of samples becomes
large. The results here are used in Chapter 5 where we study the rate of convergence
of the risk of an estimated forest-structured distribution to the forest projection. The
material presented here can be found in greater depth in the book by Van der Vaart [63].

Let X be a random variable that is distributed according to PX := P (x;θ), i.e., the
distribution is parameterized by a continuous vector parameter θ ∈ Θ ⊂ Rm. Given a
sequence of i.i.d. random variables Xn drawn from an arbitrary member of the family
P (x;θ), the ML estimate is defined as the parameter θ that maximizes the likelihood
of the data, i.e.,

θ̂ML(X
n) := argmax

θ∈Θ
Pn(Xn;θ). (2.71)

We can rewrite (2.71) as the following:

θ̂ML(X
n) = argmax

θ∈Θ
Ln(θ;X

n). (2.72)

where the normalized log-likelihood Ln(θ;X
n), viewed as a function of θ is defined as

Ln(θ;X
n) :=

1

n

n∑

k=1

logP (Xk;θ). (2.73)

Since Ln(θ;X
n) is a function of the sequence of random variables Xn drawn from

P (x;θ), it is also a sequence of random variables. In addition, it is easy to rewrite the
likelihood in the following way:

Ln(θ;X
n) =

∑

a∈X

P̂ (a;Xn) logP (a;θ) (2.74)

= E
P̂ (·;Xn)

logP (·;θ). (2.75)

Note that in (2.74), we overload notation to mean that P̂ (·;Xn) is the type given
Xn and P (·;θ) is a distribution parameterized by θ. By noticing that Ln(θ;X

n) +
H(P̂ (·;Xn)) = −D(P̂ (·;Xn) ||P (·;θ)), the ML estimator can be written as a reverse
I-projection [51]:

θ̂ML(X
n) := argmin

θ∈Θ
D(P̂ (·;Xn) ||P (·;θ)). (2.76)

In contrast to the usual I-projection [51] in (2.51), the minimization is over the second
argument in the relative entropy function. Thus, the search for the maximum likelihood
estimator can also be viewed as a minimization of the KL-divergence over an appropriate
set. This observation will be useful in variety of scenarios in the rest of the thesis starting
with the development of the Chow-Liu algorithm in Section 2.5.2.
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It is known that under certain (fairly weak) conditions [63], the maximum likelihood
estimator is consistent, i.e., for every ε > 0,

lim
n→∞

Pn(‖θ̂ML(X
n)− θ‖ > ε) = 0. (2.77)

Thus, the ML estimate θ̂ML(X
n) converges in probability to the true parameter θ, i.e.,

θ̂ML(X
n)

p→ θ. In fact it can also be shown that the ML estimator converges almost
surely to the true parameter θ under some stronger regularity conditions.

The following theorem quantifies the asymptotic behavior of the ML estimator. In

order to state the theorem, we introduce the notation
a.s.−→ and

d−→ to denote almost
sure convergence and convergence in distribution respectively [19].

Theorem 2.24. (Asymptotics of the Maximum Likelihood Estimator) Let P (x;θ) be
a family of distributions parameterized by θ and let X be a random variable distributed
according to a particular member in the family P (x;θ0). Let θ̂ML(X

n), defined in
(2.73), be an estimate of θ based on n i.i.d. samples Xn that corresponds to a local
maximum of the likelihood function. Then under some mild conditions (continuous,
bounded derivatives of P (x;θ) with respect to θ; bounded expectations of the derivatives),
we have

θ̂ML(X
n)

a.s.−→ θ0, (2.78)
√
n(θ̂ML(X

n)− θ0)
d−→ N (0,F−1

θ0
), (2.79)

where N (0,F−1
θ0

) is a Gaussian probability density function with zero mean and covari-

ance matrix F−1
θ0

.

The proof of this result involves the strong law of large numbers and the central
limit theorem. See [63] for the details. The matrix Fθ0 , defined in (2.14), is the Fisher
information matrix in X about θ0. From (2.79), we see that the larger the Fisher
information, the better we are able to estimate the value of the true parameter θ0 from
a given set of observations. Indeed, from (2.79), we see that if Fθ0 is “large”, then the
number of samples required to drive the variance of the ML estimator to below a pre-
specified level is smaller than if Fθ0 is “small”. From (2.79), we also observe that the
ML estimator is asymptotically normal. The variance of the estimator asymptotically
satisfies the so-called Cramer-Rao lower bound (CRLB) [113]. Therefore, ML estimation
is asymptotically efficient7 under the usual regularity conditions.

We now find it convenient to define some stochastic order notation in order to
simplify the results in the sequel. We say that a sequence of random variables Yn =
Op(gn) (for some deterministic positive sequence {gn}) if for every ε > 0, there exists
a B = Bε > 0 such that lim supn→∞ Pr(|Yn| > Bgn) < ε. Thus, Pr(|Yn| > Bgn) ≥ ε

7An estimator that achieves the CRLB is said to be efficient. See Kay [113] or Van Trees [199].
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holds for only finitely many n. Equipped with this notation, the relation in (2.79) can
be rewritten alternatively as

‖θ̂ML(X
n)− θ0‖q = Op

(
1√
n

)
, (2.80)

where ‖ · ‖q is any `q norm. That is, the difference between ML estimator θ̂ML(X
n) and

the true parameter θ0 decays at a rate of 1/
√
n.

� 2.3 Supervised Classification and Boosting

Supervised classification is a prototypical problem in machine learning. We will mainly
focus on binary classification in this and subsequent sections (e.g., Chapter 6). The
setup and objective of the binary classification problem are largely similar to binary
hypothesis testing discussed in Section 2.2.3. Both problems seek to classify objects into
two groups. The main difference between classification and hypothesis testing is that
in the former, the underlying distributions (denoted as P0 and P1 in Section 2.2.3) are
unknown. Rather, a finite set of samples is provided in order for the (binary) decision
to be made.

More specifically, a training dataset {(x1, y1), . . . , (xn, yn)} is provided to a learner.
Each sample (xl, yl) consists of a measurement vector xl ∈ Ω ⊂ Rd and a binary label8

yl ∈ {−1,+1}. It is assumed that each sample (xl, yl) is drawn from some unknown joint
distribution9 p(x, y). The problem of binary classification involves finding a function,
called a classifier, Ĥ(·) : Ω→ {−1,+1} that optimizes some objective, for example, the
probability of error Pr(Ĥ(X) 6= Y ). Note that it is not possible, in general, to minimize
the probability of error (also called generalization error) Pr(Ĥ(X) 6= Y ) because we do
not have access to the true distribution p(x, y) from which the samples were generated.
In practice, the classifier Ĥ is selected from a function class H to minimize a loss
function l : {−1,+1}2 → R+ of the training data, i.e.,

Ĥ(·) = argmin
H(·)∈H

1

n

n∑

j=1

l(yl, H(xl)). (2.81)

Some commonly used loss functions include the zero-one loss, the hinge loss and the
exponential loss. See the book by Hastie et al. [96] or the recent thesis by Varshney [203]
for more details. The rest of this section is devoted to a review of some common
classification techniques and a detailed description of boosting [79], a general method to
combine classifiers to improve the overall classification accuracy.

8The label yl corresponds to the hypotheses H0, H1 in the binary hypothesis testing context in (2.58).
9We abuse notation and denote the joint distribution of X and Y as p(x, y) suppressing the depen-

dence of p on both X and Y . Also, the marginal of p wrt X may be either a pmf of pdf depending on
whether Ω is a continuous space or a discrete space. The marginal of p wrt Y is a pmf with support
{−1,+1}.
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� 2.3.1 Some Commonly Used Classifiers

This section reviews of some common classification techniques used in the machine
learning literature as benchmarks. One of the earliest classifiers was the perceptron
introduced by F. Rosenblatt [162]. The perceptron is a linear classifier, that is

Ĥ(x) =

{
1 vTx+ b > 0
−1 vTx+ b ≤ 0,

(2.82)

for some weight vector v and some constant b. Traditional classification techniques such
as artificial neural networks [20], classification and regression trees (CART) [31], random
forests [30] as well as support vector machines [46] have become popular benchmarks for
more advanced classifiers such as the geometric level set (GLS) classifier [205] developed
recently by Varshney and Willsky. In addition, it is also worth mentioning that the
Näıve Bayes classifier [65] is a simple and commonly used probabilistic classifier based
on applying Bayes’ theorem with the assumption that the features (elements of the
random vector X) are conditionally independent given the label Y . Even though this
assumption is strong, the Näıve Bayes classifier has been shown to perform well on real
datasets [65]. A comprehensive empirical comparison of these and other classification
techniques can be found in [35].

� 2.3.2 Boosting and AdaBoost

In this section, we review the AdaBoost algorithm introduced by Freund and Schapire in
1995 [79]. The exposition here is based on the review article by the same authors [80].
This iterative algorithm takes as inputs the training dataset {(x1, y1), . . . , (xn, yn)}.
One of the key features in this algorithm is the maintaining of a set of weights over
the training set. The weight of this distribution on training example l at iteration t is
denoted as wt(l). Initially, all the weights are set equally. AdaBoost calls a weak or
base learning algorithm (classifier) repeatedly in a sequence of iterations t = 1, . . . , T .
At each iteration t, the weights of incorrectly classified samples are increased so that
the weak classifier is forced to focus on the harder examples in the training set. The
goodness of a weak classifier ht : Ω → {−1,+1} is measured by its error based on the
current set of weights on the training samples

εt :=
∑

l:ht(xl) 6=yl

wt(l). (2.83)

The complete algorithm is summarized in the following steps:

1. Initialize t = 1 and w1(l) = 1/n for all l = 1, . . . , n.

2. At iteration t, train weak classifier weak classifier ht ∈ H using the distribution wt
and calculate the error εt as in (2.83).

3. Choose αt =
1
2 log

(
1−εt
εt

)
. Note that αt ≥ 0 because we can assume that εt ≤ 1/2

without loss of generality.
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4. Update the weights as

wt+1(l) =
wt(l)

Zt
×
{

exp(−αt) ht(xl) = yl
exp(αt) ht(xl) 6= yl,

(2.84)

where Zt :=
∑n

l=1wt(l) exp(−αtylht(xl)) is a normalization constant to ensure∑n
l=1wt+1(l) = 1.

5. Increment t← t+ 1 and repeat steps 2 – 4 until t = T .

6. The final classifier is

Ĥ(x) := sign

(
T∑

t=1

αtht(x)

)
. (2.85)

Step 4 says that incorrectly classified points receive larger weight in subsequent it-
erations because αt ≥ 0. Observe that the final classifier, also called the ensemble
classifier, in (2.85) is a weighted majority vote of the T weak classifiers {ht}t=1,...,T .
The coefficients αt are the weights assigned to the weak classifier ht.

The AdaBoost algorithm possesses many appealing properties and we state two such
properties here. Firstly, the training error (fraction of misclassified samples) after T
iterations can be upper bounded as [79]

1

n

n∑

l=1

I{Ĥ(xl) 6= yl}
(a)

≤ 1

n

n∑

l=1

exp(−ylĤ(xl))
(b)
=

T∏

t=1

Zt (2.86)

(c)
=

T∏

t=1

2
√
εt(1− εt)

(d)
= exp

(
−2

T∑

t=1

γ2t

)
(2.87)

where γt := 1/2 − εt ≥ 0. The inequality in (a) holds by noting that I{Ĥ(xl) 6=
yl} ≤ exp(−ylĤ(xl)), i.e., the exponential loss is an upper bound on the zero-one loss.
Equalities (b), (c) and (d) follow from the definitions of Zt in Step 4, εt in (2.83) and
γt = 1/2− εt respectively. The conclusion in (2.87) means that the fraction of mistakes
on the training set decays exponentially fast if each weak learner is better than random,
i.e., there exists a γ > 0 such that γt ≥ γ.

Secondly, the generalization error of the ensemble classifier can also be bounded in
terms of the number of samples n, the number of iterations T and the VC-dimension10

[23, 201] of the space of weak learners CVC(H). More precisely, Freund and Schapire [79]

10We say that a set of classifiers H shatters a set of points xn = {x1, . . . ,xn} if we can classify the
points in xn in all possible ways. More precisely, for all 2n labeling vectors (y1, . . . , yn) ∈ {−1,+1}n,
there exists a function h ∈ H such that h(xl) = yl for all l = 1, . . . , n. The VC-dimension (for Vapnik–
Chervonenkis dimension) is defined as the cardinality of the largest set of points that the set of functions
H can shatter. For example the set of linear functions in Rd has VC-dimension d+ 1. See the book by
Vapnik [201] for details.
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showed using techniques from Baum and Haussler [15] that11

Pr(Ĥ(X) 6= Y ) ≤ 1

n

n∑

l=1

I{Ĥ(xl) 6= yl}+ Õ

(√
TCVC(H)

n

)
. (2.88)

Even though the second term in (2.88) suggests that the generalization error degrades
with the number of rounds of boosting, it has been observed empirically that the gen-
eralization error remains small (close to the training error) even when T is in the
thousands [29, 159]. We will compare and contrast the behavior of the weak classifier
developed in Chapter 6 (based on tree-structured graphical models) to these empirical
observations.

There are many extensions of the basic AdaBoost algorithm. The most straightfor-
ward multiclass generalization [79], called AdaBoost.M1, is usually adequate provided
the weak learners are strong enough. In addition, Schapire and Singer [174] showed how
AdaBoost can be extended to an algorithm called Real-AdaBoost to handle weak clas-
sifiers that output real values, also called confidence-rated predictions, i.e., ht : Ω→ R.
Thus, if ht(xl) is large and positive, this indicates that the sample xl is more likely to
be such that yl = +1 as compared to the case when ht(xl) is small and positive. The
magnitude of ht(xl) thus provide a measure of the learner’s confidence in the prediction.
We will make use of this version of AdaBoost in Chapter 6 where more details will be
provided.

� 2.4 Probabilistic Graphical Models

The majority of thesis is concerned with the analysis of learning of graphical models
from data. This section is devoted to a brief introduction to graphical models. The
treatment is limited to the scope of the thesis and is thus by no means comprehensive.
The exposition here is based on [21, 108, 209], which provide a more thorough treatment
of this subject.

Probabilistic graphical models bring together graph theory [213] and probability
theory [19] to provide a diagrammatic representation of multivariate probability distri-
butions. They offer several appealing properties. Firstly, they provide a simple way to
visualize the structure of a probabilistic model in terms of its factorization properties.
Secondly, the inspection of the model can be used to deduce various properties (such as
conditional independence) of the collection of the random variables. Finally, complex
operations, such as inference (marginalization or finding the maximum a-posteriori con-
figuration), can be expressed in terms of graphical manipulations in which underlying
mathematical operations can be interpreted as operations on graphs.

This section is subdivided into several subsections. We first provide a set of ter-
minology from graph theory. Following that, we provide background on undirected
graphical models (also known as Markov random fields). Finally, we focus our atten-

11The Õ(·) suppresses dependences on small log factors.
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tion on two classes of graphical models: tree-structured graphical models and Gaussian
graphical models.

� 2.4.1 Undirected Graphs

This subsection collects the relevant terminology from graph theory that is used in
the rest of the thesis. Many of the definitions are standard and can be found in for
instance [95, 213]. Some of the terminology, however, is unique to this thesis.

A undirected graph G = (V,E) consists of a set V := {1, . . . , d} of vertices (or
nodes) and a set of edges E ⊂

(
V
2

)
:= {(i, j) : i, j ∈ V, i 6= j}. The set V is known as

the vertex (or node) set and E is referred to as the edge set (or more informally, the
structure). In this thesis, a graph is not allowed to contain self-loops. Since the graph
G is an undirected one, the directionality of an edge does not matter, i.e., (i, j) and
(j, i) refer to the same edge. A subgraph of a graph G is a graph (V (F ), E(F )) such
that V (F ) ⊂ V and E(F ) ⊂ E. A supergraph of a graph G is a graph of which G is a
subgraph.

The neighborhood of a node i is the set nbd(i) := {j ∈ V : (i, j) ∈ E}. The closed
neighborhood is the set {i} ∪ nbd(i). Two vertices i and j are said to be adjacent
if i ∈ nbd(j). Two edges are adjacent if they have a common node. The degree of
node i is the cardinality of the set nbd(i). A path in a graph G is a subgraph P =
(V (P ), E(P )) such that V (P ) = {v1, v2, . . . , vk} (the vertices {vi}ki=1 are distinct) and
E(P ) = {(v1, v2), . . . , (vk−1, vk)}. We will sometimes abuse terminology to refer to the
path as simply the edge set of P , i.e., E(P ), so a path can also mean a collection of edges.
A cycle in a graph G is a subgraph C = (V (C), E(C)) such that V (C) = {v1, v2, . . . , vk}
(with k ≥ 3) and E(C) = {(v1, v2), . . . , (vk, v1)}. Again, we will sometimes refer to a
cycle as the set of edges in C, i.e., E(C). A graph is said to be acyclic if it does not
contain any cycles.

The distance dG(i, j) between two (distinct) vertices i and j in a graph G is the
length of a shortest path between them. The diameter of a graph G, diam(G) is the
maximum distance between any two nodes in the graph. If it is possible to establish a
path from any vertex to any other vertex of a graph, the graph is said to be connected;
otherwise, the graph is disconnected. A clique C is a fully connected subgraph of G,
i.e., if i, j ∈ C, then (i, j) ∈ E. A maximal clique is one which is not properly contained
in some other clique.

We will also find the notion of a line graph useful in Chapter 4. Given a graph G,
its line graph H = L(G) is a graph such that each vertex of H represents an edge of G
and two vertices of H are adjacent if and only if their corresponding edges are adjacent
in G. See Fig. 2.4.

Trees

A tree T = (V,E) is a connected acyclic graph. A vertex of degree one is called a leaf. A
non-leaf is known as an internal node. A subtree of the tree T is a connected subgraph
of T . A forest is an acyclic graph. A proper forest is a disconnected acyclic graph. A
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Figure 2.4. (a): A graph G. (b): The line graph H = L(G) that corresponds to G is the graph whose
vertices are the edges of G (denoted as ei) and there is an edge between any two vertices i and j in H
if the corresponding edges in G share a node.

spanning tree is a spanning subgraph that is a tree. A star is a tree with one internal
node and |V | − 1 leaves. A chain (or path graph) is a tree in which every vertex has
degree one or two. See Fig. 2.3. The line graph of a path graph is another path graph
with one fewer node.

We now state a collection of equivalent definitions and properties of trees which will
be helpful in the sequel. A tree is an undirected graph T = (V,E) that satisfies the
following equivalent conditions:

• T is connected and acyclic.

• T is acyclic and a cycle is formed with the addition of one edge.

• T is connected and is not connected anymore if any edge is removed from it.

• Any two vertices in T is connected by a unique path.

• T has exactly |V | − 1 edges.

Let the set of trees with d = |V | nodes be denoted as T d. The following theorem says
that the total number of trees is superexponential in the number of nodes.

Theorem 2.25. (Cayley’s formula [3]) The number of trees on d = |V | labeled vertices
is |T d| = dd−2.
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� 2.4.2 Undirected Graphical Models

In order to define graphical models, we associate to each vertex i ∈ V in a graph
G = (V,E) a random variable Xi that takes values in an alphabet (or set) X . The
alphabet may be finite (e.g., X = {1, . . . , r}) or infinite (e.g., X = R). Usually, we will
abuse terminology and use the terms node, vertex and variable interchangeably. For
instance, when we say two nodes are independent, we mean that the variables associated
to those nodes are independent. For a subset A ⊂ V , the random vector XA is defined
as the collection of random variables {Xi : i ∈ A} and the corresponding alphabet of
XA is simply the Cartesian product X |A|. The values that XA takes on will be denoted
as xA. The distribution of the random vector X := (X1, . . . , Xd) is either a pmf P (x) or
pdf p(x) depending on whether the set X is discrete or continuous. For simplicity, the
presentation in this chapter, except for Section 2.4.4, will be for pmfs, i.e., we assume
that X is countable.

An undirected graphical model12 (or Markov random field) is a family of multivariate
probability distributions where each distribution P ∈ P(X d) factorizes in accordance to
an undirected graph G = (V,E) where |V | = {1, . . . , d}. The probability distribution
factorizes according to the cliques in G. Let the set of maximal cliques in G be C.
We associate to each clique C ∈ C a compatibility function ψC : X |C| → [0,∞). Each
compatibility function is simply a local function only for elements xC in the clique C.
With this notation, an undirected graphical model is a family of distributions in which
each distribution factorizes in the following specific way:

P (x1, . . . , xd) =
1

Z

∏

C∈C

ψC(xC). (2.89)

The normalization constant (also called partition function)

Z :=
∑

(x1,...,xd)∈X d

∏

C∈C

ψC(xC). (2.90)

For a general undirected graphical model, the functions ψC do not have to be related
to the marginal or conditional distributions of the set of variables in the clique C.

Example 2.1. Define the vector x = (x1, . . . , x7). An undirected graphical model on G
as shown in Fig. 2.5 factorizes in the following way:

P (x) =
1

Z
ψ1,2,3,4(x1, x2, x3, x4)ψ4,5,6,7(x4, x5, x6, x7). (2.91)

We now introduce the notion of Markovianity. A random vector X := (X1, . . . , Xd)
is said to be (locally) Markov on a graph G = (V,E) if its probability distribution
P ∈ P(X d) satisfies:

P (xi|xV \{i}) = P (xi|xnbd(i)), ∀ i ∈ V, (2.92)

12There is another class of graphical models known as directed graphical models or Bayesian networks.
We will not require the notion of directed graphical models in this thesis. The interested reader is
referred to [21], [127] and [209] for details.
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Figure 2.5. An undirected graph G. The set of maximal cliques is C = {(1, 2, 3, 4), (4, 5, 6, 7)}.
Undirected graphical models on G factorize as in (2.91).
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Figure 2.6. The node set S = {3, 4} separates the node sets A = {1, 2} and B = {5, 6}.

where nbd(i) is the set of neighbors of i in G. Eq. (2.92) is called the (local) Markov
property and states that if random variable Xi is conditioned on its neighbors, then Xi

is independent of the rest of the variables in the graph.
Given three non-overlapping subsets of vertices A,B, S ⊂ V , we say that S separates

the node sets A and B if every path from a node i ∈ A to another node j ∈ B passes
through at least one node in S. See Fig. 2.6. We say that the random vector X is
(globally) Markov with respect to the graph G if, whenever node set S separates the
node sets A and B, the subvectors XA and XB are independent conditioned on XS i.e.,

P (xA, xB|xS) = P (xA|xS)P (xB|xS). (2.93)

The connection between graph structure and a joint distribution is not yet readily ap-
parent. However, the celebrated Hammersley-Clifford theorem [91] provides a necessary
and sufficient condition for the connection between a set of Markov properties (such
as (2.92) and (2.93)) and a joint distribution. For strictly positive distributions, i.e,
Q(x) > 0 for all x ∈ X d, the random vector X with distribution P is Markov on G
(i.e., it satisfies (2.92) or (2.93)) if and only if the factorization (2.89) is satisfied for a
collection of compatibility functions {ψC}C∈C .

� 2.4.3 Tree-Structured Graphical Models

In this section, we introduce the class of tree-structured graphical models, i.e., proba-
bility distributions that factorize according to an undirected tree T = (V,E). In the
case of trees, the cliques are simply the nodes i ∈ V and the edges (i, j) ∈ E. Thus,
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the factorization in (2.89) specializes to the pairwise representation

P (x1, . . . , xd) =
1

Z

∏

i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj). (2.94)

The negative logarithm of the compatibility functions − logψi and − logψi,j are called
the node potentials and edge potentials, respectively. In fact, in the case of trees, a
special case of the junction tree13 theorem [48, 210] states that

P (x1, . . . , xd) =
∏

i∈V

Pi(xi)
∏

(i,j)∈E

Pi,j(xi, xj)

Pi(xi)Pj(xj)
. (2.95)

In other words, the compatibility functions can be reparameterized as ψi(xi) ∝ Pi(xi)

and ψi,j(xi,j) ∝ Pi,j(xi,xj)
Pi(xi)Pj(xj)

where {Pi : i ∈ V } and {Pi,j : (i, j) ∈ E} are the sets of

node and pairwise marginals of P respectively. The factorization in (2.95) also holds
for the case when the P is Markov on some forest F = (V,E). We denote the set of
d-variate tree-structured distributions as D(X d, T d) ⊂ P(X d), i.e.,

D(X d, T d) :=
{
P (x) =

∏

i∈V

Pi(xi)
∏

(i,j)∈E

Pi,j(xi, xj)

Pi(xi)Pj(xj)
:

(V,E) is a tree, |V | = d

}
. (2.96)

The set of forest-structured distributions D(X d,Fd) is defined analogously.

Example 2.2. If the random vector X = (X1, X2, X3) has distribution P and P is
Markov on the chain 1− 2− 3, then

P (x) = P1(x1)P2(x2)P3(x3)
P1,2(x1, x2)

P1(x1)P2(x2)

P2,3(x2, x3)

P2(x2)P3(x3)
(2.97)

= P1(x1)P2|1(x2|x1)P3|2(x3|x2). (2.98)

Eq. (2.98) is sometimes known as the directed representation of the chain.

When X is a finite set, the number of parameters to fully describe a tree model is
linear in d. Even though inference in graphical models is, in general, NP-hard [44],
inference in tree models is tractable; the belief propagation or sum-product algo-
rithm [122, 153] is exact on trees and the number of operations for computing the
marginals is linear in d. In Chapters 3 and 4, we are interested to learn such models
from i.i.d. data samples. The Chow-Liu algorithm [42] provides an efficient implemen-
tation for ML learning of tree-structured distributions from data. We describe the
Chow-Liu algorithm in detail in Section 2.5.

13A cluster tree is a tree of clusters of variables which are linked via separators. These consists of the
variables in the adjacent clusters. A cluster tree is a junction tree if for each pair of clusters Cγ and
Cδ, all nodes in the path between Cγ and Cδ contain the intersection.
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Figure 2.7. The correlation coefficient of two random variables Xk and Xl is the product of the
correlation coefficients along its path Path(e′;E).

� 2.4.4 Gaussian Graphical Models

In Chapter 4, we discuss the performance of the Chow-Liu algorithm for learning of
tree-structured Gaussian graphical models [69, 167] from data. In this subsection, we
state a few simple properties of such models.

A d-dimensional Gaussian pdf (or distribution) with mean µ ∈ Rd and covariance
matrix Σ � 0 is given by

p(x) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
xTΣ−1x

)
. (2.99)

We use the notation p(x) = N (x;µ,Σ) as a shorthand for (2.99). For Gaussian graphi-
cal models, it is known [127] that the fill-pattern of the inverse covariance matrix (also
called precision matrix, information matrix or concentration matrix) Σ−1 encodes the
structure of p(x). More precisely, if X = (X1, . . . , Xd) is a random vector Markov on
G = (V,E) with distribution (pdf) p(x) = N (x;µ,Σ), then [Σ−1]i,j = 0 if and only if
(i, j) /∈ E. Thus, a sparse Gaussian graphical model, one whose graph has few edges,
is such that the inverse covariance matrix is also sparse.

Let the covariance of any two random variables Xk and Xl be denoted Cov(Xk, Xl).
Define the correlation coefficient of Xk and Xl as

ρk,l :=
Cov(Xk, Xl)√

Var(Xk)Var(Xl, Xl)
. (2.100)

Then the following property characterizes the correlation coefficient between any two
random variables in a tree-structured Gaussian graphical model. Given a non-edge
e′ = (k, l) /∈ E, denote the unique path connecting nodes k and l in the T as Path(e′;E).
See Fig. 2.7.

Lemma 2.26. (Markov property of Gaussian graphical models) Let p be a Gaus-
sian distribution Markov on a tree T = (V,E) with the set of correlation coefficients
{ρk,l}k,l∈V . Let e′ = (k, l) /∈ E be a non-edge in the tree T . Then the correlation
coefficient ρk,l is given as

ρk,l =
∏

(i,j)∈Path(e′;E)

ρi,j . (2.101)

Proof. By induction, it suffices to proof the claim for the chain Xk −Xs −Xl, i.e., Xk

and Xl are conditionally independent given Xs. Also assume without loss of generality
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that EXk = EXs = EXl = 0. Denote the variance of Xk as σ2k := Cov(Xk, Xk). Then
we have

E[XkXl] = E[E[XkXl|Xs]] (2.102)

= E[E[Xk|Xs] · E[Xk|Xs]] (2.103)

= E

[(
ρk,s

σk
σs
Xs

)(
ρs,l

σl
σs
Xs

)]
(2.104)

= ρk,s
σk
σs
ρs,l

σl
σs

E[X2
s ] (2.105)

= ρk,sρs,lσlσk, (2.106)

where (2.102) follows from iterated expectations [19], (2.103) follows from conditional
independence, (2.104) follows from the fact [19] that for jointly Gaussian variables
E[Xk|Xs] = ρk,sXsσk/σs, (2.106) follows from the definition of the variance. This
completes the proof since (2.106) implies that ρk,l = ρk,sρs,l.

� 2.5 Learning Graphical Models

This section is devoted to a review of the (vast) existing literature on methods and
theoretical results on learning graphical models. It also includes a thorough description
of the Chow-Liu algorithm for learning tree-structured graphical models.

� 2.5.1 Review of Existing Work

The seminal work by Chow and Liu in [42] focused on learning tree models from data
samples. The authors showed that the learning of the optimal tree distribution essen-
tially decouples into two distinct steps: (i) a structure learning step and (ii) a parameter
learning step. The structure learning step can be performed efficiently using a max-
weight spanning tree (MWST) algorithm with the empirical mutual information quan-
tities as the edge weights. The parameter learning step is a ML estimation procedure
where the parameters of the learned model are equal to those of the empirical distribu-
tion. Chow and Wagner [43], in a follow-up paper, studied the consistency properties
of the Chow-Liu algorithm for learning trees. They concluded that if the true distri-
bution is Markov on a unique tree structure, then the Chow-Liu learning algorithm is
consistent. This implies that as the number of samples tends to infinity, the probability
that the learned structure differs from the (unique) true structure tends to zero.

Unfortunately, it is known that the exact learning of general graphical models is
NP-hard [112], but there have been several works to learn approximate models. In the
mid-1990s, Heckerman [97] proposed learning the structure of Bayesian networks by us-
ing the Bayesian Information Criterion [176] (BIC) to penalize more complex models and
by putting priors on various structures. Meilă and Jordan [135] used the Expectation-
Maximization algorithm [61] to learn mixtures of tree-structured distributions. Other
authors used the maximum entropy principle or (sparsity-enforcing) `1 regularization
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as approximate graphical model learning techniques. In particular, Dudik et al. [67]
and Lee et al. [128] provide strong consistency guarantees on the learned distribution
in terms of the log-likelihood of the samples. Johnson et al. [106] also used a similar
technique known as maximum entropy relaxation (MER) to learn discrete and Gaussian
graphical models. Wainwright et al. [211] proposed a regularization method for learn-
ing the graph structure based on `1 logistic regression and provided strong theoretical
guarantees for learning the correct structure as the number of samples, the number
of variables, and the neighborhood size grow. In a similar work, Meinshausen and
Buehlmann [136] considered learning the structure of arbitrary Gaussian models using
the Lasso [197]. They show that the error probability of learning the wrong structure,
under some mild technical conditions on the neighborhood size, decays exponentially
even when the size of the graph d grows with the number of samples n. However,
the rate of decay is not provided explicitly. Zuk et al. [223] provided bounds on the
limit inferior and limit superior of the error rate for learning the structure of Bayesian
networks but, in contrast to our work, these bounds are not asymptotically tight. In
addition, the work in Zuk et al. [223] is intimately tied to the BIC [176], whereas our
analysis in Chapters 3 and 4 is for the Chow-Liu ML tree learning algorithm [42].

Recently Santhanam andWainwright [172] and Bresler et al. [32] derived information-
theoretic upper and lower bounds on the sample complexity for learning graphical mod-
els. Even more recently, Bento and Montanari [16] proved that if the graphical model
possesses long range correlations (lack of correlation decay), then it is difficult to learn
in terms of the sample complexity. However, Chechetka and Guestrin [37] developed
good approximations for learning thin junction trees (junction trees where the sizes of
the maximal cliques are small). The area of study in statistics known as covariance
selection [57, 60] also has connections with structure learning in Gaussian graphical
models. Covariance selection involves estimating the non-zero elements in the inverse
covariance matrix and providing consistency guarantees of the estimate in some norm,
e.g., the Frobenius norm in [164].

In two recent works that are closely related to the work presented in Chapter 5,
Liu et al. [132] and Gupta et al. [89] derived consistency (and sparsistency) guarantees
for learning tree and forest models. The pairwise joint distributions are modeled using
kernel density estimates, where the kernels are Hölder continuous. This differs from the
approach presented in Chapter 5 since it is assumed in our work that each variable can
only take finitely many values, leading to stronger results on error rates for structure
learning via the method of types. Furthermore, the algorithm suggested in both papers
uses a subset (usually half) of the dataset to learn the full tree model and then uses the
remaining subset to prune the model based on the log-likelihood on the held-out set.
We suggest a more direct and consistent method based on thresholding, which uses the
entire dataset to learn and prune the model without recourse to validation on a held-out
dataset. It is well known that validation is both computationally expensive [21, pp. 33]
and a potential waste of valuable data which may otherwise be employed to learn a
better model. In [89], the problem of estimating forests with restricted component sizes
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was considered and was proven to be NP-hard.

� 2.5.2 The Chow-Liu algorithm

In this section, we review the classical Chow-Liu algorithm [42] for learning the ML
tree distribution PML given a set of n samples xn = (x1, . . . ,xn) drawn i.i.d. from a
tree-structured discrete distribution (pmf) P ∈ D(X d, T d). Each sample xl ∈ X d and
the set X is finite. The extension to the Gaussian case where X = R is considered in
Chapter 4 and the development is very similar and so it is omitted here for the sake of
brevity. The distribution P is assumed to be Markov on a tree TP = (V,EP ). The ML
estimation problem is defined as

PML := argmax
Q∈D(X d,T d)

logQn(xn). (2.107)

Thus, PML is the tree-structured distribution that maximizes the likelihood of the sam-
ples over all possible tree-structured distributions in D(X d, T d). Let PML be Markov
on the tree TML = (V,EML). Thus, the estimated edge set is EML. Note that since PML

is a tree-structured distribution, from (2.95), it is completely specified by the structure
EML and consistent pairwise marginals PML(xi, xj) on its edges (i, j) ∈ EML.

Lemma 2.27. The ML estimator in (2.107) is equivalent to the following optimization
problem:

PML = argmin
Q∈D(X d,T d)

D(P̂ ||Q), (2.108)

where P̂ (·) = P̂ (·;xn) is the empirical distribution of xn.

This result follows directly from (2.76). We now state the main result of the Chow-
Liu tree learning algorithm [42].

Theorem 2.28. (Chow-Liu Tree Learning [42]) The structure and parameters of the
ML estimator PML in (2.107) are given by

EML = argmax
EQ:Q∈D(X d,T d)

∑

e∈EQ

I(P̂e), (2.109)

PML(xi, xj) = P̂i,j(xi, xj), ∀ (i, j) ∈ EML, (2.110)

where I(P̂e) = I(P̂i,j) is the mutual information of the empirical distribution P̂e.

Proof. For a fixed tree distribution Q ∈ D(X d, T d), Q admits the factorization in (2.95),
and we have

D(P̂ ||Q) +H(P̂ ) (2.111)

=−
∑

x∈X d

P̂ (x) log


∏

i∈V

Qi(xi)
∏

(i,j)∈EQ

Qi,j(xi, xj)

Qi(xi)Qj(xj)


 , (2.112)
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=−
∑

i∈V

∑

xi∈X

P̂i(xi) logQi(xi)

−
∑

(i,j)∈EQ

∑

(xi,xj)∈X 2

P̂i,j(xi, xj) log
Qi,j(xi, xj)

Qi(xi)Qj(xj)
. (2.113)

For a fixed structure EQ, it can be shown [42] that the above quantity is minimized

when the pairwise marginals over the edges of EQ are set to that of P̂ , i.e., for all
tree-structured distributions Q ∈ D(X d, T d),

D(P̂ ||Q) +H(P̂ ) (2.114)

≥−
∑

i∈V

∑

xi∈X

P̂i(xi) log P̂i(xi)

−
∑

(i,j)∈EQ

∑

(xi,xj)∈X 2

P̂i,j(xi, xj) log
P̂i,j(xi, xj)

P̂i(xi)P̂j(xj)
. (2.115)

=
∑

i∈V

H(P̂i)−
∑

(i,j)∈EQ

I(P̂e). (2.116)

The first term in (2.116) is a constant with respect to Q. Furthermore, since EQ is
the edge set of the tree distribution Q ∈ D(X d, T d), the optimization for the ML tree
distribution PML reduces to the MWST search for the optimal edge set as in (2.109).

Hence, the optimal tree probability distribution PML is the reverse I-projection of
P̂ onto the optimal tree structure given by (2.109), an MWST problem. Thus, the
optimization problem in (2.108) essentially reduces to a search for the structure of PML.
The structure of PML completely determines its distribution, since the parameters are
given by the empirical distribution in (2.110). To solve (2.109), we use the samples xn

to compute the empirical distribution P̂ , then use P̂ to compute I(P̂e), for each node
pair e ∈

(
V
2

)
. Subsequently, we use the set of empirical mutual information quantities

{I(P̂e) : e ∈
(
V
2

)
} as the edge weights for the MWST problem.14

Note that the search for the MWST is not the same as that for largest set of mutual
information quantities as one has to take into consideration the spanning tree constraint.

We see that the Chow-Liu MWST spanning tree algorithm is an efficient way of
solving the ML estimation problem, especially when the dimension d is large. This is
because there are dd−2 possible spanning trees over d nodes (Theorem 2.25) ruling out
the possibility for performing an exhaustive search for the optimal tree structure. In
contrast, the MWST can be found, say using Kruskal’s algorithm [45, 120] or Prim’s
algorithm [158], in O(d2 log d) time.

14If we use the true mutual information quantities as inputs to the MWST, then the true edge set
EP is the output.
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Chapter 3

Large Deviations for Learning

Discrete Tree Models

� 3.1 Introduction

IN Section 2.5.2, we saw that the implementation of the maximum likelihood (ML)
estimation problem can be done efficiently via the Chow-Liu algorithm [42]. It is

known that the ML estimator learns the distribution correctly asymptotically, and
hence, is consistent [43].

While consistency is an important qualitative property for any estimator, the study
of the rate of convergence, a precise quantitative property, is also of great practical
interest. We are interested in the rate of convergence of the ML-estimator (Chow-Liu
algorithm) for tree distributions as we increase the number of samples. Specifically,
we study the rate of decay of the error probability or the error exponent of the ML-
estimator in learning the tree structure of the unknown distribution. A larger exponent
means that the error probability in structure learning decays more rapidly. In other
words, we need relatively few samples to ensure that the error probability is below
some fixed level δ > 0. Such model are thus “easier” to learn. We address the following
questions: Is there exponential decay of the probability of error in structure learning as
the number of samples tends to infinity? If so, what is the exact error exponent, and how
does it depend on the parameters of the distribution? Which edges of the true tree are
most-likely to be in error; in other words, what is the nature of the most-likely error in
the ML-estimator? We provide concrete and intuitive answers to the above questions,
thereby providing insights into how the parameters of the distribution influence the
error exponent associated with learning the structure of discrete tree distributions.

� 3.1.1 Main Contributions

There are four main contributions in this chapter. First, using the large-deviation
principle (LDP) [62] we prove that the most-likely error in ML-estimation is a tree which
differs from the true tree by a single edge. Second, again using the LDP, we derive the
exact error exponent for ML-estimation of tree structures. Third, we provide a succinct
and intuitive closed-form approximation for the error exponent which is tight in the
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very noisy learning regime, where the individual samples are not too informative about
the tree structure. The approximate error exponent has a very intuitive explanation
as the signal-to-noise ratio (SNR) for learning. Finally, our analyses and results are
indeed more general: they extend to the case where the underlying distribution is not
necessarily tree-structured. We show that it is also possible to use exactly the same
large-deviation tools to analyze the case where the tree-projection (which may not be
unique) is to be learned.

We analyze the error exponent (also called the inaccuracy rate) for the estimation
of the structure of the unknown tree distribution. For the error event that the structure
of the ML-estimator EML given n samples differs from the true tree structure EP of the
unknown distribution P , the error exponent is given by

KP := lim
n→∞

− 1

n
logP({EML 6= EP }). (3.1)

To the best of our knowledge, error-exponent analysis for tree-structure learning has
not been considered before (See Section 2.5.1 for a brief survey of the existing literature
on learning graphical models from data).

Finding the error exponent KP in (3.1) is not straightforward since in general,
one has to find the dominant error event with the slowest rate of decay among all
possible error events [62, Ch. 1]. For learning the structure of trees, there are a total
of dd−2 − 1 possible error events,1 where d is the dimension (number of variables or
nodes) of the unknown tree distribution P . Thus, in principle, one has to consider
the information projection [51] of P on all these error trees. This rules out brute-force
information projection approaches for finding the error exponent in (3.1), especially for
high-dimensional data.

In contrast, we establish that the search for the dominant error event for learning
the structure of the tree can be limited to a polynomial-time search space (in d). Fur-
thermore, we establish that this dominant error event of the ML-estimator is given by
a tree which differs from the true tree by only a single edge. We provide a polynomial
algorithm with O(diam(TP ) d

2) complexity to find the error exponent in (3.1), where
diam(TP ) is the diameter of the tree TP . We heavily exploit the mechanism of the ML
Chow-Liu algorithm [42] for tree learning to establish these results, and specifically,
the fact that the ML-estimator tree distribution depends only on the relative order of
the empirical mutual information quantities between all the node pairs (and not their
absolute values).

Although we provide a computationally-efficient way to compute the error exponent
in (3.1), it is not available in closed-form. In Section 3.5, we use Euclidean information
theory [25, 26] to obtain an approximate error exponent in closed-form, which can be
interpreted as the signal-to-noise ratio (SNR) for tree structure learning. Numerical
simulations on various discrete graphical models verify that the approximation is tight
in the very noisy regime.

1Since the ML output EML and the true structure EP are both spanning trees over d nodes and
since there are dd−2 possible spanning trees [213], we have dd−2 − 1 number of possible error events.
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In Section 3.6, we extend our results to the case when the true distribution P is
not a tree. In this case, given samples drawn independently from P , we intend to learn
the optimal tree-projection P ∗ onto the set of trees. Importantly, if P is not a tree,
there may be several trees that are optimal projections [43] and this requires careful
consideration of the error events. We derive the error exponent even in this scenario.

� 3.1.2 Chapter Outline

This paper is organized as follows: In Section 3.2, we state the system model and the
problem statement. In Section 3.3, we derive an analytical expression for the crossover
rate of two node pairs. We then relate the crossover rates to the overall error exponent
in Section 3.4. We also discuss some connections of the problem we solve here with ro-
bust hypothesis testing. In Section 3.5, we leverage on ideas in Euclidean information
theory to state sufficient conditions that allow approximations of the crossover rate and
the error exponent. We obtain an intuitively appealing closed-form expression. By re-
defining the error event, we extend our results to the case when the true distribution is
not a tree in Section 3.6. We compare the true and approximate crossover rates by per-
forming numerical experiments for a given graphical model in Section 3.7. Conclusions
for this chapter are provided in Section 3.8.

� 3.2 System Model and Problem Statement

In this chapter, we consider a learning problem, where we are given a set of n i.i.d.
d-dimensional samples xn := {x1, . . . ,xn} from an unknown distribution P ∈ P(X d),
which is Markov with respect to a tree TP ∈ T d. Each sample or observation xk :=
[xk,1, . . . , xk,d]

T is a vector of d dimensions where each entry can only take on one of a
finite number of values in the alphabet X .

Given xn, the ML-estimator of the unknown distribution P is defined as

PML := argmax
Q∈D(X d,T d)

n∑

k=1

logQ(xk), (3.2)

where D(X d, T d) ⊂ P(X d) is defined as the set of all tree distributions on the alphabet
X d over d nodes.

In 1968, Chow and Liu showed that the above ML-estimate PML can be found
efficiently via a MWST algorithm [42], and is described in Section 2.5.2. We denote the
tree graph of the ML-estimate PML by T̂ML = (V,EML) with vertex set V and edge set
EML.

Given a tree distribution P , define the probability of the error event that the set of
edges is not estimated correctly by the ML-estimator as

An := {EML 6= EP } (3.3)

We denote P := Pn as the n-fold product probability measure of the n samples xn which
are drawn i.i.d. from P . In this chapter, we are interested in studying the rate or
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error exponent2 KP at which the above error probability exponentially decays with the
number of samples n, given by,

KP := lim
n→∞

− 1

n
logP(An), (3.4)

whenever the limit exists. Indeed, we will prove that the limit in (3.4) exists in the
sequel. With the

.
= notation, (3.4) can be written as

P(An) .
= exp(−nKP ). (3.5)

A positive error exponent (KP > 0) implies an exponential decay of error probability
in ML structure learning, and we will establish necessary and sufficient conditions to
ensure this.

Note that we are only interested in quantifying the probability of the error in learning
the structure of P in (3.3). We are not concerned about the parameters that define the
ML tree distribution PML. Since there are only finitely many (but a super-exponential
number of) structures, this is in fact akin to an ML problem where the parameter space
is discrete and finite [168]. Thus, under some mild technical conditions, we can expect
exponential decay in the probability of error as mentioned in [168]. Otherwise, we can
only expect convergence with rate Op(1/

√
n) for estimation of parameters that belong

to a continuous parameter space [177]. In this work, we quantify the error exponent for
learning tree structures using the ML learning procedure precisely.

� 3.3 LDP for Empirical Mutual Information

The goal of this paper is to characterize the error exponent for ML tree learning KP

in (3.4). As a first step, we consider a simpler event, which may potentially lead to an
error in ML-estimation. In this section, we derive the LDP rate for this event, and in
the next section, we use the result to derive KP , the exponent associated to the error
event An defined in (3.3).

Since the ML-estimate uses the empirical mutual information quantities as the edge
weights for the MWST algorithm, the relative values of the empirical mutual informa-
tion quantities have an impact on the accuracy of ML-estimation. In other words, if the
order of these empirical quantities is different from the true order then it can potentially
lead to an error in the estimated edge set. Hence, it is crucial to study the probability
of the event that the empirical mutual information quantities of any two node pairs is
different from the true order.

Formally, let us consider two distinct node pairs with no common nodes e, e′ ∈
(V
2

)

with unknown distribution Pe,e′ ∈ P(X 4), where the notation Pe,e′ denotes the marginal
of the tree-structured graphical model P on the nodes in the set {e, e′}. Similarly, Pe

2In the maximum-likelihood estimation literature (e.g. [11, 115]) if the limit in (3.4) exists, KP is also
typically known as the inaccuracy rate. We will be using the terms rate, error exponent and inaccuracy
rate interchangeably in the sequel. All these terms refer to KP .
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is the marginal of P on edge e. Assume that the order of the true mutual informa-
tion quantities follow I(Pe) > I(Pe′). A crossover event3 occurs if the corresponding
empirical mutual information quantities are of the reverse order, given by

Ce,e′ :=
{
I(P̂e) ≤ I(P̂e′)

}
. (3.6)

As the number of samples n → ∞, the empirical quantities approach the true ones,
and hence, the probability of the above event decays to zero. When the decay is
exponential, we have a LDP for the above event, and we term its rate as the crossover
rate for empirical mutual information quantities, defined as

Je,e′ := lim
n→∞

− 1

n
logP

(
Ce,e′

)
, (3.7)

assuming the limit in (3.7) exists. Indeed, we show in the proof of Theorem 3.1 that
the limit exists. Intuitively (and as seen in our numerical simulations in Section 3.7),
if the difference between the true mutual information quantities I(Pe)− I(Pe′) is large
(i.e., I(Pe)� I(Pe′)), we expect the probability of the crossover event Ce,e′ to be small.
Thus, the rate of decay would be faster and hence, we expect the crossover rate Je,e′

to be large. In the following, we see that Je,e′ depends not only on the difference of
mutual information quantities I(Pe) − I(Pe′), but also on the distribution Pe,e′ of the
variables on node pairs e and e′, since the distribution Pe,e′ influences the accuracy of
estimating them.

Theorem 3.1 (Crossover Rate for Empirical MIs). The crossover rate for a pair of
empirical mutual information quantities in (3.7) is given by

Je,e′ = inf
Q∈P(X 4)

{
D(Q ||Pe,e′) : I(Qe′) = I(Qe)

}
, (3.8)

where Qe, Qe′ ∈ P(X 2) are marginals of Q over node pairs e and e′, which do not share
common nodes, i.e.,

Qe(xe) :=
∑

xe′∈X
2

Q(xe, xe′), (3.9a)

Qe′(xe′) :=
∑

xe∈X 2

Q(xe, xe′). (3.9b)

The infimum in (3.8) is attained by some distribution Q∗
e,e′ ∈ P(X 4) satisfying I(Q∗

e′) =
I(Q∗

e) and Je,e′ > 0.

Proof. (Sketch) The proof hinges on Sanov’s theorem [47, Ch. 11] and the contraction
principle in large-deviations [62, Sec. III.5]. The existence of the minimizer follows from

3The event Ce,e′ in (3.6) depends on the number of samples n but we suppress this dependence for
convenience.
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the compactness of the constraint set and Weierstrass’ extreme value theorem [166,
Theorem 4.16]. The rate Je,e′ is strictly positive since we assumed, a-priori, that
the two node pairs e and e′ satisfy I(Pe) > I(Pe′). As a result, Q∗

e,e′ 6= Pe,e′ and
D(Q∗

e,e′ ||Pe,e′) > 0. See Appendix 3.A for the details.

In the above theorem, which is analogous to Theorem 3.3 in [36], we derived the
crossover rate Je,e′ as a constrained minimization over a submanifold of distributions
in P(X 4) (See Fig. 3.5), and also proved the existence of an optimizing distribution
Q∗. However, it is not easy to further simplify the rate expression in (3.8) since the
optimization is non-convex.

Importantly, this means that it is not clear how the parameters of the distribu-
tion Pe,e′ affect the rate Je,e′ , hence (3.8) is not intuitive to aid in understanding the
relative ease or difficulty in estimating particular tree-structured distributions. In Sec-
tion 3.5, we assume that P satisfies some (so-called very noisy learning) conditions and
use Euclidean information theory [25, 26] to approximate the rate in (3.8) in order to
gain insights as to how the distribution parameters affect the crossover rate Je,e′ and
ultimately, the error exponent KP for learning the tree structure.

Theorem 3.1 specifies the crossover rate Je,e′ when the two node pairs e and e′ do not
have any common nodes. If e and e′ share one node, then the distribution Pe,e′ ∈ P(X 3)
and here, the crossover rate for empirical mutual information is

Je,e′ = inf
Q∈P(X 3)

{
D(Q ||Pe,e′) : I(Qe′) = I(Qe)

}
. (3.10)

In Section 3.5, we obtain an approximate closed-form expression for Je,e′ . The
expression, provided in Theorem 3.7, does not depend on whether e and e′ share a
node.

Example: Symmetric Star Graph

It is now instructive to study a simple example to see how the overall error exponent KP

for structure learning in (3.4) depends on the set of crossover rates {Je,e′ : e, e′ ∈
(V
2

)
}.

We consider a graphical model P with an associated tree TP = (V , EP ) which is a d-
order star with a central node 1 and outer nodes 2, . . . , d, as shown in Fig. 3.1. The
edge set is given by EP = {(1, i) : i = 2, . . . , d}.

We assign the joint distributions Qa, Qb ∈ P(X 2) and Qa,b ∈ P(X 4) to the variables
in this graph in the following specific way:

1. P1,i ≡ Qa for all 2 ≤ i ≤ d.

2. Pi,j ≡ Qb for all 2 ≤ i, j ≤ d, i 6= j.

3. P1,i,j,k ≡ Qa,b for all 2 ≤ i, j, k ≤ d, i 6= j 6= k.

Thus, we have identical pairwise distributions P1,i ≡ Qa of the central node 1 and any
other node i, and also identical pairwise distributions Pi,j ≡ Qb of any two distinct
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Figure 3.1. The star graph with d = 9. Qa is the joint distribution on any pair of variables that form
an edge e.g., x1 and x2. Qb is the joint distribution on any pair of variables that do not form an edge
e.g., x2 and x3. By symmetry, all crossover rates are equal.

outer nodes i and j. Furthermore, assume that I(Qa) > I(Qb) > 0. Note that the
distribution Qa,b ∈ P(X 4) completely specifies the above graphical model with a star
graph. Also, from the above specifications, we see that Qa and Qb are the marginal
distributions of Qa,b with respect to to node pairs (1, i) and (j, k) respectively i.e.,

Qa(x1, xi) =
∑

(xj ,xk)∈X 2

P1,i,j,k(x1, xi, xj , xk), (3.11a)

Qb(xj , xk) =
∑

(x1,xi)∈X 2

P1,i,j,k(x1, xi, xj , xk). (3.11b)

Note that each crossover event between any non-edge e′ (necessarily of length 2)
and an edge e along its path results in an error in the learned structure since it leads
to e′ being declared an edge instead of e. Due to the symmetry, all such crossover
rates between pairs e and e′ are equal. By the “worst-exponent-wins” rule [62, Ch. 1],
it is more likely to have a single crossover event than multiple ones. Hence, the error
exponent is equal to the crossover rate between an edge and a non-neighbor pair in the
symmetric star graph. We state this formally in the following proposition.

Proposition 3.2 (Error Exponent for symmetric star graph). For the symmetric graph-
ical model with star graph and Qa,b as described above, the error exponent for structure
learning KP in (3.4), is equal to the crossover rate between an edge and a non-neighbor
node pair

KP = Je,e′ , for any e ∈ EP , e′ /∈ EP , (3.12)

where from (3.8), the crossover rate is given by

Je,e′ = inf
R1,2,3,4∈P(X 4)

{D(R1,2,3,4||Qa,b) : I(R1,2)=I(R3,4)} , (3.13)

with R1,2 and R3,4 as the marginals of R1,2,3,4, e.g.,

R1,2(x1, x2) =
∑

(x3,x4)∈X 2

R1,2,3,4(x1, x2, x3, x4). (3.14)
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Proof. Since there are only two distinct distributions Qa (which corresponds to a true
edge) and Qb (which corresponds to a non-edge), there is only one unique rate Je,e′ ,
namely the expression in (3.8) with Pe,e′ replaced by Qa,b. If the event Ce,e′ , in (3.6),
occurs, an error definitely occurs. This corresponds to the case where any one edge
e ∈ EP is replaced by any other node pair e′ not in EP .4

Hence, we have derived the error exponent for learning a symmetric star graph
through the crossover rate Je,e′ between any node pair e which is an edge in the star
graph and another node pair e′ which is not an edge.

The symmetric star graph possesses symmetry in the distributions and hence it
is easy to relate KP to a sole crossover rate. In general, it is not straightforward to
derive the error exponent KP from the set of crossover rates {Je,e′} since they may
not all be equal and more importantly, crossover events for different node pairs affect
the learned structure EML in a complex manner. In the next section, we provide an
exact expression for KP by identifying the (sole) crossover event related to a dominant
error tree. Finally, we remark that the crossover event Ce,e′ is related to the notion of
neighborhood selection in the graphical model learning literature [136, 211].

� 3.4 Error Exponent for Structure Learning

The analysis in the previous section characterized the rate Je,e′ for the crossover event
Ce,e′ between two empirical mutual information pairs. In this section, we connect these
set of rate functions {Je,e′} to the quantity of interest, viz., the error exponent for
ML-estimation of edge set KP in (3.4).

Recall that the event Ce,e′ denotes an error in estimating the order of mutual in-
formation quantities. However, such events Ce,e′ need not necessarily lead to the error
event An in (3.3) that the ML-estimate of the edge set EML is different from the true
set EP . This is because the ML-estimate EML is a tree and this global constraint im-
plies that certain crossover events can be ignored. In the sequel, we will identify useful
crossover events through the notion of a dominant error tree.

� 3.4.1 Dominant Error Tree

We can decompose the error event for structure estimation An in (3.3) into a set of
mutually-exclusive events

P(An) = P

( ⋃

T∈T d\{TP }

Un(T )
)

=
∑

T∈T d\{TP }

P (Un(T )) , (3.15)

4Also see theorem 3.4 and its proof for the argument that the dominant error tree differs from the
true tree by a single edge.
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where each Un(T ) denotes the event that the graph of the ML-estimate T̂ML is a tree
T different from the true tree TP . In other words,

Un(T ) :=

{ {
T̂ML = T

}
, if T ∈ T d \ {TP },

∅, if T = TP .
(3.16)

Note that Un(T ) ∩ Un(T ′) = ∅ whenever T 6= T ′. The large-deviation rate or the
exponent for each error event Un(T ) is

Υ(T ) := lim
n→∞

− 1

n
logP (Un(T )) , (3.17)

whenever the limit exists. Among all the error events Un(T ), we identify the dominant
one with the slowest rate of decay.

Definition 3.1 (Dominant Error Tree). A dominant error tree T ∗
P = (V,E∗

P ) is a
spanning tree given by5

T ∗
P := argmin

T∈T d\{TP }

Υ(T ). (3.18)

Roughly speaking, a dominant error tree is the tree that is the most-likely asymptotic
output of the ML-estimator in the event of an error. Hence, it belongs to the set
T d \ {TP }. In the following, we note that the error exponent in (3.4) is equal to the
exponent of the dominant error tree.

Proposition 3.3 (Dominant Error Tree & Error Exponent). The error exponent KP

for structure learning is equal to the exponent Υ(T ∗
P ) of the dominant error tree T ∗

P .

KP = Υ(T ∗
P ). (3.19)

Proof. From (3.17), we can write

P (Un(T )) .= exp(−nΥ(T )), ∀T ∈ T d \ {TP }. (3.20)

Now from (3.15), we have

P(An) .=
∑

T∈T d\{TP }

exp (−nΥ(T ))
.
= exp (−nΥ(T ∗

P )) , (3.21)

from the “worst-exponent-wins” principle [62, Ch. 1] and the definition of the dominant
error tree T ∗

P in (3.18).

5We will use the notation argmin extensively in the sequel. It is to be understood that if there is no
unique minimum (e.g. in (3.18)), then we arbitrarily choose one of the minimizing solutions.
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Figure 3.2. The path associated to the non-edge e′ = (u, v) /∈ EP , denoted Path(e′;EP ) ⊂ EP ,
is the set of edges along the unique path linking the end points of e′ = (u, v). The edge r(e′) =
argmine∈Path(e′;EP ) Je,e′ is the dominant replacement edge associated to e′ /∈ EP .

Thus, by identifying a dominant error tree T ∗
P , we can find the error exponent

KP = Υ(T ∗
P ). To this end, we revisit the crossover events Ce,e′ in (3.6), studied in the

previous section. Consider a non-neighbor node pair e′ with respect to EP and the
unique path of edges in EP connecting the two nodes, which we denote as Path(e′;EP ).
See Fig. 3.2, where we define the notion of the path given a non-edge e′. Note that e′

and Path(e′;EP ) necessarily form a cycle; if we replace any edge e ∈ EP along the path
of the non-neighbor node pair e′, the resulting edge set EP \{e}∪{e′} is still a spanning
tree. Hence, all such replacements are feasible outputs of the ML-estimation in the event
of an error. As a result, all such crossover events Ce,e′ need to be considered for the error
event for structure learning An in (3.3). However, for the error exponent KP , again
by the “worst-exponent-wins” principle, we only need to consider the crossover event
between each non-neighbor node pair e′ and its dominant replacement edge r(e′) ∈ EP
defined below.

Definition 3.2 (Dominant Replacement Edge). For each non-neighbor node pair e′ /∈
EP , its dominant replacement edge r(e′) ∈ EP is defined as the edge in the unique path
along EP connecting the nodes in e′ having the minimum crossover rate

r(e′) := argmin
e∈Path(e′;EP )

Je,e′ , (3.22)

where the crossover rate Je,e′ is given by (3.8).

We are now ready to characterize the error exponent KP in terms of the crossover
rate between non-neighbor node pairs and their dominant replacement edges.

Theorem 3.4 (Error exponent as a single crossover event). The error exponent for
ML-tree estimation in (3.4) is given by

KP = Jr(e∗),e∗ = min
e′ /∈EP

min
e∈Path(e′;EP )

Je,e′ , (3.23)

where r(e∗) is the dominant replacement edge, defined in (3.22), associated to e∗ /∈ EP
and e∗ is the optimizing non-neighbor node pair

e∗ := argmin
e′ /∈EP

Jr(e′),e′ . (3.24)
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The dominant error tree T ∗
P = (V,E∗

P ) in (3.18) has edge set

E∗
P = EP ∪ {e∗} \ {r(e∗)}. (3.25)

In fact, we also have the following (finite-sample) upper bound on the error probability:

P(An) ≤
(d− 1)2(d− 2)

2

(
n+ 1 + |X |4

n+ 1

)
exp(−nKP ), (3.26)

for all n ∈ N.

Proof. (Sketch) The edge set of the dominant error tree E∗
P differs from EP in exactly

one edge (See Appendix 3.B). This is because if E∗
P were to differ from EP in strictly

more than one edge, the resulting error exponent would not be the minimum, hence
contradicting Proposition 3.3. To identify the dominant error tree, we use the union
bound as in (3.15) and the “worst-exponent-wins” principle [62, Ch. 1], to conclude
that the rate that dominates is the minimum Jr(e′),e′ over all possible non-neighbor
node pairs e′ /∈ EP . See Appendix 3.B for the details.

The above theorem relates the set of crossover rates {Je,e′}, which we characterized
in the previous section, to the overall error exponent KP , defined in (3.4). Note that
the result in (3.23) and also the existence of the limit in (3.4) means that the error
probability is tight to first order in the exponent in the sense that P(An) .= exp(−nKP ).
This is in contrast to the work in [223], where bounds on the upper and lower limit
on the sequence − 1

n logP(An) were established. We numerically compute the error
exponent KP for different discrete distributions in Section 3.7.

From (3.23), we see that if at least one of the crossover rates Je,e′ in the minimization
is zero, the overall error exponent KP is zero. This observation is important for the
derivation of necessary and sufficient conditions for KP to be positive, and hence, for
the error probability to decay exponentially in the number of samples n.

� 3.4.2 Conditions for Exponential Decay

We now provide necessary and sufficient conditions that ensure that KP is strictly
positive. This is obviously of crucial importance since if KP > 0, this implies expo-
nential decay of the desired probability of error P(An), where the error event An is
defined in (3.3). For the purpose of stating this result, we assume that TP , the original
structure is just acyclic, i.e., it may not be connected.

Theorem 3.5 (Equivalent Conditions for Exponential Decay). The following three
statements are equivalent.

(a) The probability of error P(An) decays exponentially i.e.,

KP > 0. (3.27)
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Figure 3.3. Illustration for Example 3.1.

(b) The mutual information quantities satisfy:

I(Pe′) < I(Pe), ∀ e ∈ Path(e′;EP ), e
′ /∈ EP . (3.28)

(c) TP is not a proper forest.6

Proof. (Sketch) We first show that (a) ⇔ (b).
(⇒) We assume statement (a) is true i.e., KP > 0 and prove that statement (b) is
true. Suppose, to the contrary, that I(Pe′) = I(Pe) for some e ∈ Path(e′;EP ) and
some e′ /∈ EP . Then Jr(e′),e′ = 0, where r(e′) is the replacement edge associated to e′.
By (3.23), KP = 0, which is a contradiction.
(⇐) We now prove that statement (a) is true assuming statement (b) is true i.e.,
I(Pe′) < I(Pe) for all e ∈ Path(e′;EP ) and e′ /∈ EP . By Theorem 3.1, the crossover
rate Jr(e′),e′ in (3.8) is positive for all e′ /∈ EP . From (3.23), KP > 0 since there are
only finitely many e′, hence the minimum in (3.24) is attained at some non-zero value,
i.e., KP = mine′ /∈EP

Jr(e′),e′ > 0.
Statement (c) is equivalent to statement (b). The proof of this claim makes use of

the positivity condition that P (x) > 0 for all x ∈ X d and the fact that if variables x1,
x2 and x3 form Markov chains x1 − x2 − x3 and x1 − x3 − x2, then x1 is necessarily
jointly independent of (x2, x3). Since this proof is rather lengthy, we refer the reader to
Appendix 3.C for the details.

Condition (b) states that, for each non-edge e′, we need I(Pe′) to be strictly smaller
than the mutual information of its dominant replacement edge I(Pr(e′)). Condition (c)
is a more intuitive condition for exponential decay of the probability of error P(An).
This is an important result since it says that for any non-degenerate tree distribution
in which all the pairwise joint distributions are not product distributions (i.e., not a
proper forest), then we have exponential decay in the error probability.

In the following example, we describe a simple random process for constructing a
distribution P such that all three conditions in Theorem 3.5 are satisfied with proba-
bility one (w.p. 1). See Fig. 3.3.

6A proper forest on d nodes is an undirected, acyclic graph that has (strictly) fewer than d−1 edges.
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Example 3.1. Suppose the structure of P , a spanning tree distribution with graph
TP = (V,EP ), is fixed and X = {0, 1}. Now, we assign the parameters of P using the
following procedure. Let x1 be the root node. Then randomly draw the parameter of the
Bernoulli distribution P1(x1) from a uniform distribution on [0, 1] i.e., P1(x1 = 0) = θx01
and θx01 ∼ U [0, 1]. Next let nbd(1) be the set of neighbors of x1. Regard the set of

variables {xj : j ∈ nbd(1)} as the children7 of x1. For each j ∈ nbd(1), sample both
P (xj = 0|x1 = 0) = θx0j |x01

as well as P (xj = 0|x1 = 1) = θx0j |x11
from independent

uniform distributions on [0, 1] i.e., θx0j |x01
∼ U [0, 1] and θx0j |x11

∼ U [0, 1]. Repeat this

procedure for all children of x1. Then repeat the process for all other children. This
construction results in a joint distribution P (x) > 0 for all x ∈ X d w.p. 1. In this case,
by continuity, all mutual informations are distinct w.p. 1, the graph is not a proper
forest w.p. 1 and the rate KP > 0 w.p. 1.

This example demonstrates that P(An) decays exponentially for almost every tree
distribution. More precisely, the tree distributions in which P(An) does not decay
exponentially has measure zero in P(X d).

� 3.4.3 Computational Complexity

Finally, we provide an upper bound on the computational complexity to compute KP

in (3.23). Our upper bound on the computational complexity depends on the diameter
of the tree TP = (V,EP ) which is defined as

diam(TP ) := max
u,v∈V

L(u, v), (3.29)

where L(u, v) is the length (number of hops) of the unique path between nodes u and
v. For example, L(u, v) = 4 for the non-edge e′ = (u, v) in the subtree in Fig. 3.2.

Theorem 3.6 (Computational Complexity for KP ). The number of computations of
Je,e′ to compute KP , denoted N(TP ), satisfies

N(TP ) ≤
1

2
diam(TP )(d− 1)(d− 2). (3.30)

Proof. Given a non-neighbor node pair e′ /∈ EP , we perform a maximum of diam(TP )
calculations to determine the dominant replacement edge r(e′) from (3.22). Combining
this with the fact that there are a total of |

(
V
2

)
\EP | =

(
d
2

)
− (d− 1) = 1

2(d− 1)(d− 2)
node pairs not in EP , we obtain the upper bound.

Thus, if the diameter of the tree diam(TP ) is relatively low and independent of
number of nodes d, the complexity is quadratic in d. For instance, for a star graph, the
diameter diam(TP ) = 2. For a balanced tree,8 diam(TP ) = O(log d), hence the number
of computations is O(d2 log d).

7Let x1 be the root of the tree. In general, the children of a node xk (k 6= 1) is the set of nodes
connected to xk that are further away from the root than xk.

8A balanced tree is one where no leaf is much farther away from the root than any other leaf. The
length of the longest direct path between any pair of nodes is O(log d).
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Figure 3.4. The partitions of the simplex associated to our learning problem are given by Bi, defined
in (3.31). In this example, the type P̂ belongs to B3 so the tree associated to partition B3 is favored.

� 3.4.4 Relation of The Maximum-Likelihood Structure Learning Problem

to Robust Hypothesis Testing

We now take a short detour and discuss the relation between the analysis of the learn-
ing problem and robust hypothesis testing, which was first considered by Huber and
Strassen in [102]. Subsequent work was done in [151, 198, 220] albeit for differently
defined uncertainty classes known as moment classes.

We hereby consider an alternative but related problem. Let T1, . . . , TM be the
M = dd−2 trees with d nodes. Also let Q1, . . . ,QM ⊂ D(X d, T d) be the subsets of tree-
structured graphical models Markov on T1, . . . , TM respectively. The structure learning
problem is similar to the M -ary hypothesis testing problem between the uncertainty
classes of distributions Q1, . . . ,QM . The uncertainty class Qi denotes the set of tree-
structured graphical models with different parameters (marginal {Pi : i ∈ V } and
pairwise distributions {Pi,j : (i, j) ∈ EP }) but Markov on the same tree Ti.

In addition, we note that the probability simplex P(X d) can be partitioned into M
subsets9 B1, . . . ,BM ⊂ P(X d) where each Bi, i = 1, . . . ,M is defined as

Bi :=
⋃

P ′∈Qi

{
Q : D(P ′ ||Q) ≤ min

R∈∪j 6=iQi

D(P ′ ||R)
}
. (3.31)

See Fig. 3.4. According to the ML criterion in (2.108), if the type P̂ belongs to Bi, then
the i-th tree is favored.

In [190], the Neyman-Pearson setup of a robust binary hypothesis testing problem
was considered. The null hypothesis corresponds to the true tree model P and the
(composite) alternative hypothesis corresponds to the set of distributions Markov on
some erroneous tree TQ 6= TP . The false-alarm probability was constrained to be smaller
than α > 0 and optimized for worst-case type-II (missed detection) error exponent using
the Chernoff-Stein Lemma [47, Ch. 12]. It was established that the worst-case error
exponent can be expressed in closed-form in terms of the mutual information of so-
called bottleneck edges, i.e., the edge and non-edge pair that have the smallest mutual

9From the definition in (3.31), we see that the relative interior of the subsets are pairwise disjoint.
We discuss the scenario when P lies on the boundaries of these subsets in Section 3.6.
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Figure 3.5. A geometric interpretation of (3.8) where Pe,e′ is projected onto the submanifold of
probability distributions {Q ∈ P(X 4) : I(Qe′) = I(Qe)}.

information difference. However, in general, for the binary hypothesis testing problem,
the error event does not decompose into a union of local events. This is in contrast to
error exponent for learning the ML tree KP , which can be computed by considering
local crossover events Ce,e′ , defined in (3.6).

Note that {P̂ ∈ Bi} corresponds to a global event since each Bi ⊂ P(X d). The
large-deviation analysis techniques we utilized to obtain the error exponent KP in The-
orem 3.4 show that such global error events can be also decomposed into a collection
of local crossover events Ce,e′ . These local events depend only on the type restricted to
pairs of nodes e and e′ and are more intuitive for assessing (and analyzing) when and
how an error can occur during the Chow-Liu learning process.

� 3.5 Euclidean Approximations

In order to gain more insight into the error exponent, we make use of Euclidean approx-
imations [26] of information-theoretic quantities to obtain an approximate but closed-
form solution to (3.8), which is non-convex and hard to solve exactly. In addition, we
note that the dominant error event results from an edge and a non-edge that satisfy the
conditions for which the Euclidean approximation is valid, i.e., the very-noisy condition
given later in Definition 3.4. This justifies our approach we adopt in this section. Our
use of Euclidean approximations for various information-theoretic quantities is akin to
various problems considered in other contexts in information theory [1, 25, 26].

We first approximate the crossover rate Je,e′ for any two node pairs e and e′, which
do not share a common node. The joint distribution on e and e′, namely Pe,e′ belongs
to the set P(X 4). Intuitively, the crossover rate Je,e′ should depend on the “separation”
of the mutual information values I(Pe) and I(Pe′), and also on the uncertainty of the
difference between mutual information estimates I(P̂e) and I(P̂e′). We will see that
the approximate rate also depends on these mutual information quantities given by a
simple expression which can be regarded as the signal-to-noise ratio (SNR) for learning.

Roughly speaking, our strategy is to “convexify” the objective and the constraints
in (3.8). See Figs. 3.5 and 3.6. To do so, we recall that if P and Q are two discrete
distributions with the same support Y, and they are close entry-wise, the KL divergence
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Figure 3.6. Convexifying the objective results in a least-squares problem. The objective is converted
into a quadratic as in (3.39) and the linearized constraint set L(Pe,e′) is given (3.40).

can be approximated [26] as

D(Q ||P ) = −
∑

a∈Y

Q(a) log
P (a)

Q(a)
, (3.32)

= −
∑

a∈Y

Q(a) log

[
1 +

(
P (a)−Q(a)

Q(a)

)]
, (3.33)

=
1

2

∑

a∈Y

(Q(a)− P (a))2
Q(a)

+ o(‖Q− P‖2∞), (3.34)

=
1

2
‖Q− P‖2Q + o(‖Q− P‖2∞), (3.35)

where ‖y‖2w denotes the weighted squared norm of y, i.e., ‖y‖2w :=
∑

i y
2
i /wi. The

equality in (3.34) holds because log(1 + t) =
∑∞

i=1(−1)i+1ti/i for t ∈ (−1, 1]. The
difference between the divergence and the Euclidean approximation becomes tight as
ε = ‖P − Q‖∞ → 0. Moreover, it remains tight even if the subscript Q in (3.35) is
changed to a distribution Q′ in the vicinity of Q [26]. That is, the difference between
‖Q − P‖Q and ‖Q − P‖Q′ is negligible compared to either term when Q′ ≈ Q. Using
this fact and the assumption that P and Q are two discrete distributions that are close
entry-wise,

D(Q ||P ) ≈ 1

2
‖Q− P‖2P . (3.36)

In fact, it is also known [26] that if ‖P − Q‖∞ < ε for some ε > 0, we also have
D(P ||Q) ≈ D(Q ||P ).

In the following, to make our statements precise, we will use the notation α1 ≈δ α2

to denote that two real numbers α1 and α2 are in the δ neighborhood of each other,
i.e., |α1 − α2| < δ.10 We will also need the following notion of information density to
state our approximation for Je,e′ .

Definition 3.3 (Information Density). Given a pairwise joint distribution Pi,j on X 2

with marginals Pi and Pj, the information density [126, 156] function, denoted by si,j :

10In the following, we will also have continuity statements where given ε > 0 and α1 ≈ε α2, implies
that there exists some δ = δ(ε) > 0 such that β1 ≈δ β2. We will be casual about specifying what the
δ’s are.



Sec. 3.5. Euclidean Approximations 77

X 2 → R, is defined as

si,j(xi, xj) := log
Pi,j(xi, xj)

Pi(xi)Pj(xj)
, ∀ (xi, xj) ∈ X 2. (3.37)

Hence, for each node pair e = (i, j), the information density se is also a random
variable whose expectation is simply the mutual information between xi and xj , i.e.,
E[se] = I(Pe).

Recall that we also assumed in Section 3.2 that TP is a spanning tree, which implies
that for all node pairs (i, j), Pi,j is not a product distribution, i.e., Pi,j 6= PiPj , because
if it were, then TP would be disconnected. We now define a condition for which our
approximation holds.

Definition 3.4 (ε-Very Noisy Condition). We say that Pe,e′ ∈ P(X 4), the joint distri-
bution on node pairs e and e′, satisfies the ε-very noisy condition if

‖Pe − Pe′‖∞ := max
(xi,xj)∈X 2

|Pe(xi, xj)− Pe′(xi, xj)|<ε. (3.38)

This condition is needed because if (3.38) holds, then by continuity of the mutual
information, there exists a δ > 0 such that I(Pe) ≈δ I(Pe′), which means that the mu-
tual information quantities are difficult to distinguish and the approximation in (3.35)
is accurate.11 Note that proximity of the mutual information values is not sufficient for
the approximation to hold since we have seen from Theorem 3.1 that Je,e′ depends not
only on the mutual information quantities but on the entire joint distribution Pe,e′ .

We now define the approximate crossover rate on disjoint node pairs e and e′ as

J̃e,e′ := inf

{
1

2
‖Q− Pe,e′‖2Pe,e′

: Q ∈ L(Pe,e′)
}
, (3.39)

where the (linearized) constraint set is

L(Pe,e′) :=
{
Q ∈ P(X 4) : I(Pe) +

〈
∇PeI(Pe), Q− Pe,e′

〉

= I(Pe′) +
〈
∇Pe′

I(Pe′), Q− Pe,e′
〉}

, (3.40)

where ∇PeI(Pe) is the gradient vector of the mutual information with respect to the
joint distribution Pe. We also define the approximate error exponent as

K̃P := min
e′ /∈EP

min
e∈Path(e′;EP )

J̃e,e′ . (3.41)

We now provide the expression for the approximate crossover rate J̃e,e′ and also state
the conditions under which the approximation is asymptotically accurate in ε.12

11Here and in the following, we do not specify the exact value of δ but we simply note that as ε → 0,
the approximation in (3.36) becomes tighter.

12We say that a collection of approximations {θ̃(ε) : ε > 0} of a true parameter θ is asymptotically

accurate in ε (or simply asymptotically accurate) if the approximations converge to θ as ε → 0, i.e.,

limε→0 θ̃(ε) = θ.
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Theorem 3.7 (Euclidean approximation of Je,e′). The approximate crossover rate for
the empirical mutual information quantities, defined in (3.39), is given by

J̃e,e′ =
(E[se′ − se])2
2Var(se′ − se)

=
(I(Pe′)− I(Pe))2
2Var(se′ − se)

, (3.42)

where se is the information density defined in (3.37) and the expectation and variance
are both with respect to Pe,e′ . Furthermore, the approximation (3.42) is asymptotically
accurate, i.e., as ε → 0 (in the definition of ε-very noisy condition), we have that
J̃e,e′ → Je,e′ .

Proof. (Sketch) Eqs. (3.39) and (3.40) together define a least squares problem. Upon
simiplification of the solution, we obtain (3.42). See Appendix 3.D for the details.

We also have an additional result for the Euclidean approximation for the overall
error exponent KP . The proof is clear from the definition of K̃P in (3.41) and the
continuity of the min function.

Corollary 3.8 (Euclidean approximation of KP ). The approximate error exponent K̃P

is asymptotically accurate if all joint distributions in the set {Pe,e′ : e ∈ Path(e;EP ), e
′ /∈

EP } satisfy the ε-very noisy condition.

Hence, the expressions for the crossover rate Je,e′ and the error exponent KP are
vastly simplified under the ε-very noisy condition on the joint distributions Pe,e′ . The

approximate crossover rate J̃e,e′ in (3.42) has a very intuitive meaning. It is proportional
to the square of the difference between the mutual information quantities of Pe and
Pe′ . This corresponds exactly to our initial intuition – that if I(Pe) and I(Pe′) are well
separated (I(Pe)� I(Pe′)) then the crossover rate has to be large. J̃e,e′ is also weighted
by the precision (inverse variance) of (se′ − se). If this variance is large then we are
uncertain about the estimate I(P̂e) − I(P̂e′), and crossovers are more likely, thereby
reducing the crossover rate J̃e,e′ .

We now comment on our assumption of Pe,e′ satisfying the ε-very noisy condition,
under which the approximation is tight as seen in Theorem 3.7. When Pe,e′ is ε-very
noisy, then we have I(Pe) ≈δ I(Pe′), which implies that the optimal solution of (3.8)
Q∗
e,e′ ≈δ′ Pe,e′ . When e is an edge and e′ is a non-neighbor node pair, this implies that

it is very hard to distinguish the relative magnitudes of the empiricals I(P̂e) and I(P̂e′).
Hence, the particular problem of learning the distribution Pe,e′ from samples is very
noisy. Under these conditions, the approximation in (3.42) is accurate.

In summary, our approximation in (3.42) takes into account not only the absolute
difference between the mutual information quantities I(Pe) and I(Pe′), but also the
uncertainty in learning them. The expression in (3.42) is, in fact, the SNR for the
estimation of the difference between empirical mutual information quantities. This
answers one of the fundamental questions we posed in the introduction, viz., that we
are now able to distinguish between distributions that are “easy” to learn and those
that are “difficult” by computing the set of SNR quantities {J̃e,e′} in (3.42).
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Figure 3.7. Reverse I-projection [51] of P onto the set of tree distributions D(X d, T d) given by (3.43).

� 3.6 Extensions to Non-Tree Distributions

In all the preceding sections, we dealt exclusively with the case where the true distri-
bution P is Markov on a tree. In this section, we extend the preceding large-deviation
analysis to deal with distributions P that may not be tree-structured but in which we
estimate a tree distribution from the given set of samples xn, using the Chow-Liu ML-
estimation procedure. Since the Chow-Liu procedure outputs a tree, it is not possible
to learn the structure of P correctly. Hence, it will be necessary to redefine the error
event.

When P is not a tree distribution, we analyze the properties of the optimal re-
verse I-projection [51] of P onto the set of tree distributions, given by the optimization
problem13

Π∗(P ) := min
Q∈D(X d,T d)

D(P ||Q). (3.43)

Π∗(P ) is the KL-divergence of P to the closest element in D(X d, T d). See Fig. 3.7. As
Chow and Wagner [43] noted, if P is not a tree, there may be several trees optimizing
(3.43).14 We denote the set of optimal projections as P∗(P ), given by

P∗(P ) := {Q ∈ D(X d, T d) : D(P ||Q) = Π∗(P )}. (3.44)

We now illustrate that P∗(P ) may have more than one element with the following
example.

Example 3.2. Consider the parameterized discrete probability distribution P ∈ P({0, 1}3)
shown in Table 3.1 where ξ ∈ (0, 1/3) and κ ∈ (0, 1/2) are constants.

Proposition 3.9 (Non-uniqueness of projection). For sufficiently small κ, the Chow-
Liu MWST algorithm (using either Kruskal’s [120] or Prim’s [158] procedure) will first
include the edge (1, 2). Then, it will arbitrarily choose between the two remaining edges
(2, 3) or (1, 3).

13The minimum in the optimization problem in (3.43) is attained because the KL-divergence is
continuous and the set of tree distributions D(X d, T d) is compact.

14This is a technical condition of theoretical interest in this section. In fact, it can be shown that
the set of distributions such that there is more than one tree optimizing (3.43) has (Lebesgue) measure
zero in P(X d).
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x1 x2 x3 Distribution P (x)

0 0 0 (1/2− ξ)(1/2− κ)
0 0 1 (1/2 + ξ)(1/2− κ)
0 1 0 (1/3 + ξ)κ

0 1 1 (2/3− ξ)κ
1 0 0 (2/3− ξ)κ
1 0 1 (1/3 + ξ)κ

1 1 0 (1/2− ξ)(1/2− κ)
1 1 1 (1/2 + ξ)(1/2− κ)

Table 3.1. Table of probability values for Example 3.2.
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Figure 3.8. Each tree defines an e-flat submanifold [7, 8] of probability distributions. These are the

two lines as shown in the figure. If the KL-divergences D(P ||P (1)
est ) and D(P ||P (2)

est ) are equal, then P
(1)
est

and P
(2)
est do not have the same structure but both are optimal with respect to the optimization problem

in (3.43). An example of such a distribution P is provided in Example 3.2.

The proof of this proposition is provided in Appendix 3.E where we show that
I(P1,2) > I(P2,3) = I(P1,3) for sufficiently small κ. Thus, the optimal tree structure P ∗

is not unique. This in fact corresponds to the case where P belongs to the boundary
of some set Bi ⊂ P(X d) defined in (3.31). See Fig. 3.8 for an information geometric
interpretation.

Every tree distribution in P∗(P ) has the maximum sum mutual information weight.
More precisely, we have

∑

e∈EQ

I(Qe)= max
Q′∈D(X d,T d)

∑

e∈EQ′

I(Q′
e), ∀Q ∈ P∗(P ). (3.45)

Given (3.45), we note that when we use a MWST algorithm to find the optimal solution
to the problem in (3.43), ties will be encountered during the greedy addition of edges,
as demonstrated in Example 3.2. Upon breaking the ties arbitrarily, we obtain some
distribution Q ∈ P∗(P ). We now provide a sequence of useful definitions that lead to
definition of a new error event for which we can perform large-deviation analysis.

We denote the set of tree structures15 corresponding to the distributions in P∗(P )

15In fact, each tree defines a so-called e-flat submanifold [7, 8] in the set of probability distributions
on X d and Pest lies in both submanifolds. The so-called m-geodesic connects P to any of its optimal
projection Pest ∈ P∗(P ).
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as
TP∗(P ) := {TQ ∈ T d : Q ∈ P∗(P )}, (3.46)

and term it as the set of optimal tree projections. A similar definition applies to the
edge sets of optimal tree projections

EP∗(P ) := {EQ : TQ = (V,EQ) ∈ T d, Q ∈ P∗(P )}. (3.47)

Since the distribution P is unknown, our goal is to estimate the optimal tree-
projection Pest using the empirical distribution P̂ , where Pest is given by

Pest := argmin
Q∈D(X d,T d)

D(P̂ ||Q). (3.48)

If there are many distributions Q, we arbitrarily pick one of them. We will see that
by redefining the error event, we will have still a LDP. Finding the reverse I-projection
Pest can be solved efficiently (in time O(d2 log d)) using the Chow-Liu algorithm [42] as
described in Section 2.5.2.

We define TPest = (V,EPest) as the graph of Pest, which is the learned tree and
redefine the new error event as

An(P∗(P )) :=
{
EPest /∈ EP∗(P )

}
. (3.49)

Note that this new error event essentially reduces to the original error event An =
An({P}) in (3.3) if TP∗(P ) contains only one member. So if the learned structure
belongs to EP∗(P ), there is no error, otherwise an error is declared. We would like to
analyze the decay of the error probability of An(P∗(P )) as defined in (3.49), i.e., find
the new error exponent

KP∗(P ) := lim
n→∞

− 1

n
logP(An(P∗(P ))). (3.50)

It turns out that the analysis of the new event An(P∗(P )) is very similar to the analysis
performed in Section 3.4. We redefine the notion of a dominant replacement edge and
the computation of the new rate KP∗(P ) then follows automatically.

Definition 3.5 (Dominant Replacement Edge). Fix an edge set EQ ∈ EP∗(P ). For the
error event An(P∗(P )) defined in (3.49), given a non-neighbor node pair e′ /∈ EQ, its
dominant replacement edge r(e′;EQ) with respect to EQ, is given by

r(e′;EQ) := argmin
e∈Path(e′;EQ)

EQ∪{e′}\{e}/∈EP∗(P )

Je,e′ , (3.51)

if there exists an edge e ∈ Path(e′;EQ) such that EQ ∪ {e′} \ {e} /∈ EP∗(P ). Otherwise
r(e′;EQ) = ∅. Je,e′ is the crossover rate of mutual information quantities defined in
(3.7). If r(e′;EQ) exists, the corresponding crossover rate is

Jr(e′;EQ),e′ = min
e∈Path(e′;EQ)

EQ∪{e′}\{e}/∈EP∗(P )

Je,e′ , (3.52)

otherwise J∅,e′ = +∞.
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In (3.51), we are basically fixing an edge set EQ ∈ EP∗(P ) and excluding the trees
with e ∈ Path(e′;EQ) replaced by e′ if it belongs to the set of optimal tree projections
TP∗(P ). We further remark that in (3.51), r(e′) may not necessarily exist. Indeed, this
occurs if every tree with e ∈ Path(e′;EQ) replaced by e′ belongs to the set of optimal
tree projections. This is, however, not an error by the definition of the error event
in (3.49) hence, we set J∅,e′ = +∞. In addition, we define the dominant non-edge
associated to edge set EQ ∈ EP∗(P ) as:

e∗(EQ) := argmin
e′ /∈EQ

min
e∈Path(e′;EQ)

EQ∪{e′}\{e}/∈EP∗(P )

Je,e′ . (3.53)

Also, the dominant structure in the set of optimal tree projections is defined as

EP ∗ := argmin
EQ∈EP∗(P )

Jr(e∗(EQ);EQ),e∗(EQ), (3.54)

where the crossover rate Jr(e′;EQ),e′ is defined in (3.52) and the dominant non-edge
e∗(EQ) associated to EQ is defined in (3.53). Equipped with these definitions, we are
now ready to state the generalization of Theorem 3.4.

Theorem 3.10 (Dominant Error Tree). For the error event An(P∗(P )) defined in (3.49),
a dominant error tree (which may not be unique) has edge set given by

EP ∗ ∪ {e∗(EP ∗)} \ {r(e∗(EP ∗);EP ∗)}, (3.55)

where e∗(EP ∗) is the dominant non-edge associated to the dominant structure EP ∗ ∈
EP∗(P ) and is defined by (3.53) and (3.54). Furthermore, the error exponent KP∗(P ),
defined in (3.50) is given as

KP∗(P ) = min
EQ∈EP∗(P )

min
e′ /∈EQ

min
e∈Path(e′;EQ)

EQ∪{e′}\{e}/∈EP∗(P )

Je,e′ . (3.56)

Proof. The proof of this theorem follows directly by identifying the dominant error tree
belonging to the set T d \ TP∗(P ). By further applying the result in Proposition 3.3 and
Theorem 3.4, we obtain the result via the “worst-exponent-wins” [62, Ch. 1] principle
by minimizing over all trees in the set of optimal projections EP∗(P ) in (3.56).

This theorem now allows us to analyze the more general error event An(P∗(P )),
which includes An in (3.3) as a special case if the set of optimal tree projections TP∗(P )

in (3.46) is a singleton.

� 3.7 Numerical Experiments

In this section, we perform a series of numerical experiments with the following three
objectives:
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Figure 3.9. Graphical model used for our numerical experiments. The true model is a symmetric star
(cf. Section 3.3) in which the mutual information quantities satisfy I(P1,2) = I(P1,3) = I(P1,4) and by
construction, I(Pe′) < I(P1,2) for any non-edge e′. Besides, the mutual information quantities on the
non-edges are equal, for example, I(P2,3) = I(P3,4).

1. In Section 3.7.1, we study the accuracy of the Euclidean approximations (Theo-
rem 3.7). We do this by analyzing under which regimes the approximate crossover
rate J̃e,e′ in (3.42) is close to the true crossover rate Je,e′ in (3.8).

2. Since the LDP and error exponent analysis are asymptotic theories, in Section 3.7.2
we use simulations to study the behavior of the actual crossover rate, given a finite
number of samples n. In particular, we study how fast the crossover rate, obtained
from simulations, converges to the true crossover rate. To do so, we generate a
number of samples from the true distribution and use the Chow-Liu algorithm to
learn trees structures. Then we compare the result to the true structure and finally
compute the error probability.

3. In Section 3.7.3, we address the issue of the learner not having access to the true
distribution, but nonetheless wanting to compute an estimate of the crossover rate.
The learner only has the samples xn or equivalently, the empirical distribution P̂ .
However, in all the preceding analysis, to compute the true crossover rate Je,e′

and the overall error exponent KP , we used the true distribution P and solved
the constrained optimization problem in (3.8). Alternatively we computed the
approximation in (3.42), which is also a function of the true distribution. However,
in practice, it is also useful to compute an online estimate of the crossover rate by
using the empirical distribution in place of the true distribution in the constrained
optimization problem in (3.8). This is an estimate of the rate that the learner can
compute given the samples. We call this the empirical rate and formally define it
in Section 3.7.3. We perform convergence analysis of the empirical rate and also
numerically verify the rate of convergence to the true crossover rate.

In the following, we will be performing numerical experiments for the undirected
graphical model with four nodes as shown in Fig. 3.9. We parameterize the distribution
with d = 4 variables with a single parameter γ > 0 and let X = {0, 1}, i.e., all the
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variables are binary. For the parameters, we set P1(x1 = 0) = 1/3 and

Pi|1(xi = 0|x1 = 0) =
1

2
+ γ, i = 2, 3, 4, (3.57a)

Pi|1(xi = 0|x1 = 1) =
1

2
− γ, i = 2, 3, 4. (3.57b)

With this parameterization, we see that if γ is small, the mutual information I(P1,i) for
i = 2, 3, 4 is also small. In fact if γ = 0, x1 is independent of xi for i = 2, 3, 4 and as a
result, I(P1,i) = 0. Conversely, if γ is large, the mutual information I(P1,i) increases as
the dependence of the outer nodes with the central node increases. Thus, we can vary
the size of the mutual information along the edges by varying γ. By symmetry, there
is only one crossover rate and hence this crossover rate is also the error exponent for
the error event An in (3.3). This is exactly the same as the symmetric star graph as
described in Section 3.3.

� 3.7.1 Accuracy of Euclidean Approximations

We first study the accuracy of the Euclidean approximations used to derive the result
in Theorem 3.7. We denote the true rate as the crossover rate resulting from the
non-convex optimization problem (3.8) and the approximate rate as the crossover rate
computed using the approximation in (3.42).

We vary γ from 0 to 0.2 and plot both the true and approximate rates against the
difference between the mutual informations I(Pe)− I(Pe′) in Fig. 3.10, where e denotes
any edge and e′ denotes any non-edge in the model. The non-convex optimization
problem was performed using the Matlab function fmincon in the optimization toolbox.
We used several different feasible starting points and chose the best optimal objective
value to avoid problems with local minima. We first note from Fig. 3.10 that both rates
increase as I(Pe) − I(Pe′) increases. This is in line with our intuition because if Pe,e′

is such that I(Pe) − I(Pe′) is large, the crossover rate is also large. We also observe
that if I(Pe) − I(Pe′) is small, the true and approximate rates are very close. This is
in line with the assumptions for Theorem 3.7. Recall that if Pe,e′ satisfies the ε-very
noisy condition (for some small ε), then the mutual information quantities I(Pe) and
I(Pe′) are close and consequently the true and approximate crossover rates are also
close. When the difference between the mutual informations increases, the true and
approximate rate separate from each other.

� 3.7.2 Comparison of True Crossover Rate to the Rate obtained from Sim-

ulations

In this section, we compare the true crossover rate in (3.8) to the rate we obtain when
we learn tree structures using Chow-Liu with i.i.d. samples drawn from P , which we
define as the simulated rate. We fixed γ > 0 in (3.57) then for each n, we estimated
the probability of error using the Chow-Liu algorithm as described in Section 2.5.2. We
state the procedure precisely in the following steps.
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Figure 3.10. Comparison of True and Approximate Rates.

1. Fix n ∈ N and sample n i.i.d. observations xn from P .

2. Compute the empirical distribution P̂ and the set of empirical mutual information
quantities {I(P̂e) : e ∈

(V
2

)
}.

3. Learn the Chow-Liu tree EML using a MWST algorithm with {I(P̂e) : e ∈
(V
2

)
} as

the edge weights.

4. If EML is not equal to EP , then we declare an error.

5. Repeat steps 1 – 4 a total of M ∈ N times and estimate the probability of er-
ror P(An) = #errors/M and the error exponent −(1/n) logP(An), which is the
simulated rate.

If the probability of error P(An) is very small, then the number of runs M to estimate
P(An) has to be fairly large. This is often the case in error exponent analysis as the
sample size needs to be substantial to estimate very small error probabilities.

In Fig. 3.11, we plot the true rate, the approximate rate and the simulated rate
when γ = 0.01 (and M = 107) and γ = 0.2 (and M = 5 × 108). Note that, in the
former case, the true rate is higher than the approximate rate and in the latter case,
the reverse is true. When γ is large (γ = 0.2), there are large differences in the true
tree models. Thus, we expect that the error probabilities to be very small and henceM
has to be large in order to estimate the error probability correctly but n does not have
to be too large for the simulated rate to converge to the true rate. On the other hand,
when γ is small (γ = 0.01), there are only subtle differences in the graphical models,
hence we need a larger number of samples n for the simulated rate to converge to its
true value, but M does not have to be large since the error probabilities are not small.
The above observations are in line with our intuition.
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Figure 3.11. Comparison of True, Approximate and Simulated Rates with γ = 0.01 (top) and γ = 0.2
(bottom). Here the number of runs M = 107 for γ = 0.01 and M = 5×108 for γ = 0.2. The probability
of error is computed dividing the total number of errors by the total number of runs.

� 3.7.3 Comparison of True Crossover Rate to Rate obtained from the Em-

pirical Distribution

In this subsection, we compare the true rate to the empirical rate, which is defined as

Ĵe,e′ := inf
Q∈P(X 4)

{
D(Q || P̂e,e′) : I(Qe′) = I(Qe)

}
. (3.58)

The empirical rate Ĵe,e′ = Ĵe,e′(P̂e,e′) is a function of the empirical distribution P̂e,e′ .
This rate is computable by a learner, who does not have access to the true distribution
P . The learner only has access to a finite number of samples xn = {x1, . . . ,xn}. Given
xn, the learner can compute the empirical probability P̂e,e′ and perform the optimization
in (3.58). This is an estimate of the true crossover rate. A natural question to ask is
the following: Does the empirical rate Ĵe,e′ converge to the true crossover rate Je,e′ as
n→∞? The next theorem answers this question in the affirmative.

Theorem 3.11 (Crossover Rate Consistency). The empirical crossover rate Ĵe,e′ in
(3.58) converges almost surely to the true crossover rate Je,e′ in (3.8), i.e.,

P
(
lim
n→∞

Ĵe,e′ = Je,e′
)
= 1. (3.59)

Proof. (Sketch) The proof of this theorem follows from the continuity of Ĵe,e′ in the em-

pirical distribution P̂e,e′ and the continuous mapping theorem by Mann and Wald [134].
See Appendix 3.F for the details.

We conclude that the learning of the rate from samples is consistent. Now we
perform simulations to determine how many samples are required for the empirical rate
to converge to the true rate.



Sec. 3.8. Chapter Summary 87

10
4

10
5

10
6

10
7

7

7.5

8

8.5

9

9.5

10
x 10

−5

n

−
(1

/n
) 

lo
g 

P
r(

er
r)

 

 
Empirical Rate
True Rate
Approx Rate

10
4

10
5

10
6

10
7

0.012

0.014

0.016

0.018

0.02

0.022

n

−
(1

/n
) 

lo
g 

P
r(

er
r)

 

 

Empirical Rate
True Rate
Approx Rate

Figure 3.12. Comparison of True, Approximate and Empirical Rates with γ = 0.01 (top) and γ = 0.2
(bottom). Here n is the number of observations used to estimate the empirical distribution.

We set γ = 0.01 and γ = 0.2 in (3.57). We then drew n i.i.d. samples from P
and computed the empirical distribution P̂e,e′ . Next, we solved the optimization prob-
lem in (3.58) using the fmincon function in Matlab, using different initializations and
compared the empirical rate to the true rate. We repeated this for several values of
n and the results are displayed in Fig. 3.12. We see that for γ = 0.01, approximately
n = 8 × 106 samples are required for the empirical distribution to be close enough to
the true distribution so that the empirical rate converges to the true rate.

� 3.8 Chapter Summary

In this chapter, we presented a solution to the problem of finding the error exponent for
tree structure learning by extensively using tools from large-deviations theory combined
with facts about tree graphs. We quantified the error exponent for learning the structure
and exploited the structure of the true tree to identify the dominant tree in the set of
erroneous trees. We also drew insights from the approximate crossover rate, which can
be interpreted as the SNR for learning. These two main results in Theorems 3.4 and 3.7
provide the intuition as to how errors occur for learning discrete tree distributions via
the Chow-Liu algorithm.

Recall that we applied the Euclidean approximation to the mutual information,
which is a function of the joint distribution of pairs of edges in Section 3.5. An inter-
esting line of further research is to consider each edge of the tree as a communication
channel with an input Xi, a channel PXj |Xi

and an output Xj . The very-noisy assump-
tion can also be equivalently applied to the channel, i.e., one assumes that PXj |Xi

≈ PXj .
This was explored in [26].

In the next chapter, we develop counterparts to the results here for the Gaussian
case. Many of the results carry through but thanks to the special structure that Gaus-
sian distributions possess, we are also able to identify which structures are easier to
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learn and which are harder to learn given a fixed set of correlation coefficients.

Appendices for Chapter 3

� 3.A Proof of Theorem 3.1

Proof. We divide the proof of this theorem into three steps. Steps 1 and 2 prove the
expression in (3.8). Step 3 proves the existence of the optimizer.

Step 1: First, we note from Sanov’s Theorem [47, Ch. 11] that the empirical joint
distribution on edges e and e′ satisfies

lim
n→∞

− 1

n
logP(P̂e,e′ ∈ F) = inf{D(Q ||Pe,e′) : Q ∈ F} (3.60)

for any set F ⊂ P(X 4) that equals the closure of its interior, i.e., F = cl(int(F)). We
now have a LDP for the sequence of probability measures P̂e,e′ , the empirical distribution

on (e, e′). Assuming that e and e′ do not share a common node, P̂e,e′ ∈ P(X 4) is a
probability distribution over four variables (the variables in the node pairs e and e′).
We now define the function h : P(X 4)→ R as

h(Q) := I(Qe′)− I(Qe). (3.61)

Since Qe =
∑

xe′
Q, defined in (3.9) is continuous in Q and the mutual information

I(Qe) is also continuous in Qe, we conclude that h is indeed continuous, since it is
the composition of continuous functions. By applying the contraction principle [62]
to the sequence of probability measures P̂e,e′ and the continuous map h, we obtain a

corresponding LDP for the new sequence of probability measures h(P̂e,e′) = I(P̂e′) −
I(P̂e), where the rate is given by:

Je,e′ = inf
Q∈P(X 4)

{
D(Q ||Pe,e′) : h(Q) ≥ 0

}
, (3.62)

= inf
Q∈P(X 4)

{
D(Q ||Pe,e′) : I(Qe′) ≥ I(Qe)

}
. (3.63)

We now claim that the limit in (3.7) exists. From Sanov’s theorem [47, Ch. 11], it suffices
to show that the constraint set F := {I(Qe′) ≥ I(Qe)} in (3.63) is a regular closed set,
i.e., it satisfies F = cl(int(F)). This is true because there are no isolated points in
F and thus the interior is nonempty. Hence, there exists a sequence of distributions
{Qn}∞n=1 ⊂ int(F) such that limn→∞D(Qn||Pe,e′) = D(Q∗||Pe,e′), which proves the
existence of the limit in (3.7).

Step 2: We now show that the optimal solution Q∗
e,e′ , if it exists (as will be shown

in Step 3), must satisfy I(Q∗
e) = I(Q∗

e′). Suppose, to the contrary, that Q∗
e,e′ with

objective value D(Q∗
e,e′ ||Pe,e′) is such that I(Q∗

e′) > I(Q∗
e). Then h(Q

∗
e,e′) > 0, where h,

as shown above, is continuous. Thus, there exists a δ > 0 such that the δ-neighborhood

Nδ(Q
∗
e,e′) := {R : ‖R−Q∗

e,e′‖∞ < δ}, (3.64)
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Figure 3.13. Illustration of Step 2 of the proof of Theorem 3.1.

satisfies h(Nδ(Q
∗
e,e′)) ⊂ (0,∞) [166, Ch. 2]. Consider the new distribution (See Fig. 3.13)

Q∗∗
e,e′ = Q∗

e,e′ +
δ

2
(Pe,e′ −Q∗

e,e′) (3.65)

=

(
1− δ

2

)
Q∗
e,e′ +

δ

2
Pe,e′ . (3.66)

Note that Q∗∗
e,e′ belongs to Nδ(Q

∗
e,e′) and hence is a feasible solution of (3.63). We now

prove that D(Q∗∗
e,e′ ||Pe,e′) < D(Q∗

e,e′ ||Pe,e′), which contradicts the optimality of Q∗
e,e′ .

D(Q∗∗
e,e′ ||Pe,e′)

= D

((
1− δ

2

)
Q∗
e,e′ +

δ

2
Pe,e′

∥∥∥Pe,e′
)
, (3.67)

≤
(
1− δ

2

)
D(Q∗

e,e′ ||Pe,e′) +
δ

2
D(Pe,e′ ||Pe,e′), (3.68)

=

(
1− δ

2

)
D(Q∗

e,e′ ||Pe,e′) (3.69)

< D(Q∗
e,e′ ||Pe,e′), (3.70)

where (3.68) is due to the convexity of the KL-divergence in the first variable [47, Ch.
2], (3.69) is because D(Pe,e′ ||Pe,e′) = 0 and (3.70) is because δ > 0. Thus, we conclude
that the optimal solution must satisfy I(Q∗

e) = I(Q∗
e′) and the crossover rate can be

stated as (3.8).
Step 3: Now, we prove the existence of the minimizer Q∗

e,e′ , which will allow us to
replace the inf in (3.8) with min. First, we note that D(Q ||Pe,e′) is continuous in both
variables and hence continuous and the first variable Q. It remains to show that the
constraint set

Λ := {Q ∈ P(X 4) : I(Qe′) = I(Qe)} (3.71)

is compact, since it is clearly nonempty (the uniform distribution belongs to Λ). Then
we can conclude, by Weierstrass’ extreme value theorem [166, Theorem 4.16], that the
minimizer Q∗ ∈ Λ exists. By the Heine-Borel theorem [166, Theorem 2.41], it suffices
to show that Λ is bounded and closed. Clearly Λ is bounded since P(X 4) is a bounded
set. Now, Λ = h−1({0}) where h is defined in (3.61). Since h is continuous and {0} is
closed (in the usual topology of the real line), Λ is closed [166, Theorem 4.8]. Hence
that Λ is compact. We also need to use the fact that Λ is compact in the proof of
Theorem 3.11.
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Figure 3.14. Illustration of the proof of Theorem 3.4.

� 3.B Proof of Theorem 3.4

Proof. We first claim that E∗
P , the edge set corresponding to the dominant error tree,

differs from EP by exactly one edge.16 To prove this claim, assume, to the contrary, that
E∗
P differs from EP by two edges. Let EML = E ′ := EP \{e1, e2}∪{e′1, e′2}, where e′1, e′2 /∈

EP are the two edges that have replaced e1, e2 ∈ EP respectively. Since T ′ = (V, E ′)
is a tree, these edges cannot be arbitrary and specifically, {e1, e2} ∈ {Path(e′1;EP ) ∪
Path(e′2;EP )} for the tree constraint to be satisfied. Recall that the rate of the event
that the output of the ML algorithm is T ′ is given by Υ(T ′) in (3.17). Then consider
the probability of the joint event (with respect to the probability measure P = Pn).

Suppose that ei ∈ Path(e′i;EP ) for i = 1, 2 and ei /∈ Path(e′j ;EP ) for i, j = 1, 2
and i 6= j. See Fig. 3.14. Note that the true mutual information quantities satisfy
I(Pei) > I(Pe′i). We prove this claim by contradiction that suppose I(Pe′i) ≥ I(Pei)
then, EP does not have maximum weight because if the non-edge e′i replaces the true
edge ei, the resulting tree17 would have higher weight, contradicting the optimality of
the true edge set EP , which is the MWST with the true mutual information quantities
as edge weights. More precisely, we can compute the exponent when T ′ is the output
of the MWST algorithm:

Υ(T ′) = lim
n→∞

− 1

n
logP


 ⋂

i=1,2

{I(P̂e′i) ≥ I(P̂ei)}


 , (3.72)

≥ max
i=1,2

lim
n→∞

− 1

n
logP

(
{I(P̂e′i) ≥ I(P̂ei)}

)
, (3.73)

= max
{
Je1,e′1 , Je2,e′2

}
. (3.74)

Now Jei,e′i = Υ(Ti) where Ti := (V,EP \{ei}∪{e′i}). From Prop. 3.3, the error exponent
associated to the dominant error tree, i.e., KP = minT 6=TP Υ(T ) and from (3.74), the
dominant error tree cannot be T ′ and should differ from TP by one and only one edge.

The similar conclusion holds for the two other cases (i) ei ∈ Path(e′i;EP ) for i = 1, 2,
e2 ∈ Path(e′1;EP ) and e1 /∈ Path(e′2;EP ) and (ii) ei ∈ Path(e′i;EP ) for i = 1, 2,

16This is somewhat analogous to the fact that the second-best MWST differs from the MWST by
exactly one edge [45].

17The resulting graph is indeed a tree because {e′i} ∪ Path(e′i;EP ) form a cycle so if any edge is
removed, the resulting structure does not have any cycles and is connected, hence it is a tree. See
Fig. 3.2.
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e1 ∈ Path(e′2;EP ) and e2 /∈ Path(e′1;EP ). In other words, the dominant error tree
differs from the true tree by one edge.

We now use the “worst-exponent-wins principle” [62, Ch. 1], to conclude that the
rate that dominates is the minimum Jr(e′),e′ over all possible e

′ /∈ EP , namely Jr(e∗),e∗
with e∗ defined in (3.24). More precisely,

P(An) = P

( ⋃

e′ /∈EP

{e′ replaces any e ∈ Path(e′;EP ) in T̂ML}
)
, (3.75)

= P

( ⋃

e′ /∈EP

⋃

e∈Path(e′;EP )

{e′ replaces e in T̂ML}
)
, (3.76)

≤
∑

e′ /∈EP

∑

e∈Path(e′;EP )

P({e′ replaces e in T̂ML}), (3.77)

=
∑

e′ /∈EP

∑

e∈Path(e′;EP )

P({I(P̂e′) ≥ I(P̂e)}), (3.78)

.
=
∑

e′ /∈EP

∑

e∈Path(e′;EP )

exp(−nJe,e′), (3.79)

.
= exp

(
−n min

e′ /∈EP

min
e∈Path(e′;EP )

Je,e′

)
, (3.80)

where (3.77) is from the union bound, (3.78) and (3.79) are from the definitions of the
crossover event and rate respectively (as described in Cases 1 and 2 above) and (3.80)
is an application of the “worst-exponent-wins” principle [62, Ch. 1].

We conclude from (3.80) that

P(An)
.
≤ exp(−nJr(e∗),e∗), (3.81)

from the definition of the dominant replacement edge r(e′) and the dominant non-
edge e∗, defined in (3.22) and (3.24) respectively. The lower bound follows triv-
ially from the fact that if e∗ /∈ EP replaces r(e∗), then the error An occurs. Thus,
{e∗ replaces r(e∗)} ⊂ An and

P(An)
.
≥ P({e∗ replaces r(e∗) in T̂ML}) (3.82)
.
= exp(−nJr(e∗),e∗). (3.83)

Hence, (3.81) and (3.83) imply that P(An) .
= exp(−nJr(e∗),e∗), which proves our main

result in (3.23).
The finite-sample result in (3.26) comes from the upper bound in (3.80) and the

following two elementary facts:

1. The exact number of n-types with alphabet Y is given by
(
n+1+|Y|
n+1

)
[50]. In par-

ticular, we have

P(Ce,e′) ≤
(
n+ 1 + |X |4

n+ 1

)
exp(−nJe,e′), (3.84)
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for all n ∈ N, since Ce,e′ only involves the distribution Pe,e′ ∈ P(X 4). Note that
the exponent 4 of |X |4 in (3.84) is an upper bound since if e and e′ share a node
Pe,e′ ∈ P(X 3).

2. The number of error events Ce,e′ is at most (d − 1)2(d − 2)/2 because there are(
d
2

)
− (d−1) = (d−1)(d−2)/2 non-edges and for each non-edge, there are at most

d− 1 edges along its path.

This completes the proof.

� 3.C Proof of Theorem 3.5

Statement (a) ⇔ statement (b) was proven in full after the theorem was stated. Here
we provide the proof that (b) ⇔ (c). Recall that statement (c) says that TP is not a
proper forest. We first begin with a preliminary lemma.

Lemma 3.12. Suppose X,Y, Z are three random variables taking on values on finite
sets X ,Y,Z respectively. Assume that P (x, y, z) > 0 everywhere. Then X −Y −Z and
X − Z − Y are Markov chains if and only if X is jointly independent of (Y, Z).

Proof. (⇒) That x− y − z is a Markov chain implies that

P (z|y, x) = P (z|y), (3.85)

or alternatively

P (x, y, z) = P (x, y)
P (y, z)

P (y)
. (3.86)

Similarly from the fact that x− z − y is a Markov chain, we have

P (x, y, z) = P (x, z)
P (y, z)

P (z)
. (3.87)

Equating (3.86) and (3.87), and use the positivity to cancel P (y, z), we arrive at

P (x|y) = P (x|z). (3.88)

It follows that P (x|y) does not depend on y, so there is some constant C(x) such
that P (x|y) = C(x) for all y ∈ Y. This immediately implies that C(x) = P (x) so
that P (x|y) = P (x). A similar argument gives that P (x|z) = P (x). Furthermore, if
X − Y − Z is a Markov chain, so is Z − Y −X, therefore

P (x|y, z) = P (x|y) = P (x). (3.89)

The above equation says that X is jointly independent of both Y and Z.
(⇐) The reverse implication is clear.
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Proof. We now prove (b) ⇐⇒ (c) using Lemma 3.12 and the assumption that P (x) > 0
for all x ∈ X d.
(⇒) If (b) is true then I(Pe′) < I(Pe) for all e ∈ Path(e′;EP ) and for all e′ /∈ EP .
Assume, to the contrary, that TP is a proper forest, i.e., it contains at least 2 connected
components (each connected component may only have one node), say Gi = (Vi, Ei)
for i = 1, 2. Without loss of generality, let X1 be in component G1 and X2, X3 belong
to component G2. Then since V1 ∩ V2 = ∅ and V1 ∪ V2 = V , we have that X1 jointly
independent of X2 and X3. By Lemma 3.12, we have the following Markov chains
X1−X2−X3 and X1−X3−X2. This implies from the Data Processing Inequality [47,
Theorem 2.8.1] that I(P1,2) ≥ I(P1,3) and at the same time I(P1,2) ≤ I(P1,3) which
means that I(P1,2) = I(P1,3). This contradicts (b) since by taking e′ = (1, 2), the
mutual informations along the path Path(e′;EP ) are no longer distinct.
(⇐) Now assume that (c) is true, i.e., TP is not a proper forest. Suppose, to the
contrary, (b) is not true, i.e., there exists a e′ /∈ EP such that I(Pe′) = I(Pr(e′)),
where r(e′) is the replacement edge associated with the non-edge e′. Without loss of
generality, let e′ = (1, 2) and r(e′) = (3, 4), then since TP is not a proper forest, we have
the following Markov chain X1 −X3 −X4 −X2. Now note that I(P1,2) = I(P3,4). In
fact, because there is no loss of mutual information I(P1,4) = I(P3,4) and hence by the
Data Processing Inequality we also have X3 − X1 − X4 − X2. By using Lemma 3.12,
we have X4 jointly independent of X1 and X3, hence we have a proper forest, which is
a contradiction.

� 3.D Proof of Theorem 3.7

Proof. The proof proceeds in several steps. See Figs. 3.5 and 3.6 for intuition behind
this proof.

Step 1: Let Q be such that

Q(xi, xj , xk, xl) = Pe,e′(xi, xj , xk, xl) + εi,j,k,l. (3.90)

Thus, the εi,j,k,l’s are the deviations of Q from Pe,e′ . To ensure that Q is a valid
distribution we require

∑
εi,j,k,l = 0. The objective in (3.39) can now be alternatively

expressed as

1

2
εTKe,e′ε =

1

2

∑

xi,xj ,xk,xl

ε2i,j,k,l
Pe,e′(xi, xj , xk, xl)

, (3.91)

where ε ∈ R|X |4 is the vectorized version of the deviations εi,j,k,l andKe,e′ is a |X |4×|X |4
diagonal matrix containing the entries 1/Pe,e′(xi, xj , xk, xl) along its diagonal.

Step 2: We now perform a first-order Taylor expansion of I(Qe) in the neighborhood
of I(Pe).

I(Qe) = I(Pe) + εT∇εI(Qe)
∣∣∣
ε=0

+ o(‖ε‖), (3.92)

= I(Pe) + εT se + o(‖ε‖), (3.93)
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where se is the length |X |4-vector that contains the information density values of edge
e. Note that because of the assumption that P is not a proper forest, Pi,j 6= Pi Pj for
all (i, j), hence the linear term does not vanish.18 The constraints can now be rewritten
as

εT1 = 0, εT (se′ − se) = I(Pe)− I(Pe′). (3.94)

or in matrix notation as:
[
sTe′ − sTe

1T

]
ε =

[
I(Pe)− I(Pe′)

0

]
, (3.95)

where 1 is the length-|X |4 vector consisting of all ones. For convenience, we define Le,e′

to be the matrix in (3.95), i.e.,

Le,e′ :=

[
sTe′ − sTe

1T

]
∈ R2×|X |4 . (3.96)

Step 3: The optimization problem now reduces to minimizing (3.91) subject to the
constraints in (3.95). This is a standard least-squares problem. By using the Projection
Theorem in Hilbert spaces, we get the solution

ε∗ = K−1
e,e′L

T
e,e′(Le,e′K

−1
e,e′L

T
e,e′)

−1

[
I(Pe)− I(Pe′)

0

]
. (3.97)

The inverse of Le,e′K
−1
e,e′L

T
e,e′ exists because we assumed TP is not a proper forest and

hence Pi,j 6= PiPj for all (i, j) ∈
(
V
2

)
. This is a sufficient condition for the matrix Le,e′

to have full row rank and thus, Le,e′K
−1
e,e′L

T
e,e′ is invertible. Finally, we substitute ε∗ in

(3.97) into (3.91) to obtain

J̃e,e′ =
1

2

[
(Le,e′K

−1
e,e′L

T
e,e′)

−1
]
11
(I(Pe)− I(Pe′))2, (3.98)

where [M]11 is the (1,1) element of the matrix M. Define ψ to be the weighting function
given by

ψ(Pe,e′) :=
[
(Le,e′K

−1
e,e′L

T
e,e′)

−1
]
11
. (3.99)

It now suffices to show that ψ(Pe,e′) is indeed the inverse variance of se − se′ . We now
simplify the expression for the weighting function ψ(Pe,e′) recalling how Le,e′ and Ke,e′

are defined. The product of the matrices in (3.99) is

Le,e′K
−1
e,e′L

T
e,e′ =

[
E[(se′ − se)2] E[se′ − se]
E[se′ − se] 1

]
, (3.100)

18Indeed if Pe were a product distribution, the linear term in (3.93) vanishes and I(Qe) is approxi-
mately a quadratic in ε (as shown in [26]).



Sec. 3.D. Proof of Theorem 3.7 95

where all expectations are with respect to the distribution Pe,e′ . Note that the determi-
nant of (3.100) is E[(se′−se)2]−E[(se′−se)]2 = Var(se′−se). Hence, the (1,1) element
of the inverse of (3.100) is simply

ψ(Pe,e′) = Var(se′ − se)−1. (3.101)

Now, if e and e′ share a node, this proof proceeds in exactly the same way. In particular,
the crucial step (3.93) will also remain the same since the Taylor expansion does not
change. This concludes the first part of the proof.

Step 4: We now prove the continuity statement. The idea is that all the approxi-
mations become increasingly exact as ε (in the definition of the ε-very noisy condition)
tends to zero. More concretely, for every δ > 0, there exists a ε1 > 0 such that if Pe,e′

satisfies the ε1-very noisy condition, then

|I(Pe)− I(Pe′)| < δ (3.102)

since mutual information is continuous. For every δ > 0, there exists a ε2 > 0 such that
if Pe,e′ satisfies the ε2-very noisy condition, then

‖Q∗
e,e′ − Pe,e′‖∞ < δ, (3.103)

since if Pe,e′ is ε2-very noisy it is close to the constraint set {Q : I(Qe′) ≥ I(Qe)} and
hence close to the optimal solution Q∗

e,e′ . For every δ > 0, there exists a ε3 > 0 such
that if Pe,e′ satisfies the ε3-very noisy condition, then

∣∣∣∣D(Q∗
e,e′ ||Pe,e′)−

1

2
‖Q∗

e,e′ − Pe,e′‖2Pe,e′

∣∣∣∣ < δ, (3.104)

which follows from the approximation of the divergence and the continuity statement
in (3.103). For every δ > 0, there exists a ε4 > 0 such that if Pe,e′ satisfies the ε4-very
noisy condition, then ∣∣I(Pe)− sTe (Q

∗
e,e′ − Pe,e′)

∣∣ < δ, (3.105)

which follows from retaining only the first term in the Taylor expansion of the mutual
information in (3.93). Finally, for every δ > 0, there exists a ε5 > 0 such that if Pe,e′

satisfies the ε5-very noisy condition, then

|J̃e,e′ − Je,e′ | < δ, (3.106)

which follows from continuity of the objective in the constraints (3.105). Now choose
ε = mini=1,...,5 εi to conclude that for every δ > 0, there exists a ε > 0 such that if Pe,e′

satisfies the ε-very noisy condition, then (3.106) holds. This completes the proof.
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� 3.E Proof of Proposition 3.9

Proof. The following facts about P in Table 3.1 can be readily verified:

1. P is positive everywhere, i.e., P (x) > 0 for all x ∈ X 3.

2. P is Markov on the complete graph with d = 3 nodes, hence P is not a tree
distribution.

3. The mutual information between x1 and x2 as a function of κ is given by

I(P1,2) = log 2 + (1− 2κ) log(1− 2κ) + 2κ log(2κ).

Thus I(P1,2)→ log 2 = 0.693 as κ→ 0.

4. For any (ξ, κ) ∈ (0, 1/3) × (0, 1/2), I(P2,3) = I(P1,3) and this pair of mutual
information quantities can be made arbitrarily small as κ→ 0.

Thus, for sufficiently small κ > 0, I(P1,2) > I(P2,3) = I(P1,3). We conclude that the
Chow-Liu MWST algorithm will first pick the edge (1, 2) and then arbitrarily choose
between the two remaining edges: (2, 3) or (1, 3). Thus, optimal tree structure is not
unique.

� 3.F Proof of Theorem 3.11

We first state two preliminary lemmas and prove the first one. Theorem 3.11 will then
be an immediate consequence of these lemmas.

Lemma 3.13. Let X and Y be two metric spaces and let K ⊂ X be a compact set in X.
Let f : X × Y → R be a continuous real-valued function. Then the function g : Y → R,
defined as

g(y) := min
x∈K

f(x, y), ∀ y ∈ Y, (3.107)

is continuous on Y .

Proof. Set the minimizer in (3.107) to be

x(y) := argmin
x∈K

f(x, y). (3.108)

The optimizer x(y) ∈ K exists since f(x, y) is continuous on K for each y ∈ Y and K is
compact. This follows from Weierstrauss’ extreme value theorem [166, Theorem 4.16].
We want to show that for limy′→y g(y

′) = g(y). In other words, we need to prove that

lim
y′→y

f(x(y′), y′)→ f(x(y), y). (3.109)

Consider the difference,

|f(x(y′), x′)−f(x(y), y)| ≤ |f(x(y), y)− f(x(y), y′)|
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+ |f(x(y), y′)− f(x(y′), y′)|. (3.110)

The first term in (3.110) tends to zero as y′ → y by the continuity of f so it remains to
show that the second term, By′ := |f(x(y), y′)− f(x(y′), y′)| → 0, as y′ → y. Now, we
can remove the absolute value since by the optimality of x(y′), f(x(y), y′) ≥ f(x(y′), y′).
Hence,

By′ = f(x(y), y′)− f(x(y′), y′). (3.111)

Suppose, to the contrary, there exists a sequence {y′n}∞n=1 ⊂ Y with y′n → y such that

f(x(y), y′n)− f(x(y′n), y′n) > ε > 0, ∀n ∈ N. (3.112)

By the compactness of K, for the sequence {x(y′n)}∞n=1 ⊂ K, there exists a subsequence
{x(y′nk

)}∞k=1 ⊂ K whose limit is x∗ = limk→∞ x(y′nk
) and x∗ ∈ K [166, Theorem 3.6(a)].

By the continuity of f

lim
k→∞

f(x(y), y′nk
) = f(x(y), y), (3.113)

lim
k→∞

f(x(y′nk
), y′nk

) = f(x∗, y), (3.114)

since every subsequence of a convergent sequence {y′n} converges to the same limit y.
Now (3.112) can be written as

f(x(y), y′nk
)− f(x(y′nk

), y′nk
) > ε > 0, ∀ k ∈ N. (3.115)

We now take the limit as k → ∞ of (3.115). Next, we use (3.113) and (3.114) to
conclude that

f(x(y), y)− f(x∗, y) > ε⇒ f(x(y), y) > f(x∗, y) + ε, (3.116)

which contradicts the optimality of x(y) in (3.108). Thus, By′ → 0 as y′ → y and
limy′→y g(y

′) = g(y), which demonstrates the continuity of g on Y .

Lemma 3.14 (The continuous mapping theorem [134]). Let (Ω,B(Ω), ν) be a probability
space. Let the sequence of random variables {Xn}∞n=1 on Ω converge ν-almost surely to

X, i.e., Xn
a.s.−→ X. Let g : Ω → R be a continuous function. Then g(Xn) converges

ν-almost surely to g(X), i.e., g(Xn)
a.s.−→ g(X).

Proof. Now, using Lemmas 3.13 and 3.14, we complete the proof of Theorem 3.11.
First we note from (3.58) that Ĵe,e′ = Ĵe,e′(P̂e,e′), i.e., Ĵe,e′ is a function of the empirical
distribution on node pairs e and e′. Next, we note that D(Q||Pe,e′) is a continuous func-

tion in (Q,Pe,e′). If P̂e,e′ is fixed, the expression (3.58) is a minimization of D(Q||P̂e,e′),
over the compact set19 Λ = {Q ∈ P(X 4) : I(Qe′) = I(Qe)}, hence Lemma 3.13 applies
(with the identifications f ≡ D and Λ ≡ K) which implies that Ĵe,e′ is continuous

in the empirical distribution P̂e,e′ . Since the empirical distribution P̂e,e′ converges al-

most surely to Pe,e′ [47, Sec. 11.2], Ĵe,e′(P̂e,e′) also converges almost surely to Je,e′ , by
Lemma 3.14.

19Compactness of Λ was proven in Theorem 3.1 cf. Eq. (3.71).
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Chapter 4

Large Deviations for Learning

Gaussian Tree Models

� 4.1 Introduction

THIS chapter focuses on the error exponent analysis for learning tree-structured
Gaussian graphical models given i.i.d. samples. Many of the results from the

previous chapter on learning discrete tree distributions carry over, but the compact
parameterization of multivariate zero-mean Gaussians (in terms of correlation coeffi-
cients) allows us to perform further analysis. In particular, the use of the Markov
property for Gaussians in Lemma 2.26 allows us to identify particular classes of tree-
structured Gaussian graphical models that have large error exponents (and hence can
be interpreted as easier to learn) and conversely, classes of trees that have small error
exponents (high sample complexity).

We answer three fundamental questions with regard to learning Gaussian tree-
structured graphical models in this chapter. (i) Can we characterize the error exponent
for structure learning by the ML algorithm for tree-structured Gaussian graphical mod-
els? This is a-priori not immediately obvious given the results in Chapter 3 because the
analysis of continuous distributions (densities with respect to the Lebesgue measure)
typically present more technical difficulties as compared to their discrete counterparts.
(ii) How do the structure and parameters of the model influence the error exponent? (iii)
What are extremal tree distributions for learning, i.e., the distributions that maximize
and minimize the error exponents?

We show that the error exponent can be derived in the same way as we did in
Chapter 3 for discrete tree models albeit via slightly more intricate mathematical ar-
guments. Furthermore, we show that due to correlation decay, pairs of nodes which
are far apart, in terms of their graph distance, are unlikely to be mistaken as edges by
the ML estimator. This is not only an intuitive result, but also results in a significant
reduction in the computational complexity to find the exponent – from O(dd−2) for ex-
haustive search and O(d3) for discrete tree models (in Chapter 3) to O(d) for Gaussians
(Proposition 4.6).

We then analyze extremal tree structures for learning, given a fixed set of correlation
coefficients on the edges of the tree. Our main result is the following: The star graph

99
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Figure 4.1. Error probability associated with the extremal structures. When n is sufficiently large,
the chain minimizes the error probability and the star maximizes the error probability.

minimizes the error exponent, and if the absolute value of all the correlation coefficients
of the variables along the edges is less than 0.63, then the Markov chain also maximizes
the error exponent (Theorem 4.7). Therefore, the extremal tree structures in terms
of the diameter are also the extremal trees for learning Gaussian tree distributions.
This agrees with the intuition that the amount of correlation decay increases with the
tree diameter, and that correlation decay helps the ML estimator to better distinguish
the edges from the non-neighbor pairs. See Fig. 4.1 for an illustration of this result
in terms of the asymptotic error probabilities for structure learning. Lastly, we ana-
lyze how changing the size of the tree influences the magnitude of the error exponent
(Propositions 4.10 and 4.11).

This chapter is organized as follows: In Section 4.2, we state some additional nota-
tion that will be used in this chapter and also mention how to modify the Chow-Liu
algorithm in Section 2.5.2 to learn Gaussian tree models. Sections 4.3 and 4.4 contain
results on error exponents and Euclidean approximations that are analogous to those
derived in Chapter 3. We mention how and why some proofs differ from their discrete
counterparts. Results specific to Gaussians are presented from Section 4.5 onwards. We
demonstrate in Section 4.5 how to reduce the computational complexity for calculat-
ing the exponent. In Section 4.6, we identify extremal structures that maximize and
minimize the error exponent. Numerical results are presented in Section 4.7 and we
conclude the discussion in Section 4.8. The proofs of all the theorems are deferred to
the appendices at the end of the chapter.

� 4.2 Problem Statement and Learning of Gaussian Tree Models

Let X = (X1, . . . , Xd) be a jointly Gaussian random vector distribution according
to p(x), a tree-structured Gaussian graphical model (see Section 2.4.4). The pdf or
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distribution1 p(x) = N (x;0,Σ) is Markov on a tree Tp = (V,Ep). The covariance
matrix is strictly positive definite, i.e., Σ � 0. We would like to analyze the learning of
the structure of p (i.e., Ep) from a set of i.i.d. samples xn = (x1, . . . ,xn) drawn from p.
Each sample xk := (xk,1, . . . , xk,d)

T ∈ Rd. We denote the set of pdfs on Rd by P(Rd),
the set of Gaussian pdfs on Rd by PN (Rd) and the set of Gaussian graphical models
which factorize according to some tree in T d as PN (Rd, T d).

Here, we also mention how the Chow-Liu ML learning algorithm [42] can be adapted
for estimating the structure of a Gaussian tree model p. The algorithm proceeds in very
much the same way as described in Section 2.5.2 with the exception that the empirical
distribution in (2.108) is now replaced by the estimate p̂(x) := N (x;0, Σ̂) where

Σ̂ :=
1

n

n∑

k=1

xkx
T
k (4.1)

is the empirical covariance matrix. One can then show along the lines of Section 2.5.2
that the structure learning problem reduces to the MWST problem:

EML(x
n) = argmax

Eq :q∈PN (Rd,T d)

∑

e∈Eq

I(p̂e), (4.2)

where the edge weights are the empirical mutual information quantities given by

I(p̂e) :=
1

2
log

(
1

1− ρ̂2e

)
, (4.3)

and where the empirical correlation coefficient between Xi and Xj given xn is given by

ρ̂e = ρ̂i,j :=
Σ̂(i, j)√

Σ̂(i, i)Σ̂(j, j)
. (4.4)

Note that in (4.2), the estimated edge set EML(x
n) is a random quantity that depends

on n and, specifically, on the samples in xn and we make this dependence explicit.
We assume that Tp is a (connected) tree because with probability 1, the resulting
optimization problem in (4.2) produces a spanning tree as all the mutual information
quantities in (4.3) will be non-zero. If Tp were allowed to be a proper forest, the
estimation of Ep would be inconsistent because the learned edge set will be different
from the true edge set.

We now define the analysis problem formally. The definitions here are similar to
those for discrete models in Section 3.2 but are included for convenience of the reader.
We define the (error) event of interest

An := {EML 6= Ep}, (4.5)

1Our results also extend to the scenario where the mean of the Gaussian is unknown and has to be
estimated from the samples.
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where EML is the edge set of the Chow-Liu estimator in (4.2). In this chapter, we are
interested to compute and subsequently study the error exponent Kp, or the rate at
which the error probability of the event An, with respect to the true model p, decays
with the number of samples n. Similar to KP for discrete models in (3.4), Kp for
Gaussian tree models is defined as

Kp := lim
n→∞

− 1

n
logPn(An), (4.6)

assuming the limit exists. We prove that the limit in (4.6) exists in the sequel. The value
of Kp for different Gaussian tree-structured graphical models p provides an indication
of the relative ease of estimating such models. Note that both the parameters and
structure of the model influence the magnitude of Kp.

� 4.3 Deriving the Error Exponent

This section is devoted to the derivation of Kp, defined in (4.6). The strategy is similar
to that for discrete models in Sections 3.3 and 3.4 so we deliberately keep the exposition
terse but highlight salient differences.

� 4.3.1 Crossover Rates for Mutual Information Quantities

To compute Kp, we again first consider two pairs of nodes e, e′ ∈
(
V
2

)
such that I(pe) >

I(pe′). We now derive an LDP for the crossover event of empirical mutual information
quantities Ce,e′ defined in (3.6). As mentioned in Section 3.3, this is an important event
for the computation of Kp because if two pairs of nodes (or node pairs) e and e′ happen
to crossover, this may lead to the event An occurring. Thus, for the Gaussian case we
also define Je,e′ , the crossover rate of empirical mutual information quantities, as

Je,e′ := lim
n→∞

− 1

n
logPn(Ce,e′). (4.7)

Note that in order to obtain a convenient characterization of Je,e′ , one cannot simply
apply Sanov’s theorem directly. This is because the I-projection in (2.51) has to be
over all probability measures supported on R3 or R4 (an intractably large set). Thus,
calculating Je,e′ would be intractable. We also remark that, similar to discrete models,
the following analysis does not depend on whether e and e′ share a node. As usual, if
e and e′ do share a node, we say they are an adjacent pair of nodes. Otherwise, we
say e and e′ are disjoint. We also reserve the symbol m to denote the total number of
distinct nodes in e and e′. Hence, m = 3 if e and e′ are adjacent and m = 4 if e and e′

are disjoint.

Theorem 4.1. (LDP for Crossover of Empirical MI) For two node pairs e, e′ ∈
(
V
2

)

with pdf pe,e′ ∈ PN (Rm) (for m = 3 or m = 4), the crossover rate for empirical mutual
information quantities is

Je,e′ = inf
q∈PN (Rm)

{
D(q || pe,e′) : I(qe) = I(qe′)

}
. (4.8)
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The crossover rate Je,e′ > 0 iff the correlation coefficients of pe,e′ satisfy |ρe| 6= |ρe′ |.
Proof. (Sketch) This is an application of Sanov’s Theorem on arbitrary alphabets (see
[64, Ch. 3] or [59, Ch. 6]), the contraction principle in large deviations theory, together
with the maximum entropy principle (see Section 2.1.3). See Appendix 4.A.

Theorem 4.1 says that in order to compute the crossover rate Je,e′ , we can restrict
our attention to a problem that involves only an optimization over Gaussian measures,
which is a finite-dimensional optimization problem. Note that the constraint in (4.8)
can be written in terms of the correlation coefficients as ρ2e = ρ2e′ , where ρe is the
correlation coefficient corresponding to the joint pdf qe.

� 4.3.2 Error Exponent for Structure Learning

From the discussion in Section 3.4, we see that the set of crossover rates {Je,e′} can be
related to the error exponent Kp via Theorem 3.4, i.e.,

Kp = min
e′ /∈Ep

min
e∈Path(e′;Ep)

Je,e′ , (4.9)

In addition, from the result in (4.9), we can derive conditions to ensure that Kp > 0
and hence for the error probability to decay exponentially. This result differs subtly
from the corresponding one in Corollary 3.5.

Corollary 4.2. (Condition for Positive Error Exponent) The error probability Pn(An)
decays exponentially, i.e., Kp > 0 iff Σ has full rank and Tp is not a proper forest (as
was assumed in Section 4.2).

Proof. See Appendix 4.B for the proof.

Note that in addition to the requirement that Tp is not a proper forest, we need the
covariance matrix Σ to have full rank for the error probability to decay exponentially.

The above result provides necessary and sufficient conditions for the error exponent
Kp to be positive, which implies exponential decay of the error probability in n, the
number of samples. Our goal now is to analyze the influence of structure and parame-
ters of the Gaussian pdf p on the magnitude of the error exponent Kp. Such an exercise
requires a closed-form expression for Kp, which in turn, requires a closed-form expres-
sion for the crossover rate Je,e′ . However, the crossover rate, despite having an exact
expression in (4.8), can only be found numerically, since the optimization is non-convex
(due to the highly nonlinear equality constraint I(qe) = I(qe′)). Hence, similar to Sec-
tion 3.5, we provide an approximation to the crossover rate in the next section which
is tight in the very noisy learning regime.

� 4.4 Euclidean Approximations

In this section, we apply the same family of Euclidean approximation techniques to
simplify the crossover rate in (4.8). We will observe that such an approximation allows
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us to compare the relative ease of learning various tree structures in the subsequent
sections. As in Section 3.5, we impose suitable “noisy” conditions on pe,e′ (the joint pdf
on node pairs e and e′) so as to enable us to relax the non-convex optimization problem
in (4.8) to a convex program.

Definition 4.1. (ε-Very Noisy Condition) The joint pdf pe,e′ on node pairs e and e′

is said to satisfy the ε-very noisy condition if the correlation coefficients on e and e′

satisfy ||ρe| − |ρe′ || < ε.

By continuity of the mutual information in the correlation coefficient (see the func-
tion form of the mutual information in (4.3)), given any fixed ε and ρe, there exists
a δ = δ(ε, ρe) > 0 such that |I(pe) − I(pe′)| < δ, which means that if ε is small, it is
difficult to distinguish which node pair e or e′ has the larger mutual information given
the samples xn. Thus, if ε is small, we are in the very noisy learning regime, where
learning is difficult.

To perform further analysis, we require an approximation of the KL-divergence
between two Gaussians. For this purpose, we recall from Verdu [206, Sec. IV-E] that
we can bound the KL-divergence between two zero-mean Gaussians with covariance
matrices Σe,e′ +∆e,e′ and Σe,e′ as

D(N (0,Σe,e′ +∆e,e′) || N (0,Σe,e′)) ≤
‖Σ−1

e,e′∆e,e′‖2F
4

, (4.10)

where ‖M‖F is the Frobenius norm of the matrix M.2 Furthermore, the inequality
in (4.10) is tight when the perturbation matrix∆e,e′ is small. More precisely, as the ratio

of the singular values
σmax(∆e,e′ )

σmin(Σe,e′ )
tends to zero, the inequality in (4.10) becomes tight.

To convexify the problem, we also perform a linearization of the nonlinear constraint
set in (4.8) around the unperturbed covariance matrix Σe,e′ . This involves taking the
derivative of the mutual information with respect to the covariance matrix in the Taylor
expansion. We denote this (matrix) derivative as∇ΣeI(Σe) where I(Σe) = I(N (0,Σe))
is the mutual information between the two random variables of the Gaussian joint pdf
pe = N (0,Σe). We now define the linearized constraint set of (4.8) as the affine subspace

L∆(pe,e′) := {∆e,e′ ∈ Rm×m : I(Σe) + 〈∇ΣeI(Σe),∆e〉
= I(Σe′) + 〈∇Σe′

I(Σe′),∆e′〉}, (4.11)

where ∆e ∈ R2×2 is the sub-matrix of ∆e,e′ ∈ Rm×m (m = 3 or 4) that corresponds
to the covariance matrix of the node pair e. We also define the approximate crossover
rate of e and e′ as the minimization of the quadratic in (4.10) over the affine subspace
L∆(pe,e′) defined in (4.11):

J̃e,e′ := min
∆e,e′∈L∆(pe,e′ )

1

4
‖Σ−1

e,e′∆e,e′‖2F . (4.12)

2Eq. (4.10) is analogous to the approximations for the discrete probability measures in (2.24) and
(2.25). In contrast though, (4.10) is a bound and not an approximation.



Sec. 4.5. Simplification of the Error Exponent 105

w
w w

w
@
@
@
@

@ �
�
�
�

�
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p

p p p p p p p p p p p
p pX1

X2 X3

X4

ρ1,2

ρ2,3

ρ3,4

(1,4) not dominant

Either (1,3) or (2,4)
dominates

Figure 4.2. Illustration of correlation decay in a Markov chain. By Lemma 4.4(b), only the node

pairs (1, 3) and (2, 4) need to be considered for computing the error exponent K̃p. By correlation decay,
the node pair (1, 4) will not be mistaken as a true edge by the estimator because its distance, which is
equal to 3, is longer than either (1, 3) or (2, 4), whose distances are equal to 2.

Eqn. (4.12) is a convexified version of the original optimization in (4.8).

Theorem 4.3. (Euclidean Approx. of Crossover Rate) The approximate crossover rate
for the empirical mutual information quantities, defined in (4.12), is given by

J̃e,e′ =
(E[se′ − se])2
2Var(se′ − se)

=
(I(pe′)− I(pe))2
2Var(se′ − se)

. (4.13)

In addition, the approximate error exponent corresponding to the set of crossover rates
{J̃e,e′} is given by

K̃p = min
e′∈Ep

min
e∈Path(e′;Ep)

J̃e,e′ . (4.14)

Proof. The proof involves solving the least squares problem in (4.12). See Appendix 4.C
for the details of the calculation.

The interpretation of (4.13) as a signal-to-noise ratio is the same as the correspond-
ing result in Theorem 3.7. In the sequel, we limit our analysis to the very noisy regime
where (4.13) and (4.14) apply.

� 4.5 Simplification of the Error Exponent

In this section, we depart from drawing analogies with the results in Chapter 3 and
develop novel results specific to Gaussian tree models. We exploit the properties of the
approximate crossover rate in (4.13) to significantly reduce the complexity in finding
the error exponent K̃p to O(d). As a motivating example, consider the Markov chain
in Fig. 4.2. From our analysis to this point, it appears that, when computing the
approximate error exponent K̃p in (4.14), we have to consider all possible replacements
between the non-edges (1, 4), (1, 3) and (2, 4) and the true edges along the unique paths
connecting these non-edges. For example, (1, 3) might be mistaken as a true edge,
replacing either (1, 2) or (2, 3).

We prove that, in fact, to compute K̃p we can ignore the possibility that longest non-
edge (1, 4) is mistaken as a true edge, thus reducing the number of computations for the
approximate crossover rate J̃e,e′ . The key to this result is the exploitation of correlation
decay, i.e., the decrease in the absolute value of the correlation coefficient between two
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Figure 4.3. Illustration of the properties of J̃(ρe, ρe′) in Lemma 4.4. J̃(ρe, ρe′) is decreasing in |ρe′ |

for fixed ρe (top left) and J̃(ρe1 , ρe1ρe2) is increasing in |ρe1 | for fixed ρe2 if |ρe1 | < ρcrit (top right).

Similarly, J̃(ρe, ρe′) is increasing in |ρe| for fixed ρe′ if |ρe| < ρcrit (bottom).

nodes as the graph distance (the number of edges along the path between two nodes)
between them increases. This follows from the Markov property (see Lemma 2.26):

ρe′ =
∏

e∈Path(e′;Ep)

ρe, ∀ e′ /∈ Ep. (4.15)

For example, in Fig. 4.2, |ρ1,4| ≤ min{|ρ1,3|, |ρ2,4|} and because of this, the following
lemma implies that (1, 4) is less likely to be mistaken as a true edge than (1, 3) or (2, 4).

It is easy to verify that the crossover rate J̃e,e′ in (4.13) depends only on the corre-
lation coefficients ρe and ρe′ and not the variances σ2i := E[X2

i ]. Thus, without loss of
generality, we assume that all random variables have unit variance (which is still un-
known to the learner) and to make the dependence clear, we now write J̃e,e′ = J̃(ρe, ρe′).
Finally define ρcrit := 0.63055.

Lemma 4.4. (Monotonicity of J̃(ρe, ρe′)) J̃(ρe, ρe′), derived in (4.13), has the following
properties:
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(a) J̃(ρe, ρe′) is an even function of both ρe and ρe′ .

(b) J̃(ρe, ρe′) is monotonically decreasing in |ρe′ | for fixed ρe ∈ (−1, 1).

(c) Assuming that |ρe1 | < ρcrit, then J̃(ρe1 , ρe1ρe2) is monotonically increasing in |ρe1 |
for fixed ρe2.

(d) Assuming that |ρe| < ρcrit, then J̃(ρe, ρe′) is monotonically increasing in |ρe| for
fixed ρe′ .

See Fig. 4.3 for an illustration of the properties of J̃(ρe, ρe′).

Proof. (Sketch) Statement (a) follows from (4.13). We prove (b) by showing that
∂J̃(ρe, ρe′)/∂|ρe′ | ≤ 0 for all |ρe′ | ≤ |ρe|. Statements (c) and (d) follow similarly. See
Appendix 4.D for the details.

Our intuition about correlation decay is substantiated by Lemma 4.4(b), which
implies that for the example in Fig. 4.2, J̃(ρ2,3, ρ1,3) ≤ J̃(ρ2,3, ρ1,4), since |ρ1,4| ≤
|ρ1,3| due to Markov property on the chain (4.15).3 Therefore, J̃(ρ2,3, ρ1,4) can be

ignored in the minimization to find K̃p in (4.14). Interestingly while Lemma 4.4(b) is
a statement about correlation decay, Lemma 4.4(c) states that the absolute strengths
of the correlation coefficients also influence the magnitude of the crossover rate.

From Lemma 4.4(b) (and the above motivating example in Fig. 4.2), finding the
approximate error exponent K̃p now reduces to finding the minimum crossover rate
only over triangles ((1, 2, 3) and (2, 3, 4)) in the tree as shown in Fig. 4.2, i.e., we only
need to consider J̃(ρe, ρe′) for adjacent edges.

Corollary 4.5 (Computation of K̃p). Under the very noisy learning regime, the ap-

proximate error exponent K̃p is

K̃p = min
ei,ej∈Ep,ei∼ej

W (ρei , ρej ), (4.16)

where ei ∼ ej means that the edges ei and ej are adjacent and the weights W (ρe1 , ρe2)
are defined as

W (ρe1 , ρe2) := min
{
J̃(ρe1 , ρe1ρe2), J̃(ρe2 , ρe1ρe2)

}
. (4.17)

If the computations in (4.16) are carried out independently, the complexity is O(d ·
degmax), where degmax is the maximum degree of the nodes in the tree graph. Hence,
in the worst case, the complexity is O(d2), instead of O(d3) if (4.14) is used. We can,
in fact, reduce the number of computations to O(d).

3Lemma 4.4(b) can be regarded as a “data-processing inequality” for the approximate crossover rate

J̃(ρe, ρe′).



108 CHAPTER 4. LARGE DEVIATIONS FOR LEARNING GAUSSIAN TREE MODELS

Proposition 4.6. (Complexity in computing K̃p) The approximate error exponent K̃p,
derived in (4.14), can be computed in linear time (d− 1 operations) as

K̃p = min
e∈Ep

J̃(ρe, ρeρ
∗
e), (4.18)

where the maximum correlation coefficient on the edges adjacent to e ∈ Ep is defined as

ρ∗e := max{|ρẽ| : ẽ ∈ Ep, ẽ ∼ e}. (4.19)

Proof. By Lemma 4.4(b) and the definition of ρ∗e, we obtain the smallest crossover rate
associated to edge e. We obtain the approximate error exponent K̃p by minimizing over
all edges e ∈ Ep in (4.18).

Recall that diam(Tp) is the diameter of Tp. The computation of Kp is reduced
significantly from O(diam(Tp)d

2) in (3.23) and (4.9) to O(d). Thus, there is a further
reduction in the complexity to estimate the error exponent Kp as compared to exhaus-
tive search which requires O(dd−2) computations. This simplification only holds for
Gaussians under the very noisy regime.

� 4.6 Extremal Structures for Learning

In this section, we study the influence of graph structure on the approximate error
exponent K̃p using the concept of correlation decay and the properties of the crossover

rate J̃e,e′ in Lemma 4.4. We have already discussed the connection between the error
exponent and correlation decay. We also proved that non-neighbor node pairs which
have shorter distances are more likely to be mistaken as edges by the ML estimator.
Hence, we expect that a tree Tp which contains non-edges with shorter distances to be

“harder” to learn (i.e., has a smaller error exponent K̃p) as compared to a tree which
contains non-edges with longer distances. In subsequent subsections, we formalize this
intuition in terms of the diameter of the tree diam(Tp), and show that the extremal
trees, in terms of their diameter, are also extremal trees for learning. We also analyze
the effect of changing the size of the tree on the error exponent.

From the Markov property in (4.15), we see that for a Gaussian tree distribution,
the set of correlation coefficients fixed on the edges of the tree, along with the structure
Tp, are sufficient statistics and they completely characterize p. Note that this param-
eterization neatly decouples the structure from the correlations. We use this fact to
study the influence of changing the structure Tp while keeping the set of correlations
on the edges fixed.4 Before doing so, we state the extremal structures of trees in terms
of their diameter.

4Although the set of correlation coefficients on the edges is fixed, the elements in this set can be
arranged in different ways on the edges of the tree. We formalize this concept in (4.22).
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Definition 4.2. (Extremal Trees in terms of Diameter) Assume that d > 3. Define the
extremal trees with d nodes in terms of the tree diameter diam : T d → {2, . . . , d−1} as

Tmax(d) := argmax
T∈T d

diam(T ), (4.20)

Tmin(d) := argmin
T∈T d

diam(T ). (4.21)

Then it is clear that the two extremal structures, the chain and the star, i.e.,
Tmax(d) = Tchain(d), and Tmin(d) = Tstar(d).

� 4.6.1 Formulation: Extremal Structures for Learning

We now formulate the problem of finding the best and worst tree structures for learning
and also the distributions associated with them. At a high level, our strategy involves
two distinct steps. Firstly and primarily, we use the concept of line graphs to find the
structure of the optimal distributions in Section 4.6.3. It turns out that the optimal
structures that maximize and minimize the exponent are the Markov chain (under
some conditions on the correlations) and the star respectively and these are also the
extremal structures in terms of the diameter. Secondly, we optimize over the positions
(or placement) of the correlation coefficients on the edges of the optimal structures.

Let ρ := (ρ1, ρ2, . . . , ρd−1) be a fixed vector of feasible5 correlation coefficients, i.e.,
ρi ∈ (−1, 1)\{0} for all i. For a tree, it follows from (4.15) that if ρi’s are the correlation
coefficients on the edges, then |ρi| < 1 is a necessary and sufficient condition to ensure
that Σ � 0. Define Πd−1 to be the group of permutations of order d−1, hence elements
in Πd−1 are permutations of a given ordered set with cardinality d−1. Also denote the
set of tree-structured, d-variate Gaussians which have unit variances at all nodes and ρ

as the correlation coefficients on the edges in some order as PN (Rd, T d;ρ). Formally,

PN (Rd, T d;ρ) :=
{
p(x) = N (x;0,Σ) ∈ PN (Rd, T d) :

Σ(i, i) = 1, ∀ i ∈ V, ∃πp ∈ Πd−1 : σEp = πp(ρ)
}
, (4.22)

where σEp := [Σ(i, j) : (i, j) ∈ Ep] is the length-(d− 1) vector consisting of the covari-
ance elements6 on the edges (arranged in lexicographic order) and πp(ρ) is the permu-
tation of ρ according to πp. The tuple (Tp,πp,ρ) uniquely parameterizes a Gaussian
tree distribution with unit variances. Note that we can regard the permutation πp as a
nuisance parameter for solving the optimization for the best structure given ρ. Indeed,
it can happen that there are different πp’s such that the error exponent K̃p is the same.
For instance, in a star graph, all permutations πp result in the same exponent. Despite
this, we show that extremal tree structures are invariant to the specific choice of πp
and ρ.

5We do not allow any of the correlation coefficient to be zero because otherwise, this would result
in Tp being a forest.

6None of the elements in Σ are allowed to be zero because ρi 6= 0 for every i ∈ V and the Markov
property in (4.15).
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For distributions in the set PN (Rd, T d;ρ), our goal is to find the best (easiest to
learn) and the worst (most difficult to learn) distributions for learning. Formally, the
optimization problems for the best and worst distributions for learning are given by

pmin,ρ := argmin
p∈PN (Rd,T d;ρ)

K̃p. (4.23)

pmax,ρ := argmax
p∈PN (Rd,T d;ρ)

K̃p, (4.24)

Thus, pmax,ρ (resp. pmin,ρ) corresponds to the Gaussian tree model which has the largest
(resp. smallest) approximate error exponent.

� 4.6.2 Reformulation as Optimization over Line Graphs

Since the number of permutations π and number of spanning trees are prohibitively
large, finding the optimal distributions cannot be done through a brute-force search
unless d is small. Our main idea in this section is to use the notion of line graphs (See
Section 2.4.1) to simplify the problems in (4.24) and (4.23). In subsequent sections,
we identify the extremal tree structures before identifying the precise best and worst
distributions.

Recall that the approximate error exponent K̃p can be expressed in terms of the
weights W (ρei , ρej ) between two adjacent edges ei, ej as in (4.16). Therefore, we can
write the extremal distribution in (4.24) as

pmax,ρ = argmax
p∈PN (Rd,T d;ρ)

min
ei,ej∈Ep,ei∼ej

W (ρei , ρej ). (4.25)

Note that in (4.25), Ep is the edge set of a weighted graph whose edge weights are
given by ρ. Since the weight is between two edges, it is more convenient to consider
line graphs defined in Section 2.4.1.

We now transform the intractable optimization problem in (4.25) over the set of
trees to an optimization problem over all the set of line graphs:

pmax,ρ = argmax
p∈PN (Rd,T d;ρ)

min
(i,j)∈H,H=L(Tp)

W (ρi, ρj), (4.26)

and W (ρi, ρj) can be considered as an edge weight between nodes i and j in a weighted
line graph H. Equivalently, (4.23) can also be written as in (4.26) but with the argmax
replaced by an argmin.

� 4.6.3 Easiest and Most Difficult Structures for Learning

In order to solve (4.26), we need to characterize the set of line graphs of spanning
trees L(T d) = {L(T ) : T ∈ T d}. This has been studied before [95, Theorem 8.5], but
the set L(T d) is nonetheless still very complicated. Hence, solving (4.26) directly is
intractable. Instead, our strategy now is to identify the structures corresponding to
the optimal distributions, pmax,ρ and pmin,ρ by exploiting the monotonicity of J̃(ρe, ρe′)
given in Lemma 4.4.
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Figure 4.4. Illustration for Theorem 4.7: The star (a) and the chain (b) minimize and maximize the
approximate error exponent respectively. There is more correlation decay in the chain as compared to
the star because there are many more node pairs that are far apart in terms of graph distance in the
chain.

Theorem 4.7. (Extremal Tree Structures) The tree structure that minimizes the ap-
proximate error exponent K̃p in (4.23) is given by

Tpmin,ρ = Tstar(d), (4.27)

for all feasible correlation coefficient vectors ρ with ρi ∈ (−1, 1) \ {0}. In addition, if
ρi ∈ (−ρcrit, ρcrit) \ {0} (where ρcrit = 0.63055), then the tree structure that maximizes
the approximate error exponent K̃p in (4.24) is given by

Tpmax,ρ = Tchain(d). (4.28)

Proof. See Appendix 4.E.

See Fig. 4.4. This theorem agrees with our intuition: for the star graph, the nodes
are strongly correlated (since its diameter is the smallest) while in the chain, there are
many weakly correlated pairs of nodes for the same set of correlation coefficients on the
edges thanks to correlation decay. Hence, it is hardest to learn the star while it is easiest
to learn the chain. It is interesting to observe Theorem 4.7 implies that the extremal
tree structures Tpmax,ρ and Tpmin,ρ are independent of the correlation coefficients ρ (if
|ρi| < ρcrit in the case of the chain). Indeed, the experiments in Section 4.7.2 also
suggest that Theorem 4.7 may likely be true for larger ranges of problems (without
the constraint that |ρi| < ρcrit) but this remains open. We remark that the result
in Theorem 4.7 is reminiscent of the fact that graphs with high max-degree typically
require more samples to learn [32, 172, 211].

The results in (4.27) and (4.28) do not yet provide the complete solution to pmax,ρ

and pmin,ρ in (4.24) and (4.23) since there are many possible pdfs in PN (Rd, T d;ρ)
corresponding to a fixed tree because we can rearrange the correlation coefficients along
the edges of the tree in multiple ways. The only exception is if Tp is known to be a star
then there is only one pdf in PN (Rd, T d;ρ), and we formally state the result below.

Corollary 4.8. (Most Difficult Distribution to Learn) The Gaussian pmin,ρ(x) =
N (x;0,Σmin,ρ) defined in (4.23), corresponding to the most difficult distribution to



112 CHAPTER 4. LARGE DEVIATIONS FOR LEARNING GAUSSIAN TREE MODELSw
w

w
@
@

@
@�

�
�
�

ρ1,2 ρ2,3

ρ1,2ρ2,3
1 3

2

Figure 4.5. If |ρ1,2| < |ρ2,3|, then the likelihood of the non-edge (1, 3) replacing edge (1, 2) would be
higher than if |ρ1,2| = |ρ2,3|. Hence, the weight W (ρ1,2, ρ2,3) is maximized when equality holds.

learn for fixed ρ, has the covariance matrix whose upper triangular elements are given
as Σmin,ρ(i, j) = ρi if i = 1, j 6= 1 and Σmin,ρ(i, j) = ρiρj otherwise. Moreover, if

|ρ1| ≥ . . . ≥ |ρd−1| and |ρ1| < ρcrit = 0.63055, then K̃p corresponding to the star graph
can be written explicitly as a minimization over only two crossover rates:

K̃pmin,ρ = min{J̃(ρ1, ρ1ρ2), J̃(ρd−1, ρd−1ρ1)}. (4.29)

Proof. The first assertion follows directly from the Markov property (4.15) and Theo-
rem 4.7. The next result follows from Lemma 4.4(c) which implies that J̃(ρd−1, ρd−1ρ1) ≤
J̃(ρk, ρkρ1) for all 2 ≤ k ≤ d− 1.

In other words, pmin,ρ is a star Gaussian graphical model with correlation coefficients
ρi on its edges. This result can also be explained by correlation decay. In a star graph,
since the distances between non-edges are small, the estimator in (4.2) is more likely
to mistake a non-edge with a true edge. It is often useful in applications to compute
the minimum error exponent for a fixed vector of correlations ρ as it provides a lower
bound of the decay rate of Pn(An) for any tree distribution with parameter vector ρ.
Interestingly, we also have a result for the easiest tree distribution to learn.

Corollary 4.9. (Easiest Distribution to Learn) Assume that ρcrit > |ρ1| ≥ |ρ2| ≥ . . . ≥
|ρd−1|. Then, the Gaussian pmax,ρ(x) = N (x;0,Σmax,ρ) defined in (4.24), correspond-
ing to the easiest distribution to learn for fixed ρ, has the covariance matrix whose upper
triangular elements are

Σmax,ρ(i, j) =

j∏

k=i

ρk, ∀ j ≥ i. (4.30)

Proof. The first assertion follows from the proof of Theorem 4.7 in Appendix 4.E and
the second assertion from the Markov property in (4.15).

In other words, in the regime where |ρi| < ρcrit, pmax,ρ is a Markov chain Gaussian
graphical model with correlation coefficients arranged in a monotonic fashion on its
edges. We now provide some intuition for why this is so. If a particular correlation
coefficient ρi (such that |ρi| < ρcrit) is fixed, then the edge weight W (ρi, ρj), defined
in (4.17), is maximized when |ρj | = |ρi|. Otherwise, if |ρi| < |ρj |, the event that the
non-edge with correlation ρiρj replaces the edge with correlation ρi (and hence results
in an error) has a higher likelihood than if equality holds. Thus, correlations ρi and ρj
that are close in terms of their absolute values should be placed closer to one another
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Figure 4.6. Illustration of Proposition 4.10. Tp = (V,Ep) is the original tree and e ∈ Ep. Tp′ =
(V ′, Ep′) is a subtree. The observations for learning the structure p′ correspond to the shaded nodes,
the unshaded nodes correspond to unobserved variables.

(in terms of graph distance) for the approximate error exponent to be maximized. See
Fig. 4.5.

� 4.6.4 Influence of Data Dimension on Error Exponent

We now analyze the influence of changing the size of the tree on the error exponent, i.e.,
adding and deleting nodes and edges while satisfying the tree constraint and observing
samples from the modified graphical model. This is of importance in many applications.
For example, in sequential problems, the learner receives data at different times and
would like to update the estimate of the tree structure learned. In dimensionality
reduction, the learner is required to estimate the structure of a smaller model given
high-dimensional data. Intuitively, learning only a tree with a smaller number of nodes
is easier than learning the entire tree since there are fewer ways for errors to occur
during the learning process. We prove this in the affirmative in Proposition 4.10.

Formally, we start with a d-variate Gaussian p ∈ PN (Rd, T d;ρ) and consider a d′-
variate pdf p′ ∈ PN (Rd

′
, T d′ ;ρ′), obtained by marginalizing p over a subset of variables

and Tp′ is the tree
7 associated to the distribution p′. Hence d′ < d and ρ′ is a subvector

of ρ. See Fig. 4.6. In our formulation, the only available observations are those sampled
from the smaller Gaussian graphical model p′.

Proposition 4.10. (Error Exponent of Smaller Trees) The approximate error exponent
for learning p′ is at least that of p, i.e., K̃p′ ≥ K̃p.

Proof. Reducing the number of adjacent edges to a fixed edge (i, k) ∈ Ep as in Fig. 4.6
(where k ∈ nbd(i) \ {j}) ensures that the maximum correlation coefficient ρ∗i,k, de-
fined in (4.19), does not increase. By Lemma 4.4(b) and (4.14), the approximate error
exponent K̃p does not decrease.

Thus, lower-dimensional models are easier to learn if the set of correlation coefficients
is fixed and the tree constraint remains satisfied. This is a consequence of the fact that
there are fewer crossover error events that contribute to the error exponent K̃p.

7Note that Tp′ still needs to satisfy the tree constraint so that the variables that are marginalized
out are not arbitrary (but must be variables that form the first part of a node elimination order [127]).
For example, we are not allowed to marginalize out the central node of a star graph since the resulting
graph would not be a tree. However, we can marginalize out any of the other nodes. In general, we can
only marginalize out nodes with degree either 1 or 2.



114 CHAPTER 4. LARGE DEVIATIONS FOR LEARNING GAUSSIAN TREE MODELS

We now consider the “dual” problem of adding a new edge to an existing tree
model, which results in a larger tree. We are now provided with (d + 1)-dimensional
observations to learn the larger tree. More precisely, given a d-variate tree Gaussian
pdf p, we consider a (d+1)-variate pdf p′′ such that Tp is a subtree of Tp′′ . Equivalently,
let ρ := [ρe1 , ρe2 , . . . , ρed−1

] be the vector of correlation coefficients on the edges of the
graph of p and let ρ′′ := [ρ, ρnew] be that of p′′.

By comparing the error exponents K̃p and K̃p′′ , we can address the following ques-
tion: Given a new edge correlation coefficient ρnew, how should one adjoin this new edge
to the existing tree such that the resulting error exponent is maximized or minimized?
Evidently, from Proposition 4.10, it is not possible to increase the error exponent by
growing the tree but can we devise a strategy to place this new edge judiciously (resp.
adversarially) so that the error exponent deteriorates as little (resp. as much) as possi-
ble?

To do so, we say edge e contains node v if e = (v, i) and we define the nodes in the
smaller tree Tp

v∗min := argmin
v∈V

max
e∈Ep

{|ρe| : e contains node v}. (4.31)

v∗max := argmax
v∈V

max
e∈Ep

{|ρe| : e contains node v}. (4.32)

Proposition 4.11. (Error Exponent of Larger Trees) Assume that |ρnew| < |ρe| for all
e ∈ Ep. Then,

(a) The difference between the error exponents K̃p − K̃p′′ is minimized when Tp′′ is
obtained by adding to Tp a new edge with correlation coefficient ρnew at vertex v∗min

given by (4.31) as a leaf.

(b) The difference K̃p − K̃p′′ is maximized when the new edge is added to v∗max given
by (4.32) as a leaf.

Proof. The node given by (4.31) is the best node to attach the new edge by Lemma 4.4(b).
Statement (b) follows analogously.

This result implies that if we receive data dimensions sequentially, we have a straight-
forward rule in (4.31) for identifying larger trees such that the exponent decreases as
little as possible at each step.8

� 4.7 Numerical Experiments

We now perform experiments with the following two objectives. Firstly, we study the
accuracy of the Euclidean approximations (Theorem 4.3) to identify regimes in which
the approximate crossover rate J̃e,e′ is close to the true crossover rate Je,e′ . Secondly,

8Of course, in reality, the edge might not be put according to (4.31) so we might have a smaller
error exponent.
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Figure 4.7. Comparison of true and approximate crossover rates in (4.8) and (4.13) respectively.

by performing simulations we study how various tree structures (e.g., chains and stars)
influence the error exponents (Theorem 4.7).

� 4.7.1 Comparison Between True and Approximate Rates

In Fig. 4.7, we plot the true and approximate crossover rates9 (given in (4.8) and (4.12)
respectively) for a 4-node symmetric star graph, whose structure is shown in Fig. 4.8.
The zero-mean Gaussian graphical model has a covariance matrix Σ such that Σ−1 is
parameterized by γ ∈ (0, 1/

√
3) in the following way: Σ−1(i, i) = 1 for all i, Σ−1(1, j) =

Σ−1(j, 1) = γ for all j = 2, 3, 4 andΣ−1(i, j) = 0 otherwise. By increasing γ, we increase
the difference of the mutual information quantities on the edges e and non-edges e′. We
see from Fig. 4.7 that both rates increase as the difference I(pe) − I(pe′) increases.
This is in line with our intuition because if pe,e′ is such that I(pe)− I(pe′) is large, the
crossover rate is also large. We also observe that if I(pe)− I(pe′) is small, the true and
approximate rates are close. This is also in line with the assumptions of Theorem 4.3.
When the difference between the mutual information quantities increases, the true and
approximate rates separate from each other. Note, however, that the approximate rate
is neither a lower nor upper bound on the true rate because we linearize the constraint
set in (4.11).

� 4.7.2 Comparison of Error Exponents Between Trees

In Fig. 4.10, we simulate error probabilities by drawing i.i.d. samples from three d =
10 node tree graphs – a chain, a star and a hybrid between a chain and a star as
shown in Fig. 4.9. We then used the samples to learn the structure via the Chow-Liu
procedure [42] by solving the MWST problem in (4.2). The d − 1 = 9 correlation
coefficients were chosen to be equally spaced in the interval [0.1, 0.9] and they were

9This small example has sufficient illustrative power because as we have seen, errors occur locally
and only involve triangles.
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Figure 4.9. The structure of a hybrid tree graph with d = 10 nodes as described in Section 4.7.2. This
is a tree with a length-d/2 chain and a order d/2 star attached to one of the leaf nodes of the chain.

randomly placed on the edges of the three tree graphs. We observe from Fig. 4.10
that for fixed n, the star and chain have the highest and lowest error probabilities
Pn(An) respectively. The simulated error exponents given by {−n−1 logPn(An)}n∈N
also converge to their true values as n → ∞. The exponent associated to the star is
higher than that of the chain, which is corroborated by Theorem 4.7, even though the
theorem only applies in the very-noisy case (and for |ρi| < 0.63055 in the case of the
chain). From this experiment, the claim also seems to be true even though the setup is
not very noisy. We also observe that the error exponent of the hybrid is between that
of the star and the chain.

� 4.8 Chapter Summary

Using the theory of large deviations, we have obtained the error exponent associated
with learning the structure of a Gaussian tree model. Our analysis in this chapter also
answers the fundamental questions as to which set of parameters and which structures
result in high and low error exponents. We conclude that Markov chains (resp. stars)
are the easiest (resp. hardest) structures to learn as they maximize (resp. minimize) the
error exponent. Indeed, our numerical experiments on a variety of Gaussian graphical
models validate the theory presented.

The results in Chapters 3 and 4, especially those in Section 4.6.4, lead directly



Sec. 4.A. Proof of Theorem 4.1 117

10
3

10
4

10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of samples n

S
im

ul
at

ed
 P

ro
b 

of
 E

rr
or

 

 
Chain
Hybrid
Star

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5
x 10

−3

Number of samples n

S
im

ul
at

ed
 E

rr
or

 E
xp

on
en

t

Figure 4.10. Simulated error probabilities and error exponents for chain, hybrid and star graphs with
fixed ρ. The dashed lines show the true error exponent Kp computed numerically using (4.8) and (4.9).
Observe that the simulated error exponent converges to the true error exponent as n → ∞. The legend
applies to both plots.

to the natural question of how we can analyze the situation where d grows with n,
i.e., the high-dimensional scenario. The analysis techniques in Chapters 3 and 4 lend
useful insights for modeling data whose dimensions are much larger than the number
of samples using tree-structured (and forest-structured) distributions. We explore the
high-dimensional learning regime in detail in the next chapter.

Appendices for Chapter 4

� 4.A Proof of Theorem 4.1

Proof. This proof borrows ideas from [179]. We assume m = 4 (i.e., disjoint edges) for
simplicity. The result for m = 3 follows similarly. Let V ′ ⊂ V be a set of m = 4 nodes
corresponding to node pairs e and e′. Given a subset of node pairs Y ⊂ V ′ × V ′ such
that (i, i) ∈ Y for all i ∈ V ′, the set of feasible moments [209] is defined as

MY :=
{
ηe,e′ ∈ R|Y| : ∃ q(·) ∈ P(Rm)
s.t. Eq[XiXj ] = ηi,j , ∀ (i, j) ∈ Y

}
. (4.33)

Let the set of densities with moments ηe,e′ := {ηi,j : (i, j) ∈ Y} be denoted as

BY(ηe,e′) := {q ∈ P(Rm) : Eq[XiXj ] = ηi,j , (i, j) ∈ Y}. (4.34)

We now state Sanov’s theorem [64] for continuous-valued distributions and also the
functional form of the optimizing distribution (I-projection). A similar result was proven
by Shen [179] so the proof of the lemma will be omitted.

Lemma 4.12. (Sanov’s Theorem and the Contraction Principle [64, 179]) For the event
that the empirical moments of the i.i.d. observations xn are equal to ηe,e′ = {ηi,j :
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(i, j) ∈ Y}, we have the LDP

lim
n→∞

− 1

n
logPn


 ⋂

(i,j)∈Y

{
1

n

n∑

k=1

Xk,iXk,j = ηi,j

}


= inf
qe,e′∈BY (η)

D(qe,e′ || pe,e′). (4.35)

If ηe,e′ ∈MY , the optimizing pdf q∗e,e′ in (4.35) is given by

q∗e,e′(x) ∝ pe,e′(x) exp


 ∑

(i,j)∈Y

θi,j xixj


 , (4.36)

where the set of constants {θi,j : (i, j) ∈ Y} are chosen such that q∗e,e′ ∈ BY(ηe,e′) given
in (4.34).

The second assertion in (4.36) is a generalization of the maximum entropy principle
(see Lemma 2.4 and Chapter 12 in [47]).

From Lemma 4.12, we conclude that the optimal q∗e,e′ in (4.35) is a Gaussian. Thus,
we can restrict our search for the optimal distribution to a search over Gaussians,
which are parameterized by means and covariances. The crossover event for mutual
information is Ce,e′ =

{
ρ̂2e′ ≥ ρ̂2e

}
, since in the Gaussian case, the mutual information is

a monotonic function of the square of the correlation coefficient (see Eqn. (4.3)). Thus
it suffices to consider

{
ρ̂2e′ ≥ ρ̂2e

}
, instead of the event involving the mutual information

quantities. Let e = (i, j), e′ = (k, l) and ηe,e′ := (ηe, ηe′ , ηi, ηj , ηk, ηl) ∈ MY ⊂ R6

be the moments of pe,e′ , where ηe := E[XiXj ] is the covariance of Xi and Xj , and
ηi := E[X2

i ] is the variance of Xi (and similarly for the other moments). Now apply
the contraction principle [62, Ch. 3] to the continuous map h :MY → R, given by the
difference between the square of correlation coefficients

h(ηe,e′) :=
η2e
ηiηj

− η2e′

ηkηl
. (4.37)

Following the same argument as in Theorem 3.1, the equality case dominates Ce,e′ ,
i.e., the event

{
ρ̂2e′ = ρ̂2e

}
dominates

{
ρ̂2e′ ≥ ρ̂2e

}
.10 Thus, by considering the set {ηe,e′ :

h(ηe,e′) = 0}, the rate corresponding to Ce,e′ can be written as

Je,e′ = inf
ηe,e′∈MY

{
g(ηe,e′) :

η2e
ηiηj

=
η2e′

ηkηl

}
, (4.38)

where the function g :MY ⊂ R6 → [0,∞) is defined as

g(ηe,e′) := inf
qe,e′∈BY (ηe,e′ )

D(qe,e′ || pe,e′), (4.39)

10This is also intuitively true because the most likely way the error event Ce,e′ occurs is when equality
holds, i.e.,

{
ρ̂2e′ = ρ̂2e

}
.
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ẽ e
e′

Figure 4.11. Illustration for the proof of Corollary 4.2. The correlation coefficient on the non-edge is
ρe′ and satisfies |ρe′ | = |ρe| if |ρẽ| = 1.
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Figure 4.12. Illustration for the proof of Corollary 4.2. The unique path between i0 and iM is
(i0, i1, . . . , iM ) = Path(e′;Ep).

and the set BY(ηe,e′) is defined in (4.34). Combining expressions in (4.38) and (4.39)
and the fact that the optimal solution q∗e,e′ is Gaussian yields Je,e′ as given in the
statement of the theorem (cf. Eqn. (4.8)).

The second assertion in the theorem follows from the fact that since pe,e satis-
fies I(pe) 6= I(pe′), we have |ρe| 6= |ρe′ | since I(pe) is a monotonic function in |ρe|.
Therefore, q∗e,e′ 6= pe,e′ on a set whose (Lebesgue) measure ν is strictly positive. Since
D(q∗e,e′ ||pe,e′) = 0 if and only if q∗e,e′ = pe,e′ almost everywhere-[ν], this implies that
D(q∗e,e′ ||pe,e′) > 0 [47, Theorem 8.6.1].

� 4.B Proof of Corollary 4.2

Proof. (⇒) Assume that Kp > 0. Suppose, to the contrary, that either (i) Tp is a forest
or (ii) rank(Σ) < d and Tp is not a forest. In (i), structure estimation of p will be
inconsistent (as described in Section 4.2), which implies that Kp = 0, a contradiction.
In (ii), since p is a spanning tree, there exists an edge ẽ ∈ Ep such that the correlation
coefficient ρẽ = ±1 (otherwise Σ would be full rank). In this case, referring to Fig. 4.11
and assuming that |ρe| ∈ (0, 1), the correlation on the non-edge e′ satisfies |ρe′ | =
|ρe||ρẽ| = |ρe|, which implies that I(pe) = I(pe′). Thus, there is no unique maximizer
in (4.2) with the empiricals p̂e replaced by pe. As a result, ML for structure learning
via (4.2) is inconsistent hence Kp = 0, a contradiction.

(⇐) Suppose both Σ � 0 and Tp not a proper forest, i.e., Tp is a spanning tree.
Assume, to the contrary, that Kp = 0. Then from Chapter 3, I(pe) = I(pe′) for some
e′ /∈ Ep and some e ∈ Path(e′;Ep). This implies that |ρe| = |ρe′ |. Let e′ = (i0, iM )
be a non-edge and let the unique path from node i0 to node iM be (i0, i1, . . . , iM )
for some M ≥ 2. See Fig. 4.12. Then, |ρe′ | = |ρi0,iM | = |ρi0,i1 ||ρi1,i2 | . . . |ρiM−1,iM |.
Suppose, without loss of generality, that edge e = (i0, i1) is such that |ρe′ | = |ρe| holds,
then we can cancel |ρe′ | and |ρi0,i1 | on both sides to give |ρi1,i2 ||ρi2,i3 | . . . |ρiM−1,iM | = 1.
Cancelling ρe′ is legitimate because we assumed that ρe′ 6= 0 for all e′ ∈ V ×V , because
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the graph of p is a spanning (connected) tree. Since each correlation coefficient has
magnitude not exceeding 1, this means that each correlation coefficient has magnitude
1, i.e., |ρi1,i2 | = . . . = |ρiM−1,iM | = 1. Since the correlation coefficients equal to ±1,
the submatrix of the covariance matrix Σ containing these correlation coefficients is not
positive definite. Therefore by Sylvester’s condition [101, Theorem 7.2.5], the covariance
matrix Σ � 0, a contradiction. Hence, Kp > 0.

� 4.C Proof of Theorem 4.3

Proof. We first assume that e and e′ do not share a node. The approximation of the KL-
divergence for Gaussians can be written as in (4.10). We now linearize the constraint set
L∆(pe,e′) as defined in (4.11). Given a positive definite covariance matrix Σe ∈ R2×2,
to simplify the notation, let I(Σe) = I(N (x;0,Σe)) be the mutual information of the
two random variables with covariance matrix Σe. We now perform a first-order Taylor
expansion of the mutual information around Σe. This can be expressed as

I(Σe +∆e) = I(Σe) + Tr
(
∇ΣeI(Σe)

T∆e

)
+ o(‖∆e‖). (4.40)

Recall that the Taylor expansion of log-det [74] is

log det(A) = log det(B) + 〈A−B,B−1〉+ o(‖A−B‖F ), (4.41)

with the notation 〈A−B,B−1〉 = Tr((A−B)B−1). Using this result we can conclude
that the gradient of I with respect to Σe in the above expansion (4.40) can be simplified
to give the matrix

∇ΣeI(Σe) = −
1

2

(
0 [Σ−1

e ]od
[Σ−1

e ]od 0

)
, (4.42)

where [A]od is the (unique) off-diagonal element of the 2× 2 symmetric matrix A. By
applying the same expansion to I(Σe′ +∆e′), we can express the linearized constraint
as

〈M,∆〉 = Tr(MT∆) = I(Σe)− I(Σe′), (4.43)

where the symmetric matrixM = M(Σe,e′) is defined in the following fashion: M(i, j) =
1
2 [Σ

−1
e ]od if (i, j) = e, M(i, j) = −1

2 [Σ
−1
e′ ]od if (i, j) = e′ and M(i, j) = 0 otherwise.

Thus, the problem reduces to minimizing (over∆) the approximate objective in (4.10)
subject to the linearized constraints in (4.43). This is a least-squares problem. By using
the matrix derivative identities

∇∆Tr(M∆) = M, ∇∆Tr((Σ−1∆)2) = 2Σ−1∆Σ−1, (4.44)

we can solve for the optimizer ∆∗ yielding:

∆∗ =
I(Σe)− I(Σe′)

(Tr(MΣ))2
ΣMΣ. (4.45)
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Substituting the expression for ∆∗ into (4.10) yields

J̃e,e′ =
(I(Σe)− I(Σe′))

2

4Tr((MΣ)2)
=

(I(pe)− I(pe′))2
4Tr((MΣ)2)

. (4.46)

Comparing (4.46) to our desired result (4.13), we observe that problem now reduces to
showing that Tr((MΣ)2) = 1

2Var(se − se′). To this end, we note that for Gaussians,
the information density is

se(Xi, Xj) = −
1

2
log(1− ρ2e)− [Σ−1

e ]odXiXj . (4.47)

Since the first term is a constant, it suffices to compute Var([Σ−1
e ]odXiXj−[Σ−1

e′ ]odXkXl).
Now, we define the matrices

C :=

(
0 1/2
1/2 0

)
, C1 :=

(
C 0

0 0

)
, C2 :=

(
0 0

0 C

)
, (4.48)

and use the following identity for the normal random vector (Xi, Xj , Xk, Xl) ∼ N (0,Σ)

Cov(aXiXj , bXkXl) = 2ab · Tr(C1ΣC2Σ), ∀ a, b ∈ R, (4.49)

and the definition of M to conclude that

Var(se − se′) = 2Tr((MΣ)2) (4.50)

This completes the proof for the case when e and e′ do not share a node. The proof for
the case when e and e′ share a node proceeds along exactly the same lines with a slight
modification of the matrix M.

� 4.D Proof of Lemma 4.4

Proof. Denoting the correlation coefficient on edge e and non-edge e′ as ρe and ρe′

respectively, the approximate crossover rate can be expressed as

J̃(ρe, ρe′) =
A(ρ2e, ρ

2
e′)

B(ρ2e, ρ
2
e′)
, (4.51)

where the numerator and the denominator are defined as

A(ρ2e, ρ
2
e′) :=

[
1

2
log

(
1− ρ2e′
1− ρ2e

)]2
, (4.52)

B(ρ2e, ρ
2
e′) :=

2(ρ4e′ + ρ2e′)

(1− ρ2e′)2
+

2(ρ4e + ρ2e)

(1− ρ2e)2
− 4ρ2e′(ρ

2
e + 1)

(1− ρ2e′)(1− ρ2e)
. (4.53)

The evenness result follows from A and B because J̃(ρe, ρe′) is, in fact a function of
(ρ2e, ρ

2
e′). To simplify the notation, we make the following substitutions: x := ρ2e′ and
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y := ρ2e. Now we apply the quotient rule to (4.51). Defining R := {(x, y) ∈ R2 : y ∈
(0, 1), x ∈ (0, y)}, it suffices to show that

C(x, y) := B(x, y)
∂A(x, y)

∂x
−A(x, y)∂B(x, y)

∂x
≤ 0, (4.54)

for all (x, y) ∈ R. Upon simplification, we have

C(x, y) =
log
(
1−x
1−y

) [
log
(
1−x
1−y

)
C1(x, y) + C2(x, y)

]

2(1− y)2(1− x)3 , (4.55)

where
C1(x, y) := y2x− 6xy − 1− 2y + 3y2 (4.56)

and
C2(x, y) := 2x2y − 6x2 + 2x− 2y2x+ 8xy − 2y − 2y2. (4.57)

Since x < y, the logs in C(x, y) are positive, i.e., log
(
1−x
1−y

)
> 0, so it suffices to show

that

log

(
1− x
1− y

)
C1(x, y) + C2(x, y) ≤ 0. (4.58)

for all (x, y) ∈ R. By using the inequality log(1 + t) ≤ t for all t > −1, it again suffices
to show that

C3(x, y) := (y − x)C1(x, y) + (1− y)C2(x, y) ≤ 0. (4.59)

Now upon simplification, C3(x, y) = 3y3x−19y2x−3y−2y2+5y3−3y2x2+14x2y+3x+
8xy− 6x2, and this polynomial is equal to zero in R (the closure of R) iff x = y. At all
other points in R, C3(x, y) < 0. Thus, the derivative of J̃(ρe, ρe′) with respect to ρe′ is
indeed strictly negative on R. Keeping ρe fixed, the function J̃(ρe, ρe′) is monotonically
decreasing in ρ2e′ and hence |ρe′ |.

Statement (c) follows by substituting ρ2e′ = xy and ρ2e = x in (4.51) to get J̃(x, xy)

for x, y ∈ (0, ρ2crit). Fixing y, we can again differentiate the function gy(x) := J̃(x, xy)
wrt x. We then note that d

dxgy(x) is positive iff 0 < x < ρ2crit as shown in Fig. 4.13.
Statement (d) follows along the same lines.

� 4.E Proofs of Theorem 4.7 and Corollary 4.9

Proof. Proof of Tpmin(ρ) = Tstar(d): Sort the correlation coefficients in decreasing or-
der of magnitude and relabel the edges such that |ρe1 | ≥ . . . ≥ |ρed−1

|. Then, from

Lemma 4.4(b), the set of crossover rates for the star graph is given by {J̃(ρe1 , ρe1ρe2)}∪
{J̃(ρei , ρeiρe1) : i = 2, . . . , d − 1}. For edge e1, the correlation coefficient ρe2 is the
largest correlation coefficient (and hence results in the smallest rate). For all other
edges {ei : i ≥ 2}, the correlation coefficient ρe1 is the largest possible correlation
coefficient (and hence results in the smallest rate). Since each member in the set of
crossovers is the minimum possible, the minimum of these crossover rates is also the
minimum possible among all tree graphs.



Sec. 4.E. Proofs of Theorem 4.7 and Corollary 4.9 123

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−5

x

dg
y(x

)/
dx

 

 
y = 0
y = 0.2
y = 0.4
y = 0.6

Figure 4.13. Plot of d
dx

gy(x) for different values of y. Note that d
dx

gy(x) is positive when 0 < x <
ρ2crit = 0.3976.

Before we prove part (b), we present some properties of the edge weights W (ρi, ρj),
defined in (4.17).

Lemma 4.13. (Properties of Edge Weights) Assume that all the correlation coefficients
are bounded above by ρcrit, i.e., |ρi| ≤ ρcrit. Then W (ρi, ρj) satisfies the following
properties:

(a) The weights are symmetric, i.e., W (ρi, ρj) =W (ρj , ρi).

(b) W (ρi, ρj) = J̃(min{|ρi|, |ρj |}, ρiρj), where J̃ is the approximate crossover rate
given in (4.51).

(c) If |ρi| ≥ |ρj | ≥ |ρk|, then

W (ρi, ρk) ≤ min{W (ρi, ρj),W (ρj , ρk)}. (4.60)

(d) If |ρ1| ≥ . . . ≥ |ρd−1|, then

W (ρi, ρj) ≤W (ρi, ρi+1), ∀ j ≥ i+ 1, (4.61a)

W (ρi, ρj) ≤W (ρi, ρi−1), ∀ j ≤ i− 1. (4.61b)

Proof. Claim (a) follows directly from the definition of J̃ in (4.17). Claim (b) also
follows from the definition of J̃ and its monotonicity property in Lemma 4.4(d). Claim
(c) follows by first using Claim (b) to establish that the RHS of (4.60) equals the
minimum of J̃(ρj , ρjρi) and J̃(ρk, ρkρj) since |ρi| ≥ |ρj | ≥ |ρk|. By the same argument,

the LHS of (4.60), equals J̃(ρk, ρkρi). Now we have

J̃(ρk, ρkρi) ≤ J̃(ρj , ρjρi), J̃(ρk, ρkρi) ≤ J̃(ρk, ρkρj), (4.62)
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w w w w w wρ1 ρi ρi+1 ρd−1. . . . . .

W (ρi, ρi+1)

� - � -Hi Hi+1

Figure 4.14. Illustration of the proof of Theorem 4.7. Let |ρ1| ≥ . . . ≥ |ρd−1|. The figure shows the
chain H∗

chain (in the line graph domain) where the correlation coefficients {ρi} are placed in decreasing
order.

where the first and second inequalities follow from Lemmas 4.4(c) and 4.4(b) respec-
tively. This establishes (4.60). Claim (d) follows by applying Claim (c) recursively.

Proof. Proof of Tpmax(ρ) = Tchain(d): Assume, without loss of generality, that |ρe1 | ≥
. . . ≥ |ρed−1

| and we also abbreviate ρei as ρi for all i = 1, . . . , d − 1. We use the idea
of line graphs introduced in Section 2.4.1 and Lemma 4.13. Recall that L(T d) is the
set of line graphs of spanning trees with d nodes. From (4.26), the line graph for the
structure of the best distribution pmax,ρ for learning in (4.24) is

Hmax,ρ := argmax
H∈L(T d)

min
(i,j)∈H

W (ρi, ρj). (4.63)

We now argue that the length d − 1 chain H∗
chain (in the line graph domain) with

correlation coefficients {ρi}d−1
i=1 arranged in decreasing order on the nodes (see Fig. 4.14)

is the line graph that optimizes (4.63). Note that the edge weights of H∗
chain are given

by W (ρi, ρi+1) for 1 ≤ i ≤ d − 2. Consider any other line graph H ∈ L(T d). Then we
claim that

min
(i,j)∈H\H∗

chain

W (ρi, ρj) ≤ min
(i,j)∈H∗

chain\H
W (ρi, ρj). (4.64)

To prove (4.64), note that any edge (i, j) ∈ H∗
chain \ H is consecutive, i.e., of the

form (i, i + 1). Fix any such (i, i + 1). Define the two subchains of H∗
chain as Hi :=

{(1, 2), . . . , (i − 1, i)} and Hi+1 := {(i + 1, i + 2), . . . , (d − 2, d − 1)} (see Fig. 4.14).
Also, let V (Hi) := {1, . . . , i} and V (Hi+1) := {i + 1, . . . , d − 1} be the nodes in sub-
chains Hi and Hi+1 respectively. Because (i, i+ 1) /∈ H, there is a set of edges (called
cut set edges) Si := {(j, k) ∈ H : j ∈ V (Hi), k ∈ V (Hi+1)} to ensure that the line
graph H remains connected.11 The edge weight of each cut set edge (j, k) ∈ Si satisfies
W (ρj , ρk) ≤W (ρi, ρi+1) by (4.61) because |j− k| ≥ 2 and j ≤ i and k ≥ i+1. By con-
sidering all cut set edges (j, k) ∈ Si for fixed i and subsequently all (i, i+1) ∈ H∗

chain\H,
we establish (4.64). It follows that

min
(i,j)∈H

W (ρi, ρj) ≤ min
(i,j)∈H∗

chain

W (ρi, ρj), (4.65)

11The line graph H = L(G) of a connected graph G is connected. In addition, any H ∈ L(T d) must
be a claw-free, block graph [95, Theorem 8.5].
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Figure 4.15. A 7-node tree T and its line graph H = L(T ) are shown in the left and right figures
respectively. In this case H \H∗

chain = {(1, 4), (2, 5), (4, 6), (3, 6)} and H∗
chain \H = {(1, 2), (2, 3), (3, 4)}.

Eqn. (4.64) holds because from (4.61), W (ρ1, ρ4) ≤ W (ρ1, ρ2), W (ρ2, ρ5) ≤ W (ρ2, ρ3) etc. and also if
ai ≤ bi for i ∈ I (for finite I), then mini∈I ai ≤ mini∈I bi.

because the other edges in H and H∗
chain in (4.64) are common. See Fig. 4.15 for an

example to illustrate (4.64).
Since the chain line graph H∗

chain achieves the maximum bottleneck edge weight, it
is the optimal line graph, i.e., Hmax,ρ = H∗

chain. Furthermore, since the line graph of a
chain is a chain, the best structure Tpmax(ρ) is also a chain and we have established (4.28).
The best distribution is given by the chain with the correlations placed in decreasing
order, establishing Corollary 4.9.
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Chapter 5

Learning High-Dimensional

Forest-Structured Models

� 5.1 Introduction

IN the previous two chapters, we discussed the learning of tree-structured graphical
models of fixed dimensions. More specifically, we performed large-deviations analyses

for Gaussian and discrete graphical models. This chapter is motivated in part by
a key challenge in learning graphical models; that is the learning problem is often
compounded by the fact that typically only a small number of samples n are available
relative to the size of the model (dimension of data) d. This is referred to as the high-
dimensional learning regime, which differs from classical statistics where a large number
of samples are available to learn a model of fixed size (as in Chapters 3 and 4). The
high-dimensional setting is characterized by the fact that both the number of samples
n and the number of dimensions d grow together, i.e., d is a function of n.

This chapter discusses parameter and structure learning of acyclic graphs from i.i.d.
samples but differs from the previous two chapters in two distinct ways: Firstly, we focus
on the high-dimensional learning regime. Secondly, we seek to learn forest-structured
graphical models (instead of tree-structured ones). We choose to learn forests be-
cause when the number of samples is small relative to the data dimension, even a
tree-structured distribution may overfit the data [132]. For learning the structure of
the forest, the ML Chow-Liu algorithm described in Section 2.5.2, does not produce a
consistent estimate in general, since ML favors richer model classes with more parame-
ters [133] and hence, outputs a tree. We propose a consistent algorithm called CLThres,
which consists of an adaptive thresholding mechanism to prune “weak” edges from the
Chow-Liu tree. We provide tight upper and lower bounds on the overestimation and
underestimation errors, that is, the error probability that the output of the algorithm
has more or fewer edges than the true model.

This chapter contains three main contributions. Firstly, we prove that CLThres is
structurally consistent, i.e., as the number of samples grows for a fixed model size,
the probability of learning the incorrect structure (set of edges), decays to zero for a
fixed model size. We show that the error rate is dominated by the rate of decay of
the overestimation error probability. In our proofs, we use the method of types (see

127
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Section 2.2.1) as well as Euclidean information theory (see (2.24) and (2.25)). We
provide an upper bound on the error probability by using convex duality [18, 28] to
find a surprising connection between the overestimation error rate and a semidefinite
program [200] and show that the overestimation error in structure learning decays faster
than any polynomial in n for a fixed data dimension d. Secondly, we consider the high-
dimensional scenario and provide sufficient conditions on the growth of (n, d) (and also
the true number of edges k) to ensure that CLThres is structurally consistent. We prove
that even if d grows faster than any polynomial in n (in fact close to exponential in n),
structure estimation remains consistent. We also show that for the proposed algorithm,
independent models (resp. tree models) are the “hardest” (resp. “easiest”) to learn in
the sense that the asymptotic error rate is the highest (resp. lowest), over all models
with the same scaling of (n, d). Thus, the empty graph and connected trees are the
extremal forest structures for learning. Thirdly, we prove that CLThres is risk consistent.
More precisely, the risk of the estimated forest distribution P ∗ converges to the risk of
the forest projection of the true model at a rate of

Rn(P ∗) = Op

(
d log d

n1−γ

)
, ∀ γ > 0. (5.1)

We compare and contrast this rate to very recent works such as Liu et al. [132] and
Gupta et al. [89].

The work in this chapter is related to and inspired by the large body of literature in
information theory on Markov order estimation. In these works, the authors use various
regularization and model selection schemes to find the optimal order of a Markov chain
[52, 77, 138, 141], hidden Markov model [86, 116] or exponential family [137]. We build
on some of these ideas and proof techniques to identify the correct set of edges (and in
particular the number of edges) in the forest model and also to provide strong theoretical
guarantees on the rate of convergence of the estimated forest-structured distribution to
the true one.

This chapter is organized as follows: We define and review some mathematical
notation and state the problem formally in Section 5.2. In Section 5.3, we describe
the algorithm in full detail, highlighting its most salient aspect – the thresholding step.
We state our main results on error rates for structure learning in Section 5.4 for a
fixed forest-structured distribution. We extend these results to the high-dimensional
case when (n, d, k) scale in Section 5.5. Extensions to rates of convergence of the
estimated distribution to the true one, i.e., the order of risk consistency, are discussed
briefly in Section 5.6. Numerical simulations on synthetic and real data are presented
in Section 5.7. Finally, we conclude the discussion in Section 5.8. The proofs of the
majority of the results are provided in the appendices at the end of the chapter.

� 5.2 Notation and Problem Formulation

We now remind the reader of some notation that is used throughout this chapter.
The sets of labeled trees with d nodes and labeled forests with d nodes and k (for
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0 ≤ k ≤ d− 1) edges are denoted as T d and T dk respectively. We also use the notation
Fd := ∪d−1

k=0T dk to denote the set of labeled forests with d nodes.
Let X be a finite set with cardinality r := |X | ≥ 2. We denote the set of d-variate

distributions supported on X d and Markov on a forest with k edges as D(X d, T dk ) ⊂
P(X d). Similarly, D(X d,Fd) is the set of forest-structured distributions. Let P ∈
D(X d, T dk ) be a discrete forest-structured distribution Markov on TP = (V,EP ) ∈ T dk
(for some k = 0, . . . , d− 1). In this chapter, we always assume that graphs are minimal
representations for the corresponding graphical model, i.e., if P is Markov on TP , then
TP has the smallest number of edges for the requisite conditional independence relations
in (2.92) and (2.93) to hold.

The minimum mutual information in the forest-structured distribution, denoted as

Imin := min
(i,j)∈EP

I(Pi,j) (5.2)

will turn out to be a fundamental quantity in the subsequent analysis. Note from our
minimality assumption on the graphical model P that Imin > 0 since all edges in the
forest have positive mutual information (none of the edges are degenerate). When we
consider the scenario where d grows with n in Section 5.5, we assume that Imin is
uniformly bounded away from zero.

We now state the basic learning problem formally. We are given a set of i.i.d. sam-
ples, denoted as xn := {x1, . . . ,xn}. Each sample xl = (xl,1, . . . , xl,d) ∈ X d is drawn
independently from P ∈ D(X d, T dk ) a forest-structured distribution. From these sam-
ples, and the prior knowledge that the undirected graph is acyclic (but not necessarily
connected), estimate the true set of edges EP as well as the true distribution P consis-
tently. In Section 5.5, we extend the basic learning problem to the scenario where we
seek to learn a sequence of forest-structured distributions, in order to study how d and
k may scale with n while still maintaining consistency

� 5.3 The Forest Learning Algorithm: CLThres

We now describe our algorithm for estimating the edge set EP and the distribution P .
This algorithm is a modification of the celebrated Chow-Liu algorithm for maximum-
likelihood (ML) learning of tree-structured distributions [42]. We call our algorithm
CLThres which stands for Chow-Liu with Thresholding.

The inputs to the algorithm are the set of samples xn and a regularization sequence
{εn}n∈N (to be specified precisely later) that typically decays to zero, i.e., limn→∞ εn =
0. The outputs are the estimated edge set, denoted Ê

k̂n
, and the estimated distribution,

denoted P ∗.

1. Given xn, calculate the set of empirical mutual information quantities I(P̂i,j) for
1 ≤ i, j ≤ d.
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2. Run a max-weight spanning tree (MWST) algorithm [120, 158] to obtain an esti-
mate of the edge set:

Êd−1 := argmax
E:T=(V,E)∈T d

∑

(i,j)∈E

I(P̂i,j). (5.3)

Let the estimated edge set be Êd−1 := {ê1, . . . , êd−1} where the edges êi are sorted
according to decreasing empirical mutual information values. We index the edge
set by d−1 to emphasize that it has d−1 edges and hence is connected. We denote
the sorted empirical mutual information quantities as I(P̂ê1) ≥ . . . ≥ I(P̂êd−1

).
These first three steps constitute the Chow-Liu algorithm [42].

3. Estimate the true number of edges using the thresholding estimator:

k̂n := argmin
1≤j≤d−1

{
I(P̂êj ) : I(P̂êj ) ≥ εn, I(P̂êj+1

) ≤ εn
}
. (5.4)

If there exists an empirical mutual information I(P̂êj ) such that I(P̂êj ) = εn, break
the tie arbitrarily.1

4. Prune the tree by retaining only the top k̂n edges, i.e., define the estimated edge
set of the forest to be

Ê
k̂n

:= {ê1, . . . , êk̂n}, (5.5)

where {êi : 1 ≤ i ≤ d − 1} is the ordered edge set defined in Step 2. Define the
estimated tree to be T̂

k̂n
:= (V, Ê

k̂n
).

5. Finally, define the estimated distribution P ∗ to be the reverse I-projection [51] of
the joint type P̂ onto T̂

k̂n
, i.e.,

P ∗(x) := argmin
Q∈D(X d,T̂

k̂n
)

D(P̂ ||Q). (5.6)

It can easily be shown that the projection can be expressed in terms of the marginal
and pairwise joint types:

P ∗(x) =
∏

i∈V

P̂i(xi)
∏

(i,j)∈Ê
k̂n

P̂i,j(xi, xj)

P̂i(xi)P̂j(xj)
. (5.7)

Intuitively, CLThres first constructs a connected tree (V, Êd−1) via Chow-Liu (in Steps
1 – 2) before pruning the weak edges (with small mutual information) to obtain the

1Here we allow a bit of imprecision by noting that the non-strict inequalities in (5.4) simplify the
subsequent analyses because the constraint sets that appear in optimization problems will be closed,
hence compact, insuring the existence of optimizers.
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final structure Ê
k̂n
. The estimated distribution P ∗ is simply the ML estimate of the

parameters subject to the constraint that P ∗ is Markov on the learned tree T̂
k̂n
.

Note that if Step 3 is omitted and k̂n is defined to be d − 1, then CLThres simply
reduces to the Chow-Liu ML algorithm (described in Section 2.5.2). The Chow-Liu
algorithm, which outputs a tree, is guaranteed to fail (not be structurally consistent)
if the number of edges in the true model k < d− 1, which is the problem of interest in
this chapter. Thus, Step 3, a model selection step, is essential in estimating the true
number of edges k. This step is a generalization of the test for independence of discrete
memoryless sources (DMS) discussed by Merhav in [137]. In our work, we exploit the
fact that the empirical mutual information I(P̂êj ) corresponding to a pair of independent
variables êj will be very small when n is large, thus a thresholding procedure using the
(appropriately chosen) regularization sequence {εn} will remove these edges. In fact,
the subsequent analysis allows us to conclude that Step 3, in a formal sense, dominates
the error probability in structure learning. CLThres is also computationally efficient as
shown by the following result.

Proposition 5.1. (Complexity of CLThres) CLThres runs in time O((n+ log d)d2).

Proof. The computation of the empirical mutual information values in Step 1 requires
O(nd2) operations. The MWST algorithm in Step 2 requires at most O(d2 log d) opera-
tions [158]. Steps 3 and 4 simply require the sorting of the empirical mutual information
quantities on the learned tree which only requires O(log d) computations.

� 5.4 Structural Consistency For Fixed Model Size

In this section, we keep d and k fixed and consider a probability model P , which is
assumed to be Markov on a forest in T dk . This is to gain better insight into the problem
before we analyze the high-dimensional scenario in Section 5.5 where d and k scale2

with the sample size n. More precisely, we are interested in quantifying the rate at
which the probability of the error event of structure learning3

An :=
{
Ê
k̂n
6= EP

}
(5.8)

decays to zero as n tends to infinity. Recall that Ê
k̂n
, with cardinality k̂n, is the learned

edge set by using CLThres.
Before stating the main result of this section in Theorem 5.3, we first state an

auxiliary result that essentially says that if one is provided with oracle knowledge of Imin,
the minimum mutual information in the forest, then the problem is greatly simplified.

2In that case P must also scale, i.e., we learn a family of models as d and k scale.
3This event is analogous to the events denoted by An defined in (3.3) and (4.5) in previous chapters.

However, in this chapter, we are interested in edge sets EP that correspond to forests (and not trees).
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Proposition 5.2. (Error Rate with knowledge of Imin) Assume that Imin is known in
CLThres. Then by letting the regularization sequence be εn = Imin/2 for all n, we have

lim
n→∞

1

n
logPn(An) < 0, (5.9)

i.e., the error probability decays exponentially fast.

Thus, the primary difficulty lies in estimating Imin or alternatively, the number of
edges k. Note that if k is known, a simple modification to the Chow-Liu procedure
by imposing the constraint that the final structure contains k edges will also yield
exponential decay as in (5.9). However, in the realistic case where both Imin and k
are unknown, we show in the rest of this section that we can design the regularization
sequence εn in such a way that the rate of decay of Pn(An) decays almost exponentially
fast.

� 5.4.1 Error Rate for Forest Structure Learning

We now state one of the main results in this chapter. We emphasize that the following
result is stated for a fixed forest-structured distribution P ∈ D(X d, T dk ) so d and k are
also fixed natural numbers.4

Theorem 5.3. (Error Rate for Structure Learning) Assume that the regularization
sequence {εn}n∈N satisfies the following two conditions:

lim
n→∞

εn = 0, lim
n→∞

nεn
logn

=∞. (5.10)

Then, if the true model TP = (V,EP ) is a proper forest (k < d − 1), there exists a
constant CP ∈ (1,∞) such that

−CP ≤ lim inf
n→∞

1

nεn
logPn(An) (5.11)

≤ lim sup
n→∞

1

nεn
logPn(An) ≤ −1. (5.12)

Finally, if the true model TP = (V,EP ) is a tree (k = d− 1), then

lim
n→∞

1

n
logPn(An) < 0, (5.13)

i.e., the error probability decays exponentially fast.

4As in all error analyses, we have a true model P , which of course has some number k of edges. Our
algorithm, of course, does not know this value.
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Imin

εn = ω( log nn )

I(Q̂ni,j)=Op(
1
n)

N

Figure 5.1. Graphical interpretation of the condition on εn. As n → ∞, the regularization sequence
εn will be smaller than Imin and larger than I(Q̂n

i,j) with high probability.

� 5.4.2 Interpretation of Result

From (5.12), the rate of decay of the error probability for proper forests is subexponen-
tial but nonetheless can be made faster than any polynomial for an appropriate choice
of εn. The reason for the subexponential rate is because of our lack of knowledge of
Imin, the minimum mutual information in the true forest TP or alternatively a lack
of knowledge of k. For trees, the rate is exponential (

.
= exp(−nF ) for some positive

constant F ). Learning proper forests is thus, strictly “harder” than learning trees. The
condition on εn in (5.10) is needed for the following intuitive reasons:

1. Firstly, (5.10) ensures that for all sufficiently large n, we have εn < Imin. Thus,
the true edges will be correctly identified by CLThres implying that with high
probability, there will not be underestimation as n→∞.

2. Secondly, for two independent random variables Xi and Xj with distribution

Qi,j = QiQj , the sequence5 σ(I(Q̂ni,j)) = Θ(1/n), where Q̂ni,j is the joint em-
pirical distribution of n i.i.d. samples drawn from Qi,j . Since the regularization

sequence εn = ω(log n/n) has a slower rate of decay than σ(I(Q̂ni,j)), we have that

εn > I(Q̂ni,j) with high probability as n → ∞. Thus, with high probability there
will not be overestimation as n→∞.

See Figure 5.1 for an illustration of this intuition. The formal proof follows from a
method of types argument and we provide an outline in Section 5.4.3. A convenient
choice of εn that satisfies (5.10) is

εn := n−β , ∀β ∈ (0, 1). (5.14)

5The notation σ(Z) = Var(Z)1/2 denotes the standard deviation of the random variable Z. The

fact that the standard deviation of the empirical MI σ(I(Q̂n
i,j)) decays as 1/n can be verified by Taylor

expanding I(Q̂n
i,j) around Qi,j = QiQj and using the fact that ML estimates converge to the true values

at a rate of n−1/2 (see Section 2.2.4).
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Note further that the upper bound in (5.12) is also independent of P since it is
equal to −1 for all P . Thus, (5.12) is a universal result for all forest distributions
P ∈ D(X d,Fd). The intuition for this universality is because in the large-n regime, the
typical way an error occurs is due to overestimation. The overestimation error results
from testing whether pairs of random variables are independent and our asymptotic
bound for the error probability of this test does not depend on the true distribution P .

The lower bound CP in (5.11), defined in the proof in Appendix 5.B, means that
we cannot hope to do much better using CLThres if the original structure (edge set) is
a proper forest. Together, (5.11) and (5.12) imply that the rate of decay of the error
probability for structure learning is tight to within a constant factor in the exponent.
We believe that the error rates given in Theorem 5.3 cannot, in general, be improved
without knowledge of Imin. We state a converse (a necessary lower bound on sample
complexity) in Theorem 5.7 by treating the unknown forest graph as a uniform random
variable over all possible forests of fixed size.

� 5.4.3 Proof Idea

The method of proof for Theorem 5.3 involves using the Gallager-Fano bounding tech-
nique [73, pp. 24] and the union bound to decompose the overall error probability
Pn(An) into three distinct terms: (i) the rate of decay of the error probability for learn-
ing the top k edges (in terms of the mutual information quantities) correctly – known
as the Chow-Liu error, (ii) the rate of decay of the overestimation error {k̂n > k} and
(iii) the rate of decay of the underestimation error {k̂n < k}. Each of these terms is
upper bounded using a method of types (cf. Section 2.2.1) argument. It turns out, as is
the case with the literature on Markov order estimation (e.g., [77]), that bounding the
overestimation error poses the greatest challenge. Indeed, we show that the underesti-
mation and Chow-Liu errors have exponential decay in n. However, the overestimation
error has subexponential decay (≈ exp(−nεn)).

The main technique used to analyze the overestimation error relies on Euclidean
information theory described in Section 2.1.4 and used extensively in Chapters 3 and 4.
Using this approximation and Lagrangian duality [18], we reduce a non-convex I-
projection [51] problem involving information-theoretic quantities (such as divergence)
to a relatively simple semidefinite program [200] which admits a closed-form solution.
Furthermore, the Euclidean approximations become exact as n → ∞ (i.e., εn → 0),
which is the asymptotic regime of interest. The full details of the proof can be found
Appendix 5.B.

� 5.4.4 Error Rate for Learning the Forest Projection

In our discussion thus far, P has been assumed to be Markov on a forest. In this
subsection, we consider the situation when the underlying unknown distribution P is
not forest-structured but we wish to learn its best forest approximation. To this end,
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we define the projection of P onto the set of forests (or forest projection) to be

P̃ := argmin
Q∈D(X d,Fd)

D(P ||Q). (5.15)

If there are multiple optimizing distribution, choose a projection P̃ that is minimal, i.e.,
its graph T

P̃
= (V,E

P̃
) has the fewest number of edges such that (5.15) holds. If we

redefine the event An in (5.8) to be Ãn := {Ê
k̂n
6= E

P̃
}, we have the following analogue

of Theorem 5.3.

Corollary 5.4. (Error Rate for Learning Forest Projection) Let P be an arbitrary
distribution and the event Ãn be defined in (5.15). Then the conclusions in (5.11) –
(5.13) in Theorem 5.3 hold if the regularization sequence {εn}n∈N satisfies (5.10).

� 5.5 High-Dimensional Structural Consistency

In the previous section, we considered learning a fixed forest-structured distribution P
(and hence fixed d and k) and derived bounds on the error rate for structure learning.
However, for most problems of practical interest such as the asthma example presented
in Chapter 1, the number of data samples is small compared to the data dimension d.
In this section, we prove sufficient conditions on the scaling of (n, d, k) for structure
learning to remain consistent. We will see that even if d and k are much larger than n,
under some reasonable regularity conditions, structure learning remains consistent.

� 5.5.1 Structure Scaling Law

To pose the learning problem formally, we consider a sequence of structure learning
problems indexed by the number of data points n. For the particular problem indexed
by n, we have a dataset xn = (x1, . . . ,xn) of size n where each sample xl ∈ X d is
drawn independently from an unknown d-variate forest-structured distribution P (d) ∈
D(X d, T dk ), which has d nodes and k edges. This high-dimensional setup allows us
to model and subsequently analyze how d and k can scale with n while maintaining
consistency. We will sometimes make the dependence of d and k on n explicit, i.e.,
d = dn and k = kn.

In order to be able to learn the structure of the models we assume that

(A1) Iinf := inf
d∈N

min
(i,j)∈E

P (d)

I(P
(d)
i,j ) > 0, (5.16)

(A2) κ := inf
d∈N

min
xi,xj∈X

P
(d)
i,j (xi, xj) > 0. (5.17)

That is, assumptions (A1) and (A2) insure that there exists uniform lower bounds on the
minimummutual information and the minimum entry in the pairwise probabilities in the
forest models as the size of the graph grows. These are typical regularity assumptions
for the high-dimensional setting. See Wainwright et al. [211] and Meinshausen and
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Buehlmann [136] for example. We again emphasize that the proposed learning algorithm
CLThres has knowledge of neither Iinf nor κ. Equipped with (A1) and (A2) and assuming
the asymptotic behavior of εn in (5.10), we claim the following theorem for CLThres.

Theorem 5.5. (Structure Scaling Law) There exists two finite, positive constants C1 =
C1(Iinf , κ) and C2 = C2(Iinf , κ) such that if

n > max
{
(2 log(d− k))1+ζ , C1 log d, C2 log k

}
, (5.18)

for any ζ > 0, then the error probability of incorrectly learning the sequence of edge
sets {EP (d)}d∈N tends to zero as (n, d, k)→∞. When the sequence of forests are trees,
n > max{C1, C2} log d suffices for high-dimensional structure recovery.

This result is proved in Appendix 5.D. From (5.18), if the model parameters (n, d, k)
all grow with n but d = o(exp(n/C1)), k = o(exp(n/C2)) and d − k = o(exp(n1−β/2))
(for all β > 0), consistent structure recovery is possible in high dimensions. In other
words, the number of nodes d and the number of edges k can grow faster than any
polynomial in the sample size n. The difference d− k can grow subexponentially in n.
In Liu et al. [132], the bivariate densities are modeled by functions from a Hölder class
with exponent α and it was mentioned (in Theorem 4.3) that the number of variables can
grow like o(exp(nα/(1+α))) for structural consistency. Our result is somewhat stronger
but we model the pairwise joint distributions as (simpler) probability mass functions
(the alphabet X is a finite set).

� 5.5.2 Extremal Forest Structures

In this subsection, we study the extremal structures for learning, that is, the structures
that, roughly speaking, lead to the largest and smallest error probabilities for structure
learning. Define the sequence

hn(P ) :=
1

nεn
logPn(An), ∀n ∈ N. (5.19)

Note that hn is a function of both the number of variables d = dn and the number of
edges k = kn in the models P (d) since it is a sequence indexed by n. In the next result,
we assume (n, d, k) satisfies the scaling law in (5.18) and answer the following question:
For CLThres, how does hn in (5.19) depend on the number of edges kn for a given dn?

Let P
(d)
1 and P

(d)
2 be two sequences of forest-structured distributions with a common

number of nodes dn and number of edges kn(P
(d)
1 ) and kn(P

(d)
2 ) respectively.

Corollary 5.6. (Extremal Forests) As n→∞, hn(P
(d)
1 ) ≤ hn(P (d)

2 ) whenever kn(P
(d)
1 ) ≥

kn(P
(d)
2 ) implying that hn is maximized when P (d) are product distributions (i.e., kn =

0) and minimized when P (d) are tree-structured distributions (i.e., kn = dn − 1). Fur-

thermore, if kn(P
(d)
1 ) = kn(P

(d)
2 ), then hn(P

(d)
1 ) = hn(P

(d)
2 ).
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This result is proved in Appendix 5.E. The intuition for this result is the following:
We recall from the discussion after Theorem 5.3 that the overestimation error domi-
nates the probability of error for structure learning. Thus, the performance of CLThres
degrades with the number of missing edges. If there are very few edges (i.e., kn is very
small relative to dn), the CLThres estimator is more likely to overestimate the number
of edges as compared to if there are many edges (i.e., kn/dn is close to 1). We conclude
that a distribution which is Markov on an empty graph (all variables are independent)
is the hardest to learn (in the sense of Corollary 5.6 above). Conversely, trees are the
easiest structures to learn.

� 5.5.3 Lower Bounds on Sample Complexity

Thus far, our results are for a specific algorithm CLThres for learning the structure of
Markov forest distributions. At this juncture, it is natural to ask whether the scaling
laws in Theorem 5.5 are the best possible over all algorithms (estimators). To answer
this question, we limit ourselves to the scenario where the true graph TP is a uni-
formly distributed chance variable6 with probability measure P. Assume two different
scenarios:

(a) TP is drawn from the uniform distribution on T dk , i.e., P(TP = t) = 1/|T dk | for all
forests t ∈ T dk . Recall that T dk is the set of labeled forests with d nodes and k
edges.

(b) TP is drawn from the uniform distribution on Fd, i.e., P(TP = t) = 1/|Fd| for all
forests t ∈ Fd. Recall that Fd is the set of labeled forests with d nodes.

This following result is inspired by Theorem 1 in Bresler et al. [32]. Note that an
estimator or algorithm T̂ d is simply a map from the set of samples (X d)n to a set of
graphs (either T dk or Fd). We emphasize that the following result is stated with the
assumption that we are taking expectations over the random choice of the true graph
TP .

Theorem 5.7. (Lower Bounds on Sample Complexity) Let % < 1 and r := |X |. In
case (a) above, if

n < %
(k − 1) log d

d log r
, (5.20)

then P(T̂ d 6= TP )→ 1 for any estimator T̂ d : (X d)n → T dk . Alternatively, in case (b), if

n < %
log d

log r
, (5.21)

then P(T̂ d 6= TP )→ 1 for any estimator T̂ d : (X d)n → Fd.
6The term chance variable, attributed to [85], describes random quantities Y : Ω → W that take on

values in arbitrary alphabets W . In contrast, a random variable X maps the sample space Ω to the
reals R.
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This result, proved in Appendix 5.F is a strong converse and states that n =
Ω(kd log d) is necessary for any estimator with oracle knowledge of k to succeed. Thus,
we need at least logarithmically many samples in d if the fraction k/d is kept con-
stant as the graph size grows even if k is known precisely and does not have to be
estimated. Interestingly, (5.20) says that if k is large, then we need more samples. This
is because there are fewer forests with a small number of edges as compared to forests
with a large number of edges. In contrast, the performance of CLThres (which does
not have knowledge of k) degrades when k is small because it is more sensitive to the
overestimation error. Moreover, if the estimator does not know k, then (5.21) says that
n = Ω(log d) is necessary for successful recovery. We conclude that the set of scaling
requirements prescribed in Theorem 5.5 is almost optimal. In fact, if the true structure
TP is a tree, then Theorem 5.7 for CLThres says that the (achievability) scaling laws in
Theorem 5.5 are indeed optimal (up to constant factors in the O and Ω-notation) since
n > (2 log(d − k))1+ζ in (5.18) is trivially satisfied. Note that if TP is a tree, then the
Chow-Liu ML procedure or CLThres results in the sample complexity n = O(log d) (see
Theorem 5.5).

� 5.6 Risk Consistency

In this section, we develop results for risk consistency to study how fast the parameters
of the estimated distribution converge to their true values. For this purpose, we define
the risk of the estimated distribution P ∗ (with respect to the true probability model
P ) as

Rn(P ∗) := D(P ||P ∗)−D(P || P̃ ), (5.22)

where P̃ is the forest projection of P defined in (5.15). Note that the original probability
model P does not need to be a forest-structured distribution in the definition of the
risk. Indeed, if P is Markov on a forest, (5.22) reduces to Rn(P ∗) = D(P ||P ∗) since
the second term is zero. We quantify the rate of decay of the risk when the number of
samples n tends to infinity. For δ > 0, we define the event

Cn,δ :=
{
xn ∈ (X d)n :

Rn(P ∗)

d
> δ

}
. (5.23)

That is, Cn,δ is the event that the average risk Rn(P ∗)/d exceeds some constant δ. We
say that the estimator P ∗ (or an algorithm producing P ∗) is δ-risk consistent if the
probability of Cn,δ tends to zero as n → ∞. Intuitively, achieving δ-risk consistency is
easier than achieving structural consistency since the learned model P ∗ can be close to
the true forest-projection P̃ in the KL-divergence sense even if their structures differ.

We say that a reconstruction algorithm has risk consistency of order (or rate) gn
if Rn(P ∗) = Op(gn). The definition of the order of risk consistency involves the true
model P . Intuitively, we expect that as n→∞, the estimated distribution P ∗ converges
to the projection P̃ so Rn(P ∗)→ 0 in probability.
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� 5.6.1 Error Exponent for Risk Consistency

In this subsection, we consider a fixed distribution P and state consistency results in
terms of the event Cn,δ. Consequently, the model size d and the number of edges k are
fixed. This lends insight into deriving results for the order of the risk consistency and
provides intuition for the high-dimensional scenario in Section 5.6.2.

Theorem 5.8. (Error Exponent for δ-Risk Consistency) For CLThres, there exists a
constant δ0 > 0 such that for all 0 < δ < δ0,

lim sup
n→∞

1

n
logPn(Cn,δ) ≤ −δ. (5.24)

The corresponding lower bound is

lim inf
n→∞

1

n
logPn(Cn,δ) ≥ −δ d. (5.25)

The theorem, proved in Appendix 5.G, states that if δ is sufficiently small, the
decay rate of the probability of Cn,δ is exponential, hence clearly CLThres is δ-risk
consistent. Furthermore, the bounds on the error exponent associated to the event Cn,δ
are independent of the parameters of P and only depend on δ and the dimensionality d.
Intuitively, (5.24) is true because if we want the risk of P ∗ to be at most δd, then each
of the empirical pairwise marginals P̂i,j should be δ-close to the true pairwise marginal

P̃i,j . Note also that for Cn,δ to occur with high probability, the edge set does not need
to be estimated correctly so there is no dependence on k.

� 5.6.2 The High-Dimensional Setting

We again consider the high-dimensional setting where the tuple of parameters (n, dn, kn)
tend to infinity and we have a sequence of learning problems indexed by the number
of data points n. We again assume that (5.16) and (5.17) hold and derive sufficient
conditions under which the probability of the event Cn,δ tends to zero for a sequence of
d-variate distributions {P (d) ∈ P(X d)}d∈N. The proof of Theorem 5.8 leads immediately
to the following corollary.

Corollary 5.9. (δ-Risk Consistency Scaling Law) Let δ > 0 be a sufficiently small
constant and a ∈ (0, δ). If the number of variables in the sequence of models {P (d)}d∈N
satisfies dn = o (exp(an)) , then CLThres is δ-risk consistent for {P (d)}d∈N.

Interestingly, this sufficient condition on how number of variables d should scale
with n for consistency is very similar to Theorem 5.5. In particular, if d is polynomial
in n, then CLThres is both structurally consistent as well as δ-risk consistent. We now
study the order of the risk consistency of CLThres as the model size d grows.

Theorem 5.10. (Order of Risk Consistency) Fix γ > 0. The risk of the sequence
of estimated distributions {(P (d))∗}d∈N with respect to the probability models {P (d)}d∈N
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satisfies

Rn((P (d))∗) = Op

(
d log d

n1−γ

)
. (5.26)

That is, the risk consistency for CLThres is of order (d log d)/n1−γ.

This result, proved in Appendix 5.I, implies that if d = o(n1−2γ) then CLThres is
risk consistent, i.e., Rn((P (d))∗) → 0 in probability. Note that this result is not the
same as the conclusion of Corollary 5.9 which refers to the probability that the average
risk is greater than a fixed constant δ. Also, note that the order of convergence given
in (5.26) does not depend on the true number of edges k. This is a consequence of the
result in (5.24) where the upper bound on the exponent associated to the event Cn,δ is
independent of the parameters of P .

The order of the risk, or equivalently the rate of convergence of the estimated
distribution to the forest projection, is almost linear in the number of variables d and
inversely proportional to n. We provide three intuitive reasons to explain why this is
plausible:

1. The dimension of the vector of sufficient statistics in a tree-structured graphical
model is of the order O(d) (see Section 2.4.3).

2. The ML estimator of the natural parameters of an exponential family converges
to its true value at the rate of Op(n

−1/2) (see Section 4.2.2 in Serfling [177] or
Section 2.2.4).

3. Locally, the KL-divergence behaves like the square of a weighted Euclidean norm
of the natural parameters (see Eq. (2.24)).

We now compare Theorem 5.10 to the corresponding results in Liu et al. [132]
and Gupta et al. [89]. In these recent papers, it was shown that by modeling the
bivariate densities P̂i,j as functions from a Hölder class with exponent α > 0 and using
a reconstruction algorithm based on validation on a held-out dataset, the risk decays at
a rate7 of Õp(dn

−α/(1+2α)), which is slower than the order of risk consistency in (5.26).
This is due to the need to compute the bivariate densities via kernel density estimation.
Furthermore, we model the pairwise joint distributions as discrete probability mass
functions and not continuous probability density functions, hence there is no dependence
on Hölder exponents.

� 5.7 Numerical Results

In this section, we perform numerical simulations on synthetic and real datasets to
study the effect of a finite number of samples on the probability of the event An defined
in (5.8). Recall that this is the error event associated to an incorrect learned structure.

7The Õp(·) notation suppresses the dependence on factors involving logarithms.
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Figure 5.2. The forest-structured distribution Markov on d nodes and k edges. VariablesXk+1, . . . , Xd
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Figure 5.3. The error probability of structure learning for β ∈ (0, 1).

� 5.7.1 Synthetic Datasets

In order to compare our estimate to the ground truth graph, we learn the structure
of distributions that are Markov on the forest shown in Figure 5.2. Thus, a subgraph
(nodes 1, . . . , k+1) is a (connected) star while nodes k+2, . . . , d−1 are not connected to
the star. Each random variable Xj takes on values from a binary alphabet X = {0, 1}.
Furthermore, Pj(xj) = 0.5 for xj = 0, 1 and all j ∈ V . The conditional distributions
are governed by the “binary symmetric channel”:

Pj|1(xj |x1) =
{

0.7 xj = x1
0.3 xj 6= x1

(5.27)

for j = 2, . . . , k + 1. We further assume that the regularization sequence is given by
εn := n−β for some β ∈ (0, 1). Recall that this sequence satisfies the conditions in
(5.10). We vary β in our experiments to observe its effect on the overestimation and
underestimation errors.

In Figure 5.3, we show the simulated error probability as a function of the sample size
n for a d = 101 node graph (as in Figure 5.2) with k = 50 edges. The error probability is
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Figure 5.4. The overestimation and underestimation errors for β ∈ (0, 1).

estimated based on 30,000 independent runs of CLThres (over different datasets xn). We
observe that the error probability is minimized when β ≈ 0.625. Figure 5.4 shows the
simulated overestimation and underestimation errors for this experiment. We see that
as β → 0, the overestimation (resp. underestimation) error is likely to be small (resp.
large) because the regularization sequence εn is large. When the number of samples
is relatively small as in this experiment, both types of errors contribute significantly
to the overall error probability. When β ≈ 0.625, we have the best tradeoff between
overestimation and underestimation for this particular experimental setting.

Even though we mentioned that β in (5.14) should be chosen to be close to zero
so that the error probability of structure learning decays as rapidly as possible, this
example demonstrates that when given a finite number of samples, β should be chosen
to balance the overestimation and underestimation errors. This does not violate The-
orem 5.3 since Theorem 5.3 is an asymptotic result and refers to the typical way an
error occurs in the limit as n→∞. Indeed, when the number of samples is very large,
it is shown that the overestimation error dominates the overall probability of error and
so one should choose β to be close to zero. The question of how best to select optimal
β when given only a finite number of samples appears to be a challenging one. We use
cross-validation as a proxy to select this parameter for the real-world datasets in the
next section.

In Figure 5.5, we fix the value of β at 0.625 and plot the KL-divergence D(P ||P ∗) as
a function of the number of samples. This is done for a forest-structured distribution P
whose graph is shown in Figure 5.2 and with d = 21 nodes and k = 10 edges. The mean,
minimum and maximum KL-divergences are computed based on 50 independent runs
of CLThres. We see that logD(P ||P ∗) decays linearly. Furthermore, the slope of the
mean curve is approximately −1, which is in agreement with (5.26). This experiment
shows that if we want to reduce the KL-divergence between the estimated and true
models by a constant factor A > 0, we need to increase the number of samples by
roughly the same factor A.
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Figure 5.5. Mean, minimum and maximum (across 50 different runs) of the KL-divergence between
the estimated model P ∗ and the true model P for a d = 21 node graph with k = 10 edges.

� 5.7.2 Real datasets

We now demonstrate how well forests-structured distributions can model two real
datasets8 which are obtained from the UCI Machine Learning Repository [144]. The
first dataset we used is known as the SPECT Heart dataset, which describes diagnosing
of cardiac Single Proton Emission Computed Tomography (SPECT) images on normal
and abnormal patients. The dataset contains d = 22 binary variables and n = 80
training samples. There are also 183 test samples. We learned a forest-structured
distributions using the 80 training samples for different β ∈ (0, 1) and subsequently
computed the log-likelihood of both the training and test samples. The results are
displayed in Figure 5.6. We observe that, as expected, the log-likelihood of the training
samples increases monotonically with β. This is because there are more edges in the
model when β is large improving the modeling ability. However, we observe that there
is overfitting when β is large as evidenced by the decrease in the log-likelihood of the
183 test samples. The optimal value of β in terms of the log-likelihood for this dataset
is ≈ 0.25, but surprisingly an approximation with an empty graph9 also yields a high
log-likelihood score on the test samples. This implies that according to the available
data, the variables are nearly independent. The forest graph for β = 0.25 is shown in
Figure 5.7(a) and is very sparse.

The second dataset we used is the Statlog Heart dataset containing physiological
measurements of subjects with and without heart disease. There are 270 subjects and

8These datasets are typically employed for binary classification but we use them for modeling pur-
poses.

9When β = 0 we have an empty graph because all empirical mutual information quantities in this
experiment are smaller than 1.
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Figure 5.6. Log-likelihood scores on the SPECT dataset

d = 13 discrete and continuous attributes, such as gender and resting blood pressure.
We quantized the continuous attributes into two bins. Those measurements that are
above the mean are encoded as 1 and those below the mean as 0. Since the raw dataset
is not partitioned into training and test sets, we learned forest-structured models based
on a randomly chosen set of n = 230 training samples and then computed the log-
likelihood of these training and 40 remaining test samples. We then chose an additional
49 randomly partitioned training and test sets and performed the same learning task
and computation of log-likelihood scores. The mean of the log-likelihood scores over
these 50 runs is shown in Figure 5.8. We observe that the log-likelihood on the test set is
maximized at β ≈ 0.53 and the tree approximation (β ≈ 1) also yields a high likelihood
score. The forest learned when β = 0.53 is shown in Figure 5.7(b). Observe that
two nodes (ECG and Cholesterol) are disconnected from the main graph because their
mutual information values with other variables are below the threshold. In contrast,
HeartDisease, the label for this dataset, has the highest degree, i.e., it influences and
is influenced by many other covariates. The strengths of the interactions between
HeartDisease and its neighbors are also strong as evidenced by the bold edges.

From these experiments, we observe that some datasets can be modeled well as
proper forests with very few edges while others are better modeled as distributions
that are almost tree-structured (see Figure 5.7). Also, we need to choose β carefully
to balance between data fidelity and overfitting. In contrast, our asymptotic result
in Theorem 5.3 says that εn should be chosen according to (5.10) so that we have
structural consistency. When the number of data points n is large, β in (5.14) should
be chosen to be small to ensure that the learned edge set is equal to the true one
(assuming the underlying model is a forest) with high probability as the overestimation
error dominates.
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Figure 5.7. Learned forest graph of the (a) SPECT dataset for β = 0.25 and (b) HEART dataset for
β = 0.53. Bold edges denote higher mutual information values. The features names are not provided
for the SPECT dataset.

� 5.8 Chapter Summary

In this chapter, we proposed an efficient algorithm CLThres for learning the parameters
and the structure of forest-structured graphical models. We showed that the asymptotic
error rates associated to structure learning are nearly optimal. We also provided the
rate at which the error probability of structure learning tends to zero and the order
of the risk consistency. There are many open problems that could possibly leverage
on the proof techniques employed here. For example, we can analyze the learning of
locally tree-like graphical models [58, 140] such as Ising models [139] on Erdös-Rényi
random graphs [24] using similar thresholding-like techniques on empirical correlation
coefficients. We discuss this line of research, which is currently ongoing, in greater
detail in Chapter 8.

Appendices for Chapter 5

� 5.A Proof of Proposition 5.2

Proof. (Sketch) The proof of this result hinges on the fact that both the overestimation
and underestimation errors decay to zero exponentially fast when the threshold is chosen
to be Imin/2. This threshold is able to differentiate between true edges (with MI larger
than Imin) from non-edges (with MI smaller than Imin) with high probability for n
sufficiently large. The error for learning the top k edges of the forest also decays
exponentially fast (see Chapter 3). Thus, (5.9) holds. The full details of the proof
follow in a straightforward manner from Appendix 5.B.
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Figure 5.8. Log-likelihood scores on the HEART dataset

� 5.B Proof of Theorem 5.3

Define the event Bn := {Êk 6= EP }, where Êk = {ê1, . . . , êk} is the set of top k edges
(see Step 2 of CLThres for notation). This is the Chow-Liu error as mentioned in
Section 5.4.3. Note that in Bcn, the estimated edge set depends on k, the true model
order, which is a-priori unknown to the learner. Further define the constant

KP := lim
n→∞

− 1

n
logPn(Bn). (5.28)

In other words, KP is the error exponent for learning the forest structure incorrectly
assuming the true model order k is known and Chow-Liu terminates after the addition of
exactly k edges in the MWST procedure [120, 158]. The existence of the limit in (5.28)
and the positivity of KP follow from the main results in Chapter 3.

We first state a result which relies on the Gallager-Fano bound [73, pp. 24]. The
proof will be provided at the end of this appendix.

Lemma 5.11. (Reduction to Model Order Estimation) For every η ∈ (0,KP ), there
exists a N ∈ N sufficiently large such that for every n > N , the error probability Pn(An)
satisfies

(1− η)Pn(k̂n 6= k|Bcn) ≤ Pn(An) (5.29)

≤ Pn(k̂n 6= k|Bcn) + 2 exp(−n(KP − η)). (5.30)

Proof. (of Theorem 5.3) We prove (i) the upper bound in (5.12) (ii) the lower bound
in (5.11) and (iii) the exponential rate of decay in the case of trees (5.13).

Proof of upper bound in Theorem 5.3

We now bound the error probability Pn(k̂n 6= k|Bcn) in (5.30). Using the union bound,

Pn(k̂n 6= k|Bcn) ≤ Pn(k̂n > k|Bcn) + Pn(k̂n < k|Bcn). (5.31)
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The first and second terms are known as the overestimation and underestimation errors
respectively. We show that the underestimation error decays exponentially fast. The
overestimation error decays only subexponentially fast and so its rate of decay dominates
the overall rate of decay of the error probability for structure learning.

Underestimation Error

We now bound these terms staring with the underestimation error. By the union bound,

Pn(k̂n < k|Bcn) ≤ (k − 1) max
1≤j≤k−1

Pn(k̂n = j|Bcn) (5.32)

= (k − 1)Pn(k̂n = k − 1|Bcn), (5.33)

where (5.33) follows because Pn(k̂n = j|Bcn) is maximized when j = k − 1. By the rule
for choosing k̂n in (5.4),

Pn(k̂n = k − 1|Bcn) = Pn(∃ e ∈ EP s.t. I(P̂e) ≤ εn), (5.34)

≤ k max
e∈EP

Pn(I(P̂e) ≤ εn), (5.35)

where (5.35) follows from the union bound. Now, note that if e ∈ EP , then I(Pe) > εn
for n sufficiently large (since εn → 0). Thus, by Sanov’s theorem

Pn(I(P̂e) ≤ εn) ≤ (n+ 1)r
2
exp

(
−n min

Q∈P(X 2)
{D(Q ||Pe) : I(Q) ≤ εn}

)
. (5.36)

Define the good rate function [59] in (5.36) to be L : P(X 2) × [0,∞) → [0,∞), which
is given by

L(Pe; a) := min
Q∈P(X 2)

{D(Q ||Pe) : I(Q) ≤ a} . (5.37)

Clearly, L(Pe; a) is continuous in a. Furthermore it is monotonically decreasing in a
for fixed Pe. Thus, to every η ∈ (0, L(εn; 0)), there exists a N ∈ N such that for all
n > N we have L(Pe; εn) > L(Pe; 0) − η. As such, we can further upper bound the
error probability in (5.36) as

Pn(I(P̂e) ≤ εn) ≤ (n+ 1)r
2
exp (−n(L(Pe; 0)− η)) . (5.38)

By using the fact that Imin > 0, the exponent L(Pe; 0) > 0 and thus, we can put the
pieces in (5.33), (5.35) and (5.38) together to show that the underestimation error is
upper bounded as

Pn(k̂n < k|Bcn) ≤ k(k − 1)(n+ 1)r
2
exp

(
−n min

e∈EP

(L(Pe; 0)− η)
)
. (5.39)

Hence, if k is constant, the underestimation error Pn(k̂n < k|Bcn) decays to zero expo-
nentially fast as n→∞, i.e,

lim sup
n→∞

1

n
logPn(k̂n < k|Bcn) ≤ − min

e∈EP

(L(Pe; 0)− η). (5.40)
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Now take the limit as η → 0 to conclude that:

lim sup
n→∞

1

n
logPn(k̂n < k|Bcn) ≤ −LP . (5.41)

The exponent LP := mine∈EP
L(Pe; 0) is positive because we assumed that the model

is minimal and so Imin > 0, which ensures the positivity of the rate function L(Pe; 0)
for each true edge e ∈ EP .

Overestimation Error

Bounding the overestimation error is harder. It follows by first applying the union
bound:

Pn(k̂n > k|Bcn) ≤ (d− k − 1) max
k+1≤j≤d−1

Pn(k̂n = j|Bcn) (5.42)

= (d− k − 1)Pn(k̂n = k + 1|Bcn), (5.43)

where (5.43) follows because Pn(k̂n = j|Bcn) is maximized when j = k + 1 in (5.42).
Apply the union bound again, we have

Pn(k̂n = k + 1|Bcn) ≤ (d− k − 1) max
e∈V×V :I(Pe)=0

Pn(I(P̂e) ≥ εn). (5.44)

From (5.44), it suffices to bound Pn(I(P̂e) ≥ εn) for any pair of independent random
variables (Xi, Xj) and e = (i, j). We proceed by applying the upper bound in Sanov’s
theorem which yields

Pn(I(P̂e) ≥ εn) ≤ (n+ 1)r
2
exp

(
−n min

Q∈P(X 2)
{D(Q ||Pe) : I(Q) ≥ εn}

)
, (5.45)

for all n ∈ N. Our task now is to lower bound the good rate function in (5.45), which
we denote as M : P(X 2)× [0,∞)→ [0,∞):

M(Pe; b) := min
Q∈P(X 2)

{D(Q ||Pe) : I(Q) ≥ b} . (5.46)

Note thatM(Pe; b) is monotonically increasing and continuous in b for fixed Pe. Because
the sequence {εn}n∈N tends to zero, when n is sufficiently large, εn is arbitrarily small
and we are in the so-called very-noisy regime [26], where the optimizer to (5.46), denoted
as Q∗

n, is very close to Pe. See Figure 5.9. Thus, when n is large, the KL-divergence
and mutual information can be approximated as

D(Q∗
n ||Pe) =

1

2
vTΠev + o(‖v‖2), (5.47)

I(Q∗
n) =

1

2
vTHev + o(‖v‖2), (5.48)
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Figure 5.9. As εn → 0, the projection of Pe onto the constraint set {Q : I(Q) ≥ εn}, denoted Q∗
n

(the optimizer in (5.46)), approaches Pe. The approximations in (5.47) and (5.48) become increasingly
accurate as εn tends to zero. In the figure, n2 > n1 and εn1

> εn2
and the curves are the (sub-)manifold

of distributions such that the mutual information is constant, i.e., the mutual information level sets.

where10 v := vec(Q∗
n)− vec(Pe) ∈ Rr

2
. The r2 × r2 matrices Πe and He are defined as

Πe := diag(1/vec(Pe)), (5.49)

He := ∇2
vec(Q)I(vec(Q))

∣∣
Q=Pe

. (5.50)

In other words, Πe is the diagonal matrix that contains the reciprocal of the elements
of vec(Pe) on its diagonal. He is the Hessian11 of I(vec(Q)), viewed as a function
of vec(Q) and evaluated at Pe. As such, the exponent for overestimation in (5.46)
can be approximated by a quadratically constrained quadratic program (QCQP), where
z := vec(Q)− vec(Pe):

M̃(Pe; εn) = min
z∈Rr2

1

2
zTΠez, (5.51)

subject to
1

2
zTHez ≥ εn, zT1 = 0. (5.52)

We now argue that the approximate rate function M̃ in (5.52), can be lower bounded
by a quantity that is proportional to εn. To show this, we resort to Lagrangian duality
[18, Ch. 5]. It can easily be shown that the Lagrangian dual corresponding to the primal
in (5.52) is

g(Pe; εn) := εnmax
µ≥0
{µ : Πe � µHe}. (5.53)

We see from (5.53) that g(Pe; εn) is proportional to εn. By weak duality [18, Proposition
5.1.3], any dual feasible solution provides a lower bound to the primal, i.e.,

g(Pe; εn) ≤ M̃(Pe; εn). (5.54)

10The operator vec(C) vectorizes a matrix in a column oriented way. Thus, if C ∈ Rl×l, vec(C) is a
length-l2 vector with the columns of C stacked one on top of another (C(:) in Matlab).

11The first two terms in the Taylor expansion of the mutual information I(vec(Q∗
n)) in (5.48) vanish

because (i) I(Pe) = 0 and (ii) (vec(Q∗
n) − vec(Pe))

T∇vec(Q)I(vec(Pe)) = 0. Indeed, if we expand
I(vec(Q)) around a product distribution, the constant and linear terms vanish [26]. Note that He in
(5.50) is an indefinite matrix because I(vec(Q)) is not convex.
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Note that strong duality (equality in (5.54)) does not hold in general due in part to
the non-convex constraint set in (5.52). Interestingly, our manipulations lead lower

bounding M̃ by (5.53), which is a (convex) semidefinite program [200].
Now observe that the approximations in (5.47) and (5.48) are accurate in the limit

of large n because the optimizing distribution Q∗
n becomes increasingly close to Pe.

By continuity of the optimization problems in (perturbations of) the objective and the

constraints, M̃(Pe; εn) and M(Pe; εn) are close when n is large, i.e.,

lim
n→∞

∣∣∣M̃(Pe; εn)−M(Pe; εn)
∣∣∣ = 0. (5.55)

By applying the continuity statement above to (5.45), for every η > 0, there exists a
N ∈ N such that

Pn(I(P̂e) ≥ εn) ≤ (n+ 1)r
2
exp

(
−n(M̃(Pe; εn)− η)

)
, (5.56)

for all n > N . Define the constant

cP := min
e∈V×V : I(Pe)=0

max
µ≥0
{µ : Πe � µHe}. (5.57)

By (5.53), (5.54) and the definition of cP in (5.57),

Pn(I(P̂e) ≥ εn) ≤ (n+ 1)r
2
exp (−nεn(cP − η)) . (5.58)

Putting (5.43), (5.44) and (5.58) together, we see that the overestimation error is upper
bounded as

Pn(k̂n > k|Bcn) ≤ (d− k − 1)2(n+ 1)r
2
exp (−nεn(cP − η)) . (5.59)

Thus, by taking the normalized logarithm (normalized by nεn), we have

1

nεn
logPn(k̂n > k|Bcn) ≤

2

nεn
log(d− k − 1) +

r2 log(n+ 1)

nεn
− (cP − η). (5.60)

Taking the lim sup in n and keeping in mind that d, k = O(1) and nεn/ logn→∞, we
conclude that

lim sup
n→∞

1

nεn
logPn(k̂n > k|Bcn) ≤ −cP + η. (5.61)

If we now allow η in (5.61) to tend to 0, we see that it remains to prove that cP = 1 for
all P . For this purpose, it suffices to show that the optimal solution to the optimization
problem in (5.53), denoted µ∗, is equal to one for all Πe and He. Note that µ∗ can be
expressed in terms of eigenvalues:

µ∗ =
(
max

{
eig(Π−1/2

e HeΠ
−1/2
e )

})−1
, (5.62)
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where eig(·) denotes the set of real eigenvalues of a symmetric matrix. By using the
definitions of Πe and He in (5.49) and (5.50) respectively, we can verify that the matrix

I−Π
−1/2
e HeΠ

−1/2
e is positive semidefinite with an eigenvalue at zero. This proves that

the largest eigenvalue of Π
−1/2
e HeΠ

−1/2
e is one and hence from (5.62), µ∗ = 1. The

proof of the upper bound in (5.12) is completed by combining the estimates in (5.30),
(5.41) and (5.61).

Proof of lower bound in Theorem 5.3

The key idea is to bound the overestimation error using a modification of the lower
bound in Sanov’s theorem in (2.52). To prove the lower bound in (5.11), assume that
k < d − 1 and note that the error probability Pn(k̂n 6= k|Bcn) can be lower bounded
by Pn(I(P̂e) ≥ εn) for any node pair e such that I(Pe) = 0. We seek to lower bound
the latter probability by appealing to (2.44). Now choose a sequence of n-types Q(n) ∈
int({Q ∈ Pn(X 2) : I(Q) ≥ εn}) such that

lim
n→∞

∣∣∣M(Pe; εn)−D(Q(n) ||Pe)
∣∣∣ = 0. (5.63)

This is possible because the set of types is dense in the probability simplex (see
Lemma 2.16). Thus,

Pn(I(P̂e) ≥ εn) =
∑

Q∈Pn(X 2):I(Q)≥εn

Pn(Tn(Q)) (5.64)

≥ Pn(Tn(Q(n))) (5.65)

≥ (n+ 1)−r
2
exp(−nD(Q(n) ||Pe)), (5.66)

where (5.66) follows from the lower bound in (2.44). By applying (5.55), and using the
fact that if |an − bn| → 0 and |bn − cn| → 0 then, |an − cn| → 0, we also have

lim
n→∞

∣∣∣M̃(Pe; εn)−D(Q(n) ||Pe)
∣∣∣ = 0. (5.67)

Hence, continuing the chain in (5.66), for any η > 0, there exists a N ∈ N such that for
all n > N ,

Pn(I(P̂e) ≥ εn) ≥ (n+ 1)−r
2
exp(−n(M̃(Pe; εn) + η)). (5.68)

Note that an upper bound for M̃(Pe; εn) in (5.52) is simply given by the objective
evaluated at any feasible point. In fact, by manipulating (5.52), we see that the upper
bound is also proportional to εn, i.e.,

M̃(Pe; εn) ≤ CPeεn, (5.69)
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where CPe ∈ (0,∞) is some constant12 that depends on the matrices Πe and He. Define
CP := maxe∈V×V :I(Pe)=0CPe . Continuing the lower bound in (5.68), we obtain

Pn(I(P̂e) ≥ εn) ≥ (n+ 1)−r
2
exp(−nεn(CP + η)), (5.70)

for n sufficiently large. Now take the normalized logarithm and the lim inf to conclude
that

lim inf
n→∞

1

nεn
logPn(k̂n 6= k|Bcn) ≥ −(CP + η). (5.71)

Substituting (5.71) into the lower bound in (5.29) and taking η → 0 completes proof of
the lower bound in Theorem 5.3.

Proof of the exponential decay rate for trees in Theorem 5.3

For the claim in (5.13), note that for n sufficiently large,

Pn(An) ≥ max{(1− η)Pn(k̂n 6= kn|Bcn), Pn(Bn)}, (5.72)

from Lemma 5.11 and the fact that Bn ⊆ An. If k = d − 1, the overestimation error
probability is identically zero. Furthermore, from (5.41) and a corresponding lower
bound which we omit, the underestimation error event satisfies Pn(k̂n < k|Bcn)

.
=

exp(−nLP ). Combining this fact with the definition of the error exponent KP in (5.28)
and the result in (5.72) establishes (5.13).

Proof. (of Lemma 5.11) We note that Pn(An|k̂n 6= k) = 1 and thus,

Pn(An) ≤ Pn(k̂n 6= k) + Pn(An|k̂n = k). (5.73)

By using the definition of KP in (5.28), the second term in (5.73) is precisely Pn(Bn)
therefore,

Pn(An) ≤ Pn(k̂n 6= k) + exp(−n(KP − η)), (5.74)

for all n > N1. We further bound Pn(k̂n 6= k) by conditioning on the event Bcn. Thus,
for η > 0,

Pn(k̂n 6= k) ≤ Pn(k̂n 6= k|Bcn) + Pn(Bn) (5.75)

≤ Pn(k̂n 6= k|Bcn) + exp(−n(KP − η)), (5.76)

for all n > N2. The upper bound result follows by combining (5.74) and (5.76). The
lower bound follows by the chain

Pn(An) ≥ Pn(k̂n 6= k) ≥ Pn({k̂n 6= k} ∩ Bcn) (5.77)

= Pn(k̂n 6= k|Bcn)Pn(Bcn) ≥ (1− η)Pn(k̂n 6= k|Bcn), (5.78)

which holds for all n > N3 since Pn(Bcn) → 1. Now the claims in (5.29) and (5.30)
follow by taking N := max{N1, N2, N3}.

12We can easily remove the constraint zT1 in (5.52) by a simple change of variables to only consider
those vectors in the subspace orthogonal to the all ones vector so we ignore it here for simplicity. To
obtain CPe , suppose the matrix We diagonalizes He, i.e., He = WT

e DeWe, then one can, for example,
choose CPe = mini:[De]i,i>0[W

T
e ΠeWe]i,i.
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� 5.C Proof of Corollary 5.4

Proof. This claim follows from the fact that three errors (i) Chow-Liu error (ii) under-
estimation error and (iii) overestimation error behave in exactly the same way as in
Theorem 5.3. In particular, the Chow-Liu error, i.e., the error for the learning the top
k edges in the forest projection model P̃ decays with error exponent KP . The under-
estimation error behaves as in (5.41) and the overestimation error as in (5.61).

� 5.D Proof of Theorem 5.5

Proof. Given assumptions (A1) and (A2), we claim that the underestimation exponent
LP (d) , defined in (5.41), is uniformly bounded away from zero, i.e.,

L := inf
d∈N

LP (d) = inf
d∈N

min
e∈E

P (d)

L(P (d)
e ; 0) (5.79)

is positive. Before providing a formal proof, we provide a plausible argument to show
that this claim is true. Recall the definition of L(Pe; 0) in (5.37). Assuming that the
joint Pe = Pi,j is close to a product distribution or equivalently if its mutual information
I(Pe) is small (which is the worst-case scenario),

L(Pe; 0) ≈ min
Q∈P(X 2)

{D(Pe ||Q) : I(Q) = 0} (5.80)

= D(Pe ||Pi Pj) = I(Pe) ≥ Iinf > 0, (5.81)

where in (5.80), the arguments in the KL-divergence have been swapped. This is because
when Q ≈ Pe entry-wise, D(Q ||Pe) ≈ D(Pe ||Q) in the sense that their difference is
small compared to their absolute values [26]. In (5.81), we used the fact that the reverse
I-projection of Pe onto the set of product distributions is PiPj . Since Iinf is constant,
this proves the claim, i.e., L > 0.

More formally, let Bκ′ := {Qi,j ∈ P(X 2) : Qi,j(xi, xj) ≥ κ′, ∀xi, xj ∈ X} be the set
of joint distributions whose entries are bounded away from zero by κ′ > 0. Now, consider

a pair of joint distributions P
(d)
e , P̃

(d)
e ∈ Bκ′ whose minimum values are uniformly

bounded away from zero as assumed in (A2). Then there exists a constant (independent
of d) U ∈ (0,∞) such that for all d,

|I(P (d)
e )− I(P̃ (d)

e )| ≤ U‖vec(P (d)
e )− vec(P̃ (d)

e )‖1, (5.82)

where ‖ · ‖1 is the vector `1 norm. In fact,

U := max
Q∈Bκ′

‖∇I(vec(Q))‖∞ (5.83)

is the Lipschitz constant of I(·) which is uniformly bounded because the joints P
(d)
e and

P̃
(d)
e are assumed to be uniformly bounded away from zero.
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Suppose, to the contrary, L = 0. Then by the definition of the infimum in (5.79),
for every ε > 0, there exists a d ∈ N and a corresponding e ∈ EP (d) such that if Q∗ is
the optimizer in (5.37),

ε > D(Q∗ ||P (d)
e )

(a)

≥ ‖vec(P
(d)
e )− vec(Q∗)‖21
2 log 2

(b)

≥ |I(P
(d)
e )− I(Q∗)|2
(2 log 2)U2

(c)

≥ I2inf
(2 log 2)U2

, (5.84)

where (a) follows from Pinsker’s inequality (see (2.22) or [47, Lemma 11.6.1]), (b) is

an application of (5.82) and the fact that if P
(d)
e ∈ Bκ is uniformly bounded from zero

(as assumed in (5.17)) so is the associated optimizer Q∗ (i.e., in Bκ′ for some possibly
different uniform κ′ > 0). Statement (c) follows from the definition of Iinf and the fact
that Q∗ is a product distribution, i.e., I(Q∗) = 0. Since ε can be chosen to be arbitrarily
small and the rightmost quantity in (5.84) is finite, we arrive at a contradiction. Thus
L in (5.79) is positive. Finally, we observe from (5.39) that if n > (2/L) log k the
underestimation error tends to zero. Take C2 = 2/L in (5.18).

Similarly, given the same assumptions, the error exponent for structure learning
KP (d) , defined in (5.28), is also uniformly bounded away from zero, i.e.,

K := inf
d∈N

KP (d) > 0. (5.85)

Thus, according to the proof of Theorem 3.4 in Chapter 3 (see (3.75) – (3.80)) if
n > (3/K) log d, the error probability associated to estimating the top k edges (event
Bn) decays to zero. Take C1 = 3/K in (5.18).

Finally, from (5.59), if nεn > 2 log(d − k), then the overestimation error tends
to zero. Since from (5.10), εn can take the form n−β for β > 0, this is equivalent
to n1−β > 2 log(d − k), which is the same as the first condition in (5.18), namely
n > (2 log(d − k))1+ζ . By (5.30) and (5.31), these three probabilities constitute the
overall error probability when learning the sequence of forest structures {EP (d)}d∈N.
Thus the conditions in (5.18) suffice for high-dimensional consistency.

� 5.E Proof of Corollary 5.6

Proof. First note that kn ∈ {0, . . . , dn − 1}. From (5.60), we see that for n sufficiently
large, the sequence hn(P ) := (nεn)

−1 logPn(An) is upper bounded by

−1 + 2

nεn
log(dn − kn − 1) +

r2 log(n+ 1)

nεn
. (5.86)

The last term in (5.86) tends to zero by (5.10). Thus hn(P ) = O((nεn)
−1 log(dn −

kn − 1)). Clearly, this sequence is maximized (resp. minimized) when kn = 0 (resp.
kn = dn − 1). Eq. (5.86) also shows that the sequence hn is monotonically decreasing
in kn.
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� 5.F Proof of Theorem 5.7

Proof. We first focus on part (a). Part (b) follows in a relatively straightforward man-
ner. Define

T̂MAP(x
n) := argmax

t∈T d
k

P(TP = t|xn) (5.87)

to be the maximum a-posteriori (MAP) decoding rule. By the optimality of the MAP
rule, this bounds the error probability of any estimator. LetW := T̂MAP((X d)n) be the
range of the function T̂MAP. Note that W ∪Wc = T dk . Then, we have

P(T̂ 6= TP ) =
∑

t∈T d
k

P(T̂ 6= TP |TP = t)P(TP = t) (5.88)

≥
∑

t∈Wc

P(T̂ 6= TP |TP = t)P(TP = t) (5.89)

=
∑

t∈Wc

P(TP = t) = 1−
∑

t∈W

P(TP = t) (5.90)

= 1−
∑

t∈W

|T dk |−1 (5.91)

≥ 1− rnd|T dk |−1, (5.92)

where in (5.90), we used the fact that P(T̂ 6= TP |TP = t) = 1 if t ∈ Wc, in (5.91), the
fact that P(TP = t) = 1/|T dk |. In (5.92), we used the observation |W| ≤ (|X d|)n = rnd

since the function T̂MAP : (X d)n →W is surjective. Now, the number of labeled forests
with k edges and d nodes is [3, pp. 204] |T dk | ≥ (d−k)dk−1 ≥ dk−1. Applying this lower
bound to (5.92), we obtain

P(T̂ 6= TP ) ≥ 1− exp (nd log r − (k − 1) log d) > 1− exp ((%− 1)(k − 1) log d) , (5.93)

where the second inequality follows by choice of n in (5.20). The estimate in (5.93)
converges to 1 as (k, d) → ∞ since % < 1. The same reasoning applies to part (b) but
we instead use the following estimates of the cardinality of the set of forests [3, Ch. 30]:

(d− 2) log d ≤ log |Fd| ≤ (d− 1) log(d+ 1). (5.94)

Note that we have lower bounded |Fd| by the number trees with d nodes which is dd−2

by Cayley’s formula [3, Ch. 30]. The upper bound13 follows by a simple combinatorial
argument which is omitted. Using the lower bound in (5.94), we have

P(T̂ 6= TP ) ≥ 1− exp(nd log r) exp(−(d− 2) log d) > 1− d2 exp((%− 1)d log d), (5.95)

with the choice of n in (5.21). The estimate in (5.95) converges to 1, completing the
proof.

13The purpose of the upper bound is to show that our estimates of |Fd| in (5.94) are reasonably tight.
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� 5.G Proof of Theorem 5.8

Proof. We assume that P is Markov on a forest since the extension to non-forest-
structured P is a straightforward generalization. We start with some useful definitions.
Recall from Appendix 5.B that Bn := {Êk 6= EP } is the event that the top k edges
(in terms of mutual information) in the edge set Êd−1 are not equal to the edges in
EP . Also define C̃n,δ := {D(P ∗ ||P ) > δd} to be the event that the divergence between

the learned model and the true (forest) one is greater than δd. We will see that C̃n,δ
is closely related to the event of interest Cn,δ defined in (5.23). Let Un := {k̂n < k} be
the underestimation event. Our proof relies on the following result, which is similar to
Lemma 5.11, hence its proof is omitted.

Lemma 5.12. For every η > 0, there exists a N ∈ N such that for all n > N , the
following bounds on Pn(C̃n,δ) hold:

(1− η)Pn(C̃n,δ|Bcn,Ucn) ≤ Pn(C̃n,δ) (5.96)

≤ Pn(C̃n,δ|Bcn,Ucn) + exp(−n(min{KP , LP } − η)). (5.97)

Note that the exponential term in (5.97) comes from an application of the union
bound and the “largest-exponent-wins” principle in large-deviations theory. From (5.96)
and (5.97) we see that it is possible to bound the probability of C̃n,δ by providing upper

and lower bounds for Pn(C̃n,δ|Bcn,Ucn). In particular, we show that the upper bound
equals exp(−nδ) to first order in the exponent. This will lead directly to (5.24). To
proceed, we rely on the following lemma, which is a generalization of a well-known
result [47, Ch. 11]. We defer the proof to the end of the section.

Lemma 5.13. (Empirical Divergence Bounds) Let X,Y be two random variables whose
joint distribution is PX,Y ∈ P(X 2) and |X | = r. Let (xn, yn) = {(x1, y1), . . . , (xn, yn)}
be n independent and identically distributed observations drawn from PX,Y . Then, for
every n,

PnX,Y (D(P̂X|Y ||PX|Y ) > δ) ≤ (n+ 1)r
2
exp(−nδ), (5.98)

where P̂X|Y = P̂X,Y /P̂Y is the conditional type of (xn, yn). Furthermore,

lim inf
n→∞

1

n
logPnX,Y (D(P̂X|Y ||PX|Y ) > δ) ≥ −δ. (5.99)

It is worth noting that the bounds in (5.98) and (5.99) are independent of the
distribution PX,Y (cf. discussion after Theorem 5.8). We now proceed with the proof
of Theorem 5.8. To do so, we consider the directed representation of a tree distribution
Q [127]:

Q(x) =
∏

i∈V

Qi|π(i)(xi|xπ(i)), (5.100)

where π(i) is the parent of i in the edge set of Q (assuming a fixed root). Using (5.100)
and conditioned on the fact that the top k edges of the graph of P ∗ are the same as those
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Figure 5.10. In Êk̂n
(left), nodes 1 and 5 are the roots, which are in blue. The parents are defined as

π(i; Êk̂n
) = i− 1 for i = 2, 3, 4, 6 and π(i; Êk̂n

) = ∅ for i = 1, 5. In EP (right), the parents are defined
as π(i;EP ) = i− 1 for i = 2, 3, 4 but π(i;EP ) = ∅ for i = 1, 5, 6 since (5, 6), (∅, 1), (∅, 5) /∈ EP .

in EP (event Bcn) and underestimation does not occur (event Ucn), the KL-divergence
between P ∗ (which is a function of the samples xn and hence of n) and P can be
expressed as a sum over d terms:

D(P ∗ ||P ) =
∑

i∈V

D(P̂
i|π(i;Ê

k̂n
)
||Pi|π(i;EP )), (5.101)

where the parent of node i in Ê
k̂n
, denoted π(i; Ê

k̂n
), is defined by arbitrarily choosing

a root in each component tree of the forest T̂
k̂n

= (V, Ê
k̂n
). The parents of the chosen

roots are empty sets. The parent of node i in EP are “matched” to those in Ê
k̂n
,

i.e., defined as π(i;EP ) := π(i; Ê
k̂n
) if (i, π(i; Ê

k̂n
)) ∈ EP and π(i;EP ) := ∅ otherwise.

See Figure 5.10 for an example. Note that this can be done because Ê
k̂n
⊇ EP by

conditioning on the events Bcn and Ucn = {k̂n ≥ k}. Then, the error probability in (5.97)
can be upper bounded as

Pn(C̃n,δ|Bcn,Ucn) = Pn

(∑

i∈V

D(P̂
i|π(i;Ê

k̂n
)
||Pi|π(i;EP )) > δd

∣∣∣Bcn,Ucn

)
(5.102)

= Pn

(
1

d

∑

i∈V

D(P̂
i|π(i;Ê

k̂n
)
||Pi|π(i;EP )) > δ

∣∣∣Bcn,Ucn

)
(5.103)

≤ Pn
(
max
i∈V

{
D(P̂

i|π(i;Ê
k̂n

)
||Pi|π(i;EP ))

}
> δ
∣∣∣Bcn,Ucn

)
(5.104)

≤
∑

i∈V

Pn
(
D(P̂

i|π(i;Ê
k̂n

)
||Pi|π(i;EP )) > δ

∣∣∣Bcn,Ucn
)

(5.105)

≤
∑

i∈V

(n+ 1)r
2
exp (−nδ) = d(n+ 1)r

2
exp (−nδ) , (5.106)

where Eq. (5.102) follows from the decomposition in (5.101). Eq. (5.104) follows from
the fact that if the arithmetic mean of d positive numbers exceeds δ, then the maximum
exceeds δ. Eq. (5.105) follows from the union bound. Eq. (5.106), which holds for all
n ∈ N, follows from the upper bound in (5.98). Combining (5.97) and (5.106) shows
that if δ < min{KP , LP },

lim sup
n→∞

1

n
logPn(C̃n,δ) ≤ −δ. (5.107)
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Now recall that C̃n,δ = {D(P ∗ ||P ) > δd}. In order to complete the proof of (5.24), we
need to swap the arguments in the KL-divergence to bound the probability of the event
Cn,δ = {D(P ||P ∗) > δd} defined in (5.23). To this end, note that for every ε > 0 and
n sufficiently large, |D(P ∗ ||P )−D(P ||P ∗)| < ε with high probability. More precisely,
the probability of the event {|D(P ∗ ||P ) −D(P ||P ∗)| ≥ ε} decays exponentially with
some exponential rate MP > 0. Hence,

lim sup
n→∞

1

n
logPn(D(P ||P ∗) > δd) ≤ −δ, (5.108)

if δ < min{KP , LP ,MP }. If P is not Markov on a forest, (5.108) holds with the forest
projection P̃ in place of P , i.e.,

lim sup
n→∞

1

n
logPn(D(P̃ ||P ∗) > δd) ≤ −δ. (5.109)

The Pythagorean relationship [10, 180] states that

D(P ||P ∗) = D(P || P̃ ) +D(P̃ ||P ∗) (5.110)

which means that the risk is Rn(P ∗) = D(P̃ ||P ∗). Combining this fact with (5.109)
implies the assertion of (5.24) by choosing δ0 := min{KP , LP ,MP }.

Now we exploit the lower bound in Lemma 5.13 to prove the lower bound in Theo-
rem 5.8. The error probability in (5.97) can now be lower bounded as

Pn(C̃n,δ|Bcn,Ucn) ≥ max
i∈V

Pn
(
D(P̂

i|π(i;Ê
k̂n

)
||Pi|π(i;EP )) > δd

∣∣∣Bcn,Ucn
)

(5.111)

≥ exp(−n(δd+ η)), (5.112)

where (5.111) follows from the decomposition in (5.102) and (5.112) holds for every η
for sufficiently large n by (5.99). Using the same argument that allows us to swap the
arguments of the KL-divergence as in the proof of the upper bound completes the proof
of (5.25).

Proof. (of Lemma 5.13) Define the δ-conditional-typical set with respect to PX,Y ∈
P(X 2) as

SδPX,Y
:= {(xn, yn) ∈ (X 2)n : D(P̂X|Y ||PX|Y ) ≤ δ}, (5.113)

where P̂X|Y is the conditional type of (xn, yn). We now estimate the PnX,Y -probability

of the δ-conditional-atypical set, i.e., PnX,Y ((SδPX,Y
)c)

=
∑

(xn,yn)∈X 2:D(P̂X|Y ||PX|Y )>δ

PnX,Y ((x
n, yn)) (5.114)

=
∑

QX,Y ∈Pn(X 2):D(QX|Y ||PX|Y )>δ

PnX,Y (Tn(QX,Y )) (5.115)
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≤
∑

QX,Y ∈Pn(X 2):D(QX|Y ||PX|Y )>δ

exp(−nD(QX,Y ||PX,Y )) (5.116)

≤
∑

QX,Y ∈Pn(X 2):D(QX|Y ||PX|Y )>δ

exp(−nD(QX|Y ||PX|Y )) (5.117)

≤
∑

QX,Y ∈Pn(X 2):D(QX|Y ||PX|Y )>δ

exp(−nδ) (5.118)

≤ (n+ 1)r
2
exp(−nδ), (5.119)

where (5.114) and (5.115) are the same because summing over sequences is equivalent
to summing over the corresponding type classes. Eq. (5.116) follows from the method
of types result in Lemma 2.18. Eq. (5.117) follows from the KL-divergence version of
the chain rule, namely, D(QX,Y ||PX,Y ) = D(QX|Y ||PX|Y ) + D(QY ||PY ) and non-
negativity of the KL-divergence D(QY ||PY ). Eq. (5.118) follows from the fact that
D(QX|Y ||PX|Y ) > δ for QX,Y ∈ (SδPX,Y

)c. Finally, (5.119) follows the fact that the

number of types with denominator n and alphabet X 2 is upper bounded by (n+ 1)r
2
.

This concludes the proof of (5.98).
We now prove the lower bound in (5.99). To this end, construct a sequence of n-

types {Q(n)
X,Y ∈ Pn(X 2)}n∈N such that Q

(n)
Y = PY and D(Q

(n)
X|Y ||PX|Y ) → δ. Such a

sequence exists by the denseness of types in the probability simplex (see Lemma 2.16).
Now we lower bound (5.115):

PnX,Y ((SδPX,Y
)c) ≥ PnX,Y (Tn(Q(n)

X,Y )) ≥ (n+ 1)−r
2
exp(−nD(Q

(n)
X,Y ||PX,Y )). (5.120)

Taking the normalized logarithm and lim inf in n on both sides of (5.120) yields

lim inf
n→∞

1

n
logPnX,Y ((SδPX,Y

)c) ≥

lim inf
n→∞

{
−D(Q

(n)
X|Y ||PX|Y )−D(Q

(n)
Y ||PY )

}
= −δ. (5.121)

This concludes the proof of Lemma 5.13.

� 5.H Proof of Corollary 5.9

Proof. If the dimension d = o(exp(nδ)), then the upper bound in (5.106) is asymptot-
ically majorized by poly(n)o(exp(na)) exp(−nδ) = o(exp(nδ)) exp(−nδ), which can be
made arbitrarily small for n sufficiently large. Thus the probability tends to zero as
n→∞.

� 5.I Proof of Theorem 5.10

Proof. In this proof, we drop the superscript (d) for all distributions P for notational
simplicity but note that d = dn. We first claim that D(P ∗ || P̃ ) = Op(d log d/n

1−γ).
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Note from (5.97) and (5.106) that by taking δ = (t log d)/n1−γ (for any t > 0),

Pn
(
n1−γ

d log d
D(P ∗ || P̃ ) > t

)
≤ d(n+ 1)r

2
exp(−tnγ log d) + exp(−Θ(n)) (5.122)

= on(1). (5.123)

Therefore, the scaled sequence of random variables n1−γ

d log dD(P ∗ || P̃ ) is stochastically

bounded [177] which proves the claim.14

Now, we claim that D(P̃ ||P ∗) = Op(d log d/n
1−γ). A simple calculation using

Pinsker’s Inequality and Lemma 6.3 in [54] yields

D(P̂X,Y ||PX,Y ) ≤
c

κ
D(PX,Y || P̂X,Y ), (5.124)

where κ := minx,y PX,Y (x, y) and c = 2 log 2. Eq. (5.124) quantifies the variation of the
KL-divergence in terms of κ and its flipped version and its proof can be found in [185].
Using this fact, we can use (5.98) to show that for all n sufficiently large,

PnX,Y (D(PX|Y || P̂X|Y ) > δ) ≤ (n+ 1)r
2
exp(−nδκ/c), (5.125)

i.e., if the arguments in the KL-divergence in (5.98) are swapped, then the exponent
is reduced by a factor proportional to κ. Using this fact and the assumption in (5.17)
(uniformity of the minimum entry in the pairwise joint κ > 0), we can replicate the
proof of the result in (5.106) with δκ/c in place of δ giving

Pn(D(P ||P ∗) > δ) ≤ d(n+ 1)r
2
exp (−nδκ/c) . (5.126)

We then arrive at a similar result to (5.123) by taking δ = (t log d)/n1−γ . We conclude
that D(P̃ ||P ∗) = Op(d log d/n

1−γ). This completes the proof of the claim.
Eq. (5.26) then follows from the definition of the risk in (5.22) and from the

Pythagorean theorem in (5.110). This implies the assertion of Theorem 5.10.

14In fact, we have in fact proven the stronger assertion that D(P ∗ || P̃ ) = op(d log d/n
1−γ) since the

right-hand-side of (5.123) converges to zero.



Chapter 6

Learning Graphical Models for

Hypothesis Testing

� 6.1 Introduction

THIS chapter departs from the analysis of data modeling using tree- or forest-
structured distributions. Instead we propose techniques to exploit the modeling

ability of such sparse graphical models for binary classification (see Section 2.3) by
discriminatively learning such models from labeled training data. The generative tech-
niques to learn such models (such as in [2, 128, 136, 211]) are not straightforward to
adapt for the purpose of binary classification (or binary hypothesis testing). As an
example, for two distributions p and q that are “close” to each other; separately mod-
eling each by a sparse graphical model would likely “blur” the differences between the
two. This is because the goal of modeling is to faithfully capture the entire behavior
of a single distribution, and not to emphasize its most salient differences from another
probability distribution. Our motivation is to retain the generalization power of sparse
graphical models, while also developing a procedure that automatically identifies and
emphasizes features that help to best discriminate between two distributions.

We leverage the modeling flexibility of sparse graphical models for the task of classi-
fication: given labeled training data from two unknown distributions, we first describe
how to build a pair of tree-structured graphical models to better discriminate between
the two distributions. In addition, we also utilize ideas from boosting [173] to learn a
richer (or larger) set of features1 using the previously mentioned tree-learning algorithm
as the weak classifier. This allows us to learn thicker graphical models.

There are three main contributions in this chapter: Firstly, it is known that de-
creasing functions of the J-divergence (a symmetric form of the KL-divergence) pro-
vide upper and lower bounds to the error probability [14, 100, 111]. Motivated by these
bounds, we develop efficient algorithms to maximize a tree-based approximation to the
J-divergence. We show that it is straightforward to adapt the generative tree-learning

1In this chapter, we use the generic term features to denote the marginal as well as pair-
wise relations between random variables, i.e., the marginals pi(xi), qi(xi) and the pairwise joints
pi,j(xi, xj), qi,j(xi, xj).

161



162 CHAPTER 6. LEARNING GRAPHICAL MODELS FOR HYPOTHESIS TESTING

procedure of Chow and Liu (described in Section 2.5.2) to a discriminative2 objective
related to the J-divergence over tree models. Secondly, we propose a boosting-based
procedure (see Section 2.3.2) to learn a richer set of features, thus improving the mod-
eling ability of the learned distributions p̂ and q̂. Finally, we demonstrate empirically
that this family of algorithms lead to accurate classification on a wide range of synthetic
and real-world datasets.

A basic form of learning of graphical models for classification is the so-called Näıve
Bayes model, which corresponds to the graphs of the distributions p and q having no
edges, a restrictive assumption. A comprehensive study of discriminative vs generative
Näıve Bayes was done in Ng et al. [148]. Friedman et al. [84] and Wang and Wong [212]
suggested an improvement to Näıve Bayes using a generative model known as TAN, a
specific form of a graphical model geared towards classification. However, the p and q
models learned in these papers share the same structure and hence are more restrictive
than the proposed discriminative algorithm, which learns trees with possibly distinct
structures for each hypothesis.

More recently, Grossman and Domingos [88] improved on TAN by proposing an algo-
rithm for choosing the structures by greedily maximizing the conditional log-likelihood
(CLL) with a minimum description length (MDL) penalty while setting parameters by
maximum-likelihood and obtained good classification results on benchmark datasets.
However, estimating the model parameters via maximum-likelihood is complicated be-
cause the learned structures are loopy. Su and Zhang [183] suggested representing
variable independencies by conditional probability tables (CPT) instead of the struc-
tures of graphical models. Boosting has been used in Rosset and Segal [163] for density
estimation and learning Bayesian networks, but the objective was on modeling and not
on classification. In Jing et al. [105], the authors suggested boosting the parameters of
TANs. Our procedure uses boosting to optimize for both the structures and the pa-
rameters of the pair of discriminative tree models, thus enabling the learning of thicker
structures.

The rest of the chapter is organized as follows: In Section 6.2, we present some
mathematical preliminaries specific to this chapter. In Section 6.3, we present a dis-
criminative tree learning algorithm specifically tailored for the purpose of classification.
This is followed by the presentation of a novel adaptation of Real-AdaBoost [82, 175]
to learn a larger set of features in Section 6.4. In Section 6.5, we present numerical
experiments to validate the learning method presented in Sections 6.3 and 6.4 and
also demonstrate how the method can be naturally extended to multi-class classifica-
tion problems. We conclude in Section 6.6 by discussing the merits of the techniques
presented.

2In this chapter, we adopt the term “discriminative” to denote the use of both the positively and
negatively labeled training samples to learn the model p̂, the approximate model for the positively
labeled samples (and similarly for q̂). This is different from “generative” learning in which only the
positively labeled samples are used to estimate p̂ (and similarly for q̂).
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� 6.2 Preliminaries and Notation

� 6.2.1 Binary Classification

We have already introduced the setup for binary classification in Section 2.3. Here, we
remind the reader of the notation for completeness. We are given a labeled training set
S := {(x1, y1), . . . , (xn, yn)}, where each training pair (xl, yl) ∈ X d × {+1,−1}. Here,
X may be a finite set (e.g., X = {0, · · · , r−1}) or an infinite set (e.g., X = R). Each yl,
which can only take on one of two values, represents the class label of that sample. Each
training pair (xl, yl) is drawn independently from some unknown joint distribution PX,Y .
In this chapter, we adopt the following simplifying notation: p(x) := PX|Y (x|y = 1) and
q(x) := PX|Y (x|y = −1) are the class-conditional distributions. Also, we assume the
a-priori probabilities for the label are uniform, i.e., PY (y = +1) = PY (y = −1) = 1/2.
This is not a restrictive assumption and we make it to lighten the notation.

Given S, we wish to train a model so as to classify, i.e., to assign a label of +1 or
−1 to a new sample x. This sample is drawn according to the unknown distribution
PX, but its label is unavailable. If we do have access to the true distributions p and q,
the optimal test under both the Neyman-Pearson and Bayesian settings (Lemmas 2.20
and 2.21) is known to be the log-likelihood ratio test given by

logϕ(x)
ŷ = +1

≷

ŷ = −1
η, (6.1)

where the likelihood ratio ϕ : X d → R+ is the ratio of the class-conditional distributions
p and q, i.e.,

ϕ(x) :=
p(x)

q(x)
. (6.2)

In (6.1), η ∈ R is the threshold of the test. In the absence of fully specified p and q, we
will instead develop efficient algorithms for constructing approximations p̂ and q̂ from
the set of samples S such that the following statistic (for approximating ϕ(x)) is as
discriminative as possible.

log ϕ̂(x)
ŷ = +1

≷

ŷ = −1
η, (6.3)

where ϕ̂ : X d → R+ is an approximation of the likelihood ratio, defined as

ϕ̂(x) :=
p̂(x)

q̂(x)
. (6.4)

In (6.4), p̂ and q̂ are multivariate distributions (or graphical models) estimated jointly
from both the positively and negatively labeled samples in the training set S. We use
the empirical distribution formed from samples, p̃ and q̃, to estimate p̂ and q̂, which are
then used in the approximate likelihood ratio test in (6.4).
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� 6.2.2 The J-divergence

The J-divergence between two probability distributions p and q is defined as [124]

J(p, q) := D(p || q) +D(q || p) (6.5)

and is a fundamental measure of the separability of distributions. It has the property
that J = 0 if and only if p = q almost everywhere. In contrast to KL-divergence, J
is symmetric in its arguments. However, it is still not a metric as it does not satisfy
the triangle inequality. Nevertheless, the following useful upper and lower bounds on
the probability of error Pr(err) [14, 100, 111] can be obtained from the J-divergence
between two distributions.

1

2
min(P−1, P1) exp(−J) ≤ Pr(err) ≤

√
P−1 P1

(
J

4

)−1/4

, (6.6)

where Pj := PY (y = j) are the prior probabilities. Thus, maximizing J minimizes
both upper and lower bounds on the Pr(err). Motivated by the fact that increasing
the J-divergence decreases the upper and lower bounds in (6.6), we find ϕ̂(x) in (6.4)
by choosing graphical models p̂ and q̂ which maximize an approximation to the J-
divergence.

� 6.3 Discriminative Learning of Trees and Forests

In this section, we propose efficient discriminative algorithms for learning two tree
models by optimizing a surrogate statistic for J-divergence. We show that this is
equivalent to optimizing the empirical log-likelihood ratio of the training samples. We
then discuss how to optimize the objective by using MWST-based algorithms. Before
doing so, we define the following constraint on the parameters of the learned models p̂
and q̂, which are assumed to be Markov on trees (or forests) with edge sets Ep̂ and Eq̂
respectively.

Definition 6.1. (Marginal Consistency) The approximating distributions p̂ and q̂ are
said to be marginally consistent with respect to the distributions p and q if their pairwise
marginals on their respective edge sets Ep̂ and Eq̂ are equal, i.e., for the model p̂, we
have

p̂i,j (xi, xj) = pi,j (xi, xj) , ∀ (i, j) ∈ Ep̂. (6.7)

It follows from (6.7) that p̂i(xi) = pi(xi) for all nodes i ∈ V .

We will subsequently see that if p̂ and q̂ are marginally consistent, this yields
tractable optimizations for the search for the optimal structures of p̂ and q̂. Now, one
näıve choice of p̂ and q̂ to approximate the log-likelihood ratio in (6.2) is to construct
generative tree or forest models of p and q from the samples, i.e., learn3 p̂ ∈ D(X d, T d)

3Recall that the notation D(X d, T d) denotes the set of distributions in P(X d) which are Markov on
some d-node tree in T d. See Section 2.4.3.
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from the positively labeled samples and q̂ from the negatively labeled samples using the
Chow-Liu method detailed in Section 2.5.2. The set of generative models under consid-
eration can be from the set of trees D(X d, T d) or the set of k-edge forests D(X d, T dk ).
Kruskal’s MWST algorithm [120] can be employed in either case. If we do have access
to the true distributions, then this process is simply fitting lower-order tree (or forest)
approximations to p and q. However, the true distributions p and q are usually not
available. Motivated by Hoeffding and Wolfowitz [100] (who provide guarantees when
optimizing the likelihood ratio test), and keeping in mind the final objective which is
classification, we design p̂ and q̂ in a discriminative fashion to obtain ϕ̂(x), defined
in (6.4).

� 6.3.1 The Tree-Approximate J-divergence

We now formally define the approximation to the J-divergence originally given in (6.5).

Definition 6.2. (Tree-approximate J-divergence) The tree-approximate J-divergence
Ĵ(p̂; q̂; p, q) of two tree-structured distributions p̂ and q̂ with respect to two arbitrary
distributions p and q is defined as:

Ĵ(p̂, q̂; p, q) :=

∫

Ω
(p(x)− q(x)) log

[
p̂(x)

q̂(x)

]
dx, (6.8)

for distributions that are mutually absolutely continuous4 and

Ĵ(p̂, q̂; p, q) :=
∑

x∈X d

(p(x)− q(x)) log
[
p̂(x)

q̂(x)

]
, (6.9)

for discrete distributions.

Observe that the difference between J and Ĵ is the replacement of the true distribu-
tions p and q by the approximate distributions p̂ and q̂ in the logarithm. As we see in
Proposition 6.4, maximizing the tree-approximate J-divergence over p̂ and q̂ is equiva-
lent to maximizing the empirical log-likelihood ratio if the random variables are discrete.
Note however, that the objectives in (6.8) and (6.9) do not necessarily share the prop-
erties of the true J-divergence in (6.6). The relationship between (6.8) (and (6.9)) and
the J-divergence requires further theoretical analysis but this is beyond the scope of the
chapter. We demonstrate empirically that the maximization of the tree-approximate
J-divergence results in good discriminative performance in Section 6.5.

There are several other reasons for maximizing the tree-approximate J-divergence.
Firstly, trees have proven to be a rich class of distributions for modeling high-dimensional
data (see [10] and examples in Section 5.7). Secondly, as is demonstrated in the sequel,

4Two distributions p and q (for p 6= q) are mutually absolutely continuous if the corresponding mea-

sures νp and νq are absolutely continuous with respect to each other (or are equivalent measures) [123,
Ch. 7]. The integral in (6.8) is understood to be over the domain in which the measures are equivalent
Ω ⊂ Xn.
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we are able to develop efficient learning algorithms for finding p̂ and q̂. We now state
a useful property of the tree-approximate J-divergence assuming p̂ and q̂ are trees.

Proposition 6.1. (Decomposition of tree-approximate J-divergence) Assume that (i)
the pairwise marginals pi,j and qi,j in (6.8) are mutually absolutely continuous and (ii) p̂
and q̂ are tree distributions with edge sets Ep̂ and Eq̂ respectively and are also marginally
consistent with p and q. Then the tree-approximate J-divergence can be expressed as a
sum of marginal J divergences and weights:

Ĵ(p̂, q̂; p, q) =
∑

i∈V

J(pi, qi) +
∑

(i,j)∈Ep̂∪Eq̂

wij . (6.10)

The multi-valued edge weights wij are given by

wij :=





Ip (Xi;Xj)− Iq (Xi;Xj)
+D (qi,j ||pi,j)−D (qiqj ||pipj) (i, j) ∈ Ep̂ \ Eq̂

Iq (Xi;Xj)− Ip (Xi;Xj)
+D (pi,j ||qi,j)−D (pipj ||qiqj) (i, j) ∈ Eq̂ \ Ep̂

J(pi,j , qi,j)− J (pipj , qiqj) (i, j) ∈ Ep̂ ∩ Eq̂

(6.11)

where Ip (Xi;Xj) and Iq (Xi;Xj) denote the mutual information between variables Xi

and Xj under the p and q probability models respectively.

Proof. Since p̂ is a tree-structured distribution, it admits the factorization as in (2.95)
with the node and pairwise marginals given by p (by marginal consistency). The distri-
bution q̂ has a similar factorization. These factorizations can be substituted into (6.8)
or (6.9) and the KL-divergences can then be expanded. Finally, by using the identities

∑

x∈X d

p (x) log

[
pi(xi)

qi(xi)

]
= D(pi||qi), (6.12)

∑

x∈X d

p (x) log

[
pi,j(xi, xj)

qi,j(xi, xj)

]
= D(pi,j ||qi,j), (6.13)

and marginal consistency of p̂ and q̂, we can group terms together and obtain the result
in the proposition.

Denote the empirical distributions of the positive and negatively labeled samples as
p̃ and q̃ respectively. Given the definition of Ĵ in (6.8), the optimization problem for p̂
and q̂ is formally formulated as:

(p̂, q̂) = argmax
p̂∈D(X d,T d(p̃)), q̂∈D(X d,T d(q̃))

Ĵ(p̂, q̂; p̃, q̃), (6.14)



Sec. 6.3. Discriminative Learning of Trees and Forests 167

where D(X d, T d(p̃)) ⊂ D(X d, T d) is the set of tree-structured distributions which are
marginally consistent with p̃ (see Definition 6.1). We will see that this optimization
reduces to two tractable MWST problems. Furthermore, as in the Chow-Liu solution
to the generative problem (Section 2.5.2), only marginal and pairwise statistics need
to be computed from the training set in order to estimate the information quantities
in (6.11). In the sequel, we describe how to estimate these statistics and also how to
devise efficient MWST algorithms to optimize (6.14) over the set of spanning trees.

� 6.3.2 Learning Spanning Trees

In this section, we describe an efficient algorithm for learning two trees that optimize the
tree-approximate J-divergence defined in (6.8). We assume that we have no access to
the true distributions p and q. However, if the distributions are discrete, we can compute
the empirical distributions p̃ and q̃ from the positively labeled and negatively labeled
samples respectively. If the distributions are continuous and belong to a parametric
family such as Gaussians, we can estimate the statistics such as means and covariances
from the samples using maximum-likelihood fitting. However, it turns out that for
the purpose of optimizing (6.14), we only require the marginal and pairwise empirical
statistics, i.e., the quantities p̃i(xi), q̃i(xi), p̃i,j(xi, xj), and q̃i,j(xi, xj). Estimating these
pairwise quantities from the samples is substantially cheaper than computing the full
empirical distribution or all the joint statistics. To optimize (6.14), we note that this
objective can be rewritten as two independent optimization problems.

Proposition 6.2. (Decoupling of objective into two MWSTs) The optimization in (6.14)
decouples into:

p̂ = argmin
p∈D(X d,T d(p̃))

D(p̃ || p)−D(q̃ || p), (6.15a)

q̂ = argmin
q∈D(X d,T d(q̃))

D(q̃|| q)−D(p̃ || q). (6.15b)

Proof. The equivalence of (6.14) and (6.15) can be shown by using the definition of the
tree-approximate J-divergence and noting that

∑
x
p̃(x) log p̂(x)+H(p̃) = −D(p̃||p̂).

We have the following intuitive interpretation: the problem in (6.15a) is, in a precise
sense, finding the distribution p̂ that is simultaneously “close to” the empirical distri-
bution p̃ and “far from” q̃, while the reverse is true for q̂. See Fig. 6.1 for an illustration
of the proposition. Note that all distances are measured using the KL-divergence. Each
one of these problems can be solved by a MWST procedure with the appropriate edge
weights given in the following proposition.

Proposition 6.3. (Edge Weights for Discriminative Trees) Assume that p̂ and q̂ are
marginally consistent with p̃ and q̃ respectively as defined in (6.7). Then, for the selec-
tion of the edge set of p̂ in (6.15a), we can apply a MWST procedure with the weights
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Figure 6.1. Illustration of Proposition 6.2 which shows the geometry of the distributions, where
D(X d, T d(p̃)) is the subset of tree distributions that are marginally consistent with p̃, the empirical
distribution of the positively labeled samples. p̂CL, the generatively-learned distribution (via Chow-
Liu), is the projection of p̂ onto the set of trees with the same marginals as p̃ as given by the Chow-Liu
optimization problem. p̂DT, the discriminatively-learned distribution, is the solution of (6.15a) which
is “further” (in the KL-divergence sense) from q̃ (because of the −D(q̃||p̂) term).

on each pair of nodes (i, j) ∈
(
V
2

)
are given by

ψ
(+)
i,j := Ep̃i,j

[
log

p̃i,j
p̃ip̃j

]
− Eq̃i,j

[
log

p̃i,j
p̃ip̃j

]
. (6.16)

Proof. The proof can be found in Appendix 6.A.

From (6.16), we observe that only the marginal and pairwise statistics are needed
in order to compute the edge weights. Subsequently, the MWST is used to obtain Ep̂.
Then, given this optimal tree structure, the model p̂ is the projection of p̃ onto Ep̂.

A similar procedure yields q̂, with edge weights ψ
(−)
i,j given by an expression similar

to (6.16), but with p̃ and q̃ interchanged.

Given: Training set S.
1: Using the samples in S, estimate the pairwise statistics p̃i,j(xi, xj) and q̃i,j(xi, xj)

for all edges (i, j) using, for example, maximum-likelihood estimation.

2: Compute edge weights {ψ(+)
i,j } and {ψ

(−)
i,j }, using (6.16), for all edges (i, j).

3: Given the edge weights, find the optimal tree structures using a MWST algorithm
such as Kruskal’s [120], i.e.,

Ep̂ = MWST({ψ(+)
i,j }), Eq̂ = MWST({ψ(−)

i,j }). (6.17)

4: Set p̂ to be the projection of p̃ onto Ep̂ and q̂ to be the projection of q̃ onto Eq̂.
5: return Approximate distributions p̂(x) and q̂(x) to be used in a likelihood ratio

test h(x) = sgn[log(p̂(x)/q̂(x))] to assign a label to a test sample x.

Algorithm 1. Discriminative Trees (DT)
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This discriminative tree (DT) learning procedure produces at most d−1 edges (pair-

wise features) in each tree model p̂ and q̂ (some of the edge weights ψ
(+)
i,j in (6.16) may

turn out to be negative so the algorithm may terminate early). The tree models p̂ and
q̂ will then be used to construct ϕ̂, which is used in the likelihood ratio test (6.3). Algo-
rithm 1 summarizes our method for discriminatively learning tree models. Section 6.5.2
compares the classification performance of this method with other tree-based meth-
ods such as Chow-Liu as well as TAN [84, 212]. Finally, we remark that the proposed
procedure has exactly the same complexity as learning a TAN network.

� 6.3.3 Connection to the Log-Likelihood Ratio

We now state a simple and intuitively-appealing result that relates the optimization of
the tree-approximate J-divergence to the likelihood ratio test in (6.1).

Proposition 6.4. (Empirical Log-Likelihood Ratio) For discrete distributions, optimiz-
ing the tree-approximate J-divergence in (6.14) is equivalent to maximizing the empirical
log-likelihood ratio of the training samples, i.e.,

(p̂, q̂) = argmax
p̂∈D(X d,T d(p̃)), q̂∈D(X d,T d(q̃))

n∑

l=1

yl log

[
p̂(xl)

q̂(xl)

]
. (6.18)

Proof. Partition the training set S into positively labeled samples S+ := {xl : yl = +1}
and negatively labeled samples S− := {xl : yl = −1} and split the sum in (6.18)
corresponding to these two parts accordingly. Then the sums (over the sets S+ and S−)
are equal to (6.15a) and (6.15b) respectively. Finally use Proposition 6.2 to conclude
that the empirical log-likelihood ratio is equivalent to the tree-approximate J-divergence
defined in (6.14).

This equivalent objective function has a very intuitive meaning. Once p̂ and q̂ have
been learned, we would like log ϕ̂(xl) := log[p̂(xl)/q̂(xl)] to be positive (and as large
as possible) for all samples with label yl = +1, and negative (with large magnitude)
for those with label yl = −1. The objective function in (6.18) precisely achieves this
purpose.

It is important to note that (6.14) involves maximizing the tree-approximate J-
divergence. This does not mean that we are directly minimizing the probability of error.
In fact, we would not expect convergence to the true distributions p and q when the
number of samples tends to infinity if we optimize the discriminative criterion (6.15).5

However, since we are explicitly optimizing the log-likelihood ratio in (6.18), we would
expect that if one has a limited number of training samples, we will learn distributions
p̂ and q̂ that are better at discrimination than generative models in the likelihood ratio

5However, if the true distributions are trees, minimizing the KL-divergence over the set of trees
(minp∈D(Xd,T d) D(p̃||p)) with the empirical p̃ as the input is a maximum-likelihood procedure (Sec-
tion 2.5.2). It consistently recovers the structure of the true distribution p exponentially fast in n
(Chapters 3 and 4).
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test (6.3). This can be seen in the objective function in (6.15a) which is a blend of two
terms. In the first term D(p̃ || p), we favor a model p̂ that minimizes the KL-divergence
to its empirical distribution p̃. In the second term D(p̃ || q), we favor the maximization
of the empirical type-II error exponent D(q̃ || p) for testing p against the distribution in
the alternate hypothesis q (Chernoff-Stein Lemma [47, Ch. 12]).

� 6.3.4 Learning Optimal Forests

In this subsection, we mention how the objective in (6.14), can be jointly maximized
over pairs of forest distributions p̂(k) and q̂(k). Both p̂(k) and q̂(k) are Markov on forests
with at most k ≤ d − 1 edges. This formulation is important since if we are given
a fixed budget of only k edges per distribution, we would like to maximize the joint
objective over both pairs of distributions instead of decomposing the objective into two
independent problems as in (6.15). This formulation also provides us with a natural
way to incorporate costs for the selection of edges.

We use that notation D(X d, T dk (p̃)) to denote the set of probability distributions
that are Markov on forests with at most k edges and have the same node and edge
marginals as p̃, i.e., marginally consistent with the empirical distribution p̃. We now
reformulate (6.14) as a joint optimization over the class of forests with at most k edges
given empiricals p̃ and q̃:

(p̂(k), q̂(k)) = argmax
p̂∈D(X d,T d

k (p̃)), q̂∈D(X d,T d
k (q̃))

Ĵ(p̂, q̂; p̃, q̃). (6.19)

For each k, the resulting distributions p̂(k) and q̂(k) are optimal with respect to the
tree-approximate J-divergence and the final pair of distributions p̂(d−1) and q̂(d−1) cor-
responds exactly to p̂ and q̂, the outputs of the DT algorithm as detailed in Algorithm 1.
However, we emphasize that p̂(k), q̂(k) (for k < d− 1) will, in general, be different from
the outputs of the DT algorithm (with at most k edges chosen for each model) be-
cause (6.19) is a joint objective over forests. Furthermore, each forest has at most k
edges but could have fewer depending on the sign of the weights in (6.11). The num-
ber of edges in each forest may also be different. We now show that the objective in
(6.19) can be optimized easily with a slight modification of the basic Kruskal’s MWST
algorithm [120].

We note the close similarity between the discriminative objective in (6.10) and the
Chow-Liu optimization for a single spanning tree in (2.109). In the former, the edge
weights are given by wij in (6.11) and in the latter, the edge weights are the mutual
information quantities I(Xi;Xj). Note that the two objective functions are additive.
With this observation, it is clear that we can equivalently choose to maximize the second
term in (6.10), i.e., ∑

(i,j)∈Ep̂∪Eq̂

wij , (6.20)

over the set of trees, where each wij is a function of the empirical pairwise statistics
p̃i,j(xi, xj) and q̃i,j(xi, xj) (and corresponding information-theoretic measures) that can
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be estimated from the training data. To maximize the sum in (6.20), we use the same
MWST algorithm with edge weights given by wij . In this case, we must consider the
maximum of the three possible values for wij . Whichever is the maximum (or if all
three are negative) indicates one of four possible actions:

1. Place an edge between i and j for p̂ and not q̂ (corresponding to (i, j) ∈ Ep̂ \Eq̂).

2. Place an edge between i and j for q̂ and not p̂ (corresponding to (i, j) ∈ Eq̂ \Ep̂).

3. Place an edge between i and j for both p̂ and q̂ (corresponding to (i, j) ∈ Ep̂∩Eq̂).

4. Do not place any edge between i and j for either model p̂ and q̂ if all three values
of wij in (6.11) are negative.

Proposition 6.5. (Optimality of Kruskal for Learning Forests) For the optimization
problem in (6.19), the k-step Kruskal’s MWST algorithm, considering the maximum
over the three possible values of wij in (6.11) and the four actions above, results in
optimal forest-structured distributions p̂(k)(x) and q̂(k)(x) with edge sets Ep̂(k) and Eq̂(k).

Proof. This follows directly from the additivity of the objective in (6.10) and the opti-
mality of Kruskal’s MWST algorithm [120] for each k = 1, . . . , d − 1. See [45, Section
23.1] for the details.

The k-step Kruskal’s MWST algorithm is the usual Kruskal’s algorithm terminated
after at most k ≤ d− 1 edges have been added. The edge sets are nested and we state
this formally as a corollary of Proposition 6.5.

Corollary 6.6 (Nesting of Edge Sets). The edge sets Ep̂(k) obtained from the maxi-
mization (6.19) are nested, i.e., Ep̂(k−1) ⊆ Ep̂(k) for all k = 1, . . . , d − 1 and similarly
for Eq̂(k).

This appealing property ensures that one single run of Kruskal’s MWST algorithm
recovers all d− 1 substructures {(p̂(k), q̂(k))}1≤k≤d−1. Thus, this procedure is computa-
tionally efficient.

� 6.3.5 Assigning Costs to the Selection of Edges

In many applications, it is common to associate the selection of more features with
higher costs. We now demonstrate that it is easy to incorporate this consideration into
our optimization program in (6.19).

Suppose we have a set of costs C := {cij ≥ 0 : (i, j) ∈
(
V
2

)
}, where each element cij

is the cost of selecting edge (i, j). For example, in the absence of any prior information,
we may regard each of these costs cij as being equal to a constant c ≥ 0. We would

like to maximize optimize Ĵ , given in (6.19), over the two models p̂ and q̂ taking the
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costs of selection of edges into consideration. From Proposition 6.1, the new objective
function can now be expressed as

ĴC(p̂, q̂; p, q) =
∑

i∈V

J(pi, qi) +
∑

(i,j)∈Ep̂∪Eq̂

wij (6.21)

where the cost-modified edge weights are defined as wij := wij − cij . Thus, the costs
cij appear only in the new edge weights wij . We can perform the same greedy selection
procedure with the new edge weights wij to obtain the “cost-adjusted” edge sets Ep̂(k)

and E q̂(k) . Interestingly, this also gives a natural stopping criterion. Indeed, whenever
all the remaining wij are negative the algorithm should terminate as the overall cost
will not improve.

� 6.4 Learning a Larger Set of Features via Boosting

We have described efficient algorithms to learn tree distributions discriminatively by
maximizing the empirical log-likelihood ratio in (6.18) (or the tree-approximate J-
divergence). However, learning a larger set of features (more than d−1 edges per model)
would enable better classification in general if we are also able to prevent overfitting.
In light of the previous section, the first natural idea for learning thicker graphical
models (i.e., graphical models with more edges) is to attempt to optimize an expres-
sion like (6.14), but over a set of thicker graphical models, e.g., the set of graphical
models with bounded treewidth. However, this approach is complicated because the
graph selection problem was simplified for trees as it was possible to determine a-priori
the projection of the empirical distribution onto the learned structure. Such a projec-
tion also holds for the construction of junction trees, but maximum-likelihood structure
learning is known to be NP-hard [112]. For graphs that are not junction trees, com-
puting the projection parameters a priori is, in general, intractable. Furthermore, the
techniques proposed in [2, 128, 136, 211] used to learn such graphs are tightly coupled
to the generative task of approximating p̃, and even for these it is not straightforward
to learn parameters given the loopy structure.

� 6.4.1 Real-AdaBoost

A review of AdaBoost (also called Discrete-AdaBoost) was given in Section 2.3.2. Real-
AdaBoost [82, 175] is a variant of Discrete-AdaBoost for the case when it is possible
to obtain real-valued confidences from the weak classifiers, i.e., if ht : X d → R [with
more positive ht(x) signifying higher bias for positively labeled samples].6 It has been
observed empirically that Real-AdaBoost often performs better than its discrete coun-
terpart [82, 175]. We found this behavior in our experiments also as will be reported in

6For instance, if the weak classifier is chosen to be the logistic regression classifier, then the confi-
dences are the probabilistic outputs p(y|x).
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Section 6.5.4. The strong classifier resulting from the Real-AdaBoost procedure is

HT (x) = sgn

[
T∑

t=1

αtht(x)

]
, (6.22)

where the set of coefficients are given by {αt ≥ 0}Tt=1.

� 6.4.2 Learning a Larger Set of Pairwise Features via Real-AdaBoost

In the language of Real-AdaBoost, the tree-based classifiers or the forests-based classi-
fiers presented in Sections 6.3 may be regarded as weak classifiers to be combined to
form a stronger classifier. More specifically, each weak classifier ht : X d → R is given
by the log-likelihood ratio ht(x) = log ϕ̂t(x) = log [p̂t(x)/q̂t(x)], where p̂t and q̂t are
the tree-structured graphical model classifiers learned at the t-th boosting iteration.
Running T boosting iterations, now allows us to learn a larger set of features and to
obtain a better approximation of the likelihood ratio ϕ̂(x) in (6.4). This is because the
strong ensemble classifier HT can be written as

HT (x) = sgn

[
T∑

t=1

αt log

(
p̂t(x)

q̂t(x)

)]
, (6.23a)

= sgn

[
log

(∏T
t=1 p̂t(x)

αt

∏T
t=1 q̂t(x)

αt

)]
, (6.23b)

= sgn

[
log

(
p̂∗(x)

q̂∗(x)

)]
. (6.23c)

In (6.23c), p̂∗(x), an unnormalized distribution, is of the form

p̂∗(x) :=
T∏

t=1

p̂t(x)
αt . (6.24)

Define Zp(α) = Zp(α1, . . . , αT ) =
∑

x
p̂∗(x) to be the normalizing constant for p̂∗

in (6.24). Hence the distribution (or graphical model) p̂∗(x)/Zp(α) sums to unity.

Proposition 6.7. (Markovianity of Normalized Distributions) The normalized distri-
bution p̂∗(x)/Zp(α) is Markov on a graph G = (V,Ep̂∗) with edge set

Ep̂∗ =
T⋃

t=1

Ep̂t . (6.25)

The same relation in (6.25) holds for the normalized distribution q̂∗(x)/Zq(α).

Proof. (Sketch) This follows by writing each p̂t as a member of an exponential family,
combining p̂t’s to give p̂∗ as in (6.24) and finally applying the Hammersley-Clifford
Theorem [91]. See Appendix 6.B for the details.
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Because we are entirely concerned with accurate classification, and the value of
the ratio ϕ̂∗(x) = p̂∗(x)/q̂∗(x) in (6.23c), we do not need to normalize our models p̂∗

and q̂∗. By leaving the models unnormalized, we retain many appealing theoretical
guarantees [173] afforded by the boosting procedure, such as the exponential decay
in the training error. Furthermore, we are able to interpret the resulting normalized
models7 as being Markov on particular loopy graphs (whose edge sets are given in
Proposition 6.7), which contain a larger set of features as compared to simple tree
models.

Note that after T boosting iterations, we have a maximum of (d − 1)T pairwise
features in each model as each boosting iteration produces at most d− 1 pairwise fea-
tures (because some weights in (6.16) could be negative). To learn these features, we
now need to learn tree models to minimize the weighted training error, as opposed to
unweighted error as in Section 6.3. This can be achieved by replacing the empirical
distributions p̃, q̃ with the weighted empirical distributions p̃w, q̃w and the weights are
updated based on whether each sample xl is classified correctly. The resulting tree
models will thus be projections of the weighted empirical distributions onto the cor-
responding learned tree structures. The method for learning a larger set of features
from component tree models is summarized in Algorithm 2. Note that Algorithm 2 is
essentially a restatement of Real-Adaboost but with the weak classifiers learned using
Discriminative Trees (Algorithm 1).

� 6.5 Numerical Experiments

This section is devoted to an extensive set of numerical experiments that illustrate the
classification accuracy of discriminative trees and forests as well as thicker graphical
models. It is subdivided into the following subsections.

1. Firstly, in Section 6.5.1, we present an illustrate example to show that our dis-
criminative tree/forest learning procedure as detailed in Sections 6.3.2 and 6.3.4
results in effective tree-based classifiers.

2. Secondly, in Section 6.5.2 we compare our discriminative trees procedure to other
tree-based classifiers using real datasets. We also extend our ideas naturally to
multi-class classification problems.

3. Finally, in Section 6.5.4, we demonstrate empirically on a range of datasets that
our method to learn thicker models outperforms standard classification techniques.

7We emphasize that the unnormalized models p̂∗ and q̂∗ are not probability distributions and thus
cannot be interpreted as graphical models. However, the discriminative tree models learned in Section 6.3
are indeed normalized and hence are graphical models.
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Given: Training data S. Number of boosting iterations T .

1: Initialize the weights to be uniform, i.e., set w
(l)
0 = 1/n for all 1 ≤ l ≤ n.

2: for t = 1 : T do

3: Find discriminative tree models p̂t, q̂t using Algorithm 1, but with the weighted
empirical distributions p̃w, q̃w.

4: The weak classifier ht : X d → R is given by ht(x) = log [p̂t(x)/q̂t(x)] .
5: Perform a convex line search to find the optimal value of the coefficients αt:

αt = argmin
β≥0

n∑

l=1

w
(l)
t exp [−βylht(xl)] .

6: Update and normalize the weights:

w
(l)
t+1 =

w
(l)
t

ζt
exp [−αtylht(xl)] , ∀ l = 1, . . . , n,

where ζt :=
∑n

l=1w
(l)
t exp[−αtylht(xl)] is the normalization constant to ensure

that the weights sum to unity after the update.
7: end for

8: return Coefficients {αt}Tt=1 and models {p̂t, q̂t}Tt=1. The final classifier is given
in (6.23).

Algorithm 2. Boosted Graphical Model Classifiers (BGMC)
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Figure 6.2. Class covariance matrices Σp and Σq. The only discriminative information arises from
the lower-right block.

� 6.5.1 Discriminative Trees: An Illustrative Example

We now construct two Gaussian graphical models p and q such that the real statistics
are not trees and the maximum-likelihood trees (learned from Chow-Liu) are exactly the
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Figure 6.3. Structures of p̂(k) at iteration k = d− 1. The figures show the adjacency matrices of the
graphs, where the edges selected at iteration d− 1 are highlighted in red. In the left plot, we show the
discriminative model, which extracts the edges corresponding to the discriminative block (lower-right
corner) of the class conditional covariance matrix. In the right plot, we show the generative model,
which does not extract the discriminative edges.

same, but the discriminative trees procedure gives distributions that are different. Let p
and q be the probability density functions of two zero-mean d-variate (d even) Gaussian
random vectors with class-conditional covariance matrices Σp and Σq respectively, i.e.,
p(x) = N (x;0,Σp) ∝ exp(−xTΣ−1

p x/2), where

Σp :=

[
ΣC 0

0 ΣA

]
+ΣN, Σq :=

[
ΣC 0

0 ΣB

]
+ΣN, (6.26)

and the noise matrix is given as

ΣN :=

[
Id/2 ρId/2
ρId/2 Id/2

]
. (6.27)

In (6.26), ΣC, ΣA and ΣB are carefully selected d/2× d/2 positive definite matrices.
Note, from the construction, that the only discriminative information comes from

the lower block terms in the class conditional covariance matrices as these are the
only terms that differ between the two models. We set ρ to be the highest correlation
coefficient of any off-diagonal element in Σp or Σq. This ensures that those edges are
the first d/2 chosen in any Chow-Liu tree. These edges connect discriminative variables
to non-discriminative variables. Next we design ΣC,ΣA,ΣB � 0 such that all of the
correlation coefficient terms in the (common) upper block ΣC are higher than any in
ΣA or ΣB. This results in generative trees learned under Chow-Liu which provide no
discriminative information. The additive noise term will not affect off-diagonal terms
in either ΣA or ΣB. The two matrices Σp and Σq are shown in Fig. 6.2.

We now apply two structure learning methods (Chow-Liu [42] and the discrimina-
tive forest-learning method in Section 6.3.4) to learn models p̂(k) and q̂(k) sequentially.



Sec. 6.5. Numerical Experiments 177

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k = number of edges

J(
p(k

) ,q
(k

) ;p
,q

)/
J(

p,
q;

p,
q)

J−divergences

 

 

Generative
Discriminative

0 5 10 15 20 25 30 35
0.4

0.42

0.44

0.46

0.48

0.5
Probability of Error

k = number of edges

P
r(

er
r)

 

 

Generative
Discriminative

Figure 6.4. Tree-approximate J-divergence and Pr(err). Note the monotonic increase of the tree-
approximate J-divergence for the discriminative model. The generative model provides no discrimina-
tion as evidenced by the zero divergence and Pr(err) = 1/2.

For this toy example, we assume that we have the true distributions. The learned struc-
tures are shown in Fig. 6.3. Note that, by construction, the discriminative algorithm
terminates after d/2 steps since no more discriminative information can be gleaned
without the addition of an edge that results in a loop. The generative structure is
very different from the discriminative one. In fact, both the p̂(k) and q̂(k) structures
are exactly the same for each k. This is further validated from Fig. 6.4, where we
plot the tree-approximate J-divergence between p̂(k) and q̂(k) (relative to p and q) and
the probability of error Pr(err) as a function of k. The Pr(err) is approximated using
10,000 test samples generated from the original distributions p and q. We see that
the generative method provides no discrimination in this case, evidenced by the fact
that the J-divergence is identically 0 and the Pr(err) is exactly 1/2. As expected, the
J-divergence of the discriminative models increases monotonically and the Pr(err) de-
creases monotonically. Thus, this example clearly illustrates the differences between the
generative [42] and discriminative learning algorithms. Clearly, it is advantageous to
optimize the discriminative objective (6.19) if the purpose, namely binary classification,
is known a-priori.

� 6.5.2 Comparison of DT to Other Tree-Based Classifiers

We now compare various tree-based graphical model classifiers, namely our proposed
Discriminative Trees (DT) learning algorithm, Chow-Liu and finally TAN [84]. We per-
form the experiment on a quantized version of the MNIST handwritten digits dataset.8

The results are averaged over 50 randomly partitioned training (80% of available data)
and test sets (20%). The probability of error Pr(err) as a function of the number of
training examples n is plotted in Fig. 6.5. We observe that in general our DT algorithm
performs the best, especially in the absence of a large number of training examples.

8Each pixel with a non-zero value is quantized to 1.
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Figure 6.5. Pr(err) between DT, Chow-Liu and TAN using a pair of trees. Error bars denote 1
standard deviation from the mean. If the total number of training samples n is small, then typically
DT performs much better than Chow-Liu and TAN.

This makes good intuitive sense: With a limited number of training samples, a discrim-
inative learning method, which captures the salient differences between the classes,
should generalize better than a generative learning method, which models the distribu-
tions of the individual classes. Also, the computational complexities of DT and TAN
are exactly the same.

� 6.5.3 Extension to Multi-class Problems

Next, we consider extending the sequential forest learning algorithm described in Sec-
tion 6.3.4 to handle multi-class problems.9 In multi-class problems, there are M ≥ 2
classes, i.e., the class label Y described in Section 6.2.1 can take on more than 2 values.
For example, we would like to determine which digit in the set I := {0, 1, . . . , 9} a
particular noisy image contains. For this experiment, we again use images from the
MNIST database, which consists of M = 10 classes corresponding to the digits in the
set I. Since each of the n = 60, 000 images in the database is of size 28 by 28, the
dimensionality of the data is d = 28× 28 = 784. There is a separate test set containing
10,000 images, which we use to estimate the error probability. We pre-processed each
image by concatenating the columns. We modeled each of the M classes by a mul-
tivariate Gaussian with mean vector µi ∈ Rd and positive definite covariance matrix
Σi ∈ Rd×d. To handle this multi-class classification problem, we used the well-known
one-vs-all strategy described in Rifkin and Klautau [161] to classify the test images. We

define p̂
(k)
i|j (x) and p̂

(k)
j|i (x) to be the learned forest distributions with at most k edges

for the binary classification problem for digits i (positive class) and j (negative class)

9The DT algorithm can also be extended to multi-class problems in the same way.
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Figure 6.6. Pr(err)’s for the MNIST Digits dataset for the multi-class problem with M = 10 classes
(hypotheses). The horizontal axis is k, the number of edges added to each model p̂ and q̂. Note that
the discriminative method outperforms the generative (Chow-Liu) method and TAN.

respectively. For each k, we also define the family of functions f
(k)
ij : X d → R as

f
(k)
ij (x) := log

[
p̂
(k)
i|j (x)

p̂
(k)
j|i (x)

]
, i, j ∈ I. (6.28)

Thus, sgn f
(k)
ij : X n → {−1,+1} is the classifier (for which both forests have no more

than k edges) that discriminates between digits i and j. Note that f
(k)
ij (x) = −f (k)ji (x).

These distributions correspond to the p̂(k) and q̂(k) for the binary classification prob-
lem. The decision for the multi-class problem is then given by the composite decision
function [161] g(k) : X d → I, defined as:

g(k)(x) := argmax
i∈I

M−1∑

j=0

f
(k)
ij (x). (6.29)

The results of the experiment are shown in Fig. 6.6. We see that the discriminative
method to learn the sequence of forests results in a lower Pr(err) (estimated using the
test set) than the generative method for this dataset and TAN. This experiment again
highlights the advantages of our proposed discriminative learning method detailed in
Section 6.3 as compared to Chow-Liu trees [42] or TAN [84].

� 6.5.4 Comparison of BGMC to other Classifiers

In this section, we return to the binary classification problem and show empirically that
our boosting procedure results in models that are better at classifying various datasets
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Figure 6.7. Discrimination between the digits 7 and 9 in the MNIST dataset. T is the number
of boosting iterations. Yellow 3: (Chow-Liu + Discrete-AdaBoost), Green 4: (Chow-Liu + Real-
AdaBoost), Red ×: Discriminative Trees + Discrete-AdaBoost, Blue ◦: Discriminative Trees + Real-
AdaBoost (the proposed algorithm, BGMC). BGMC demonstrates lower training and test errors on
this dataset. The training error decreases monotonically as expected. CV can be used to find the
optimal number of boosting iterations to avoid overfitting. Observe from (b) that boosting (and in
particular BGMC) is fairly robust to overfitting because even if T increases, the test error (also called
generalization error) does not increase drastically.

as compared to boosted versions of tree-based classifiers. Henceforth, we term our
method, described in Section 6.4 (and in detail in Algorithm 2) as Boosted Graphical
Model Classifier (BGMC).

In Fig. 6.7, we show the evolution of the training and test errors for discriminating
between the digits 7 and 9 in the MNIST dataset as a function of T , the number of
boosting iterations. We set the number of training samples n = 500. We compare
the performance of four different methods: Chow-Liu learning with either Discrete-
AdaBoost or Real-AdaBoost and Discriminative Trees with either Discrete-AdaBoost
or Real-AdaBoost. We observe that the test error for Discriminative Trees + Real-
AdaBoost, which was the method (BGMC) proposed in Section 6.4, is the minimum.
Also, after a small number of boosting iterations, the test error does not decrease any
further. Cross-validation (CV) [6] may thus be used to determine the optimal number
of boosting iterations. We now compare BGMC to a variety of other classifiers:

1. BCL: A boosted version of the Chow-Liu algorithm [42] where a pair of trees
is learned generatively, one for each class. Note that only the positively (resp.
negatively) labeled samples are used to estimate p̂ (resp. q̂). Subsequently, the
trees are combined using the method detailed in Section 6.4.

2. BTAN: A boosted version of TAN [84]. Recall that TAN is such that two trees
with the same structure are learned.

3. SVM: Support Vector Machines [201] using the quadratic kernel K2(x
(a),x(b)) =

(1 + 〈x(a),x(b)〉)2, with the slack parameter C > 0 found by CV.10 We obtained

10We used 20% of the training samples to determine the best value of C.
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the SVM code from [34].

For boosting, the optimal number of boosting iterations T ∗, was also found by CV.
For the set of experiments we performed, we found that T ∗ is typically small (≈ 3 – 4);
hence the resulting normalized models remain sparse (Proposition 6.7).

Synthetic Dataset We generated a dataset by assuming that p and q are Markov on d =
10 × 10 binary grid models with different randomly chosen parameters. We generated
n = 1200 samples to learn boosted discriminative trees. The purpose of this experiment
was to compare the number of edges added to the models and the (known) number of
edges in the original grid models. The original grid models each have 2 × 92 = 162
edges and the learned models have at most (d − 1)T ∗ = 99 × 3 = 297 edges since the
CV procedure results in an optimal boosting iteration count of T ∗ = 3. However, some
of the edges in p̂1, p̂2, p̂3 (and q̂1, q̂2, q̂3) coincide and this results in | ∪T ∗

t=1 Ep̂t | = 180
(and | ∪T ∗

t=1 Eq̂t | = 187). Thus, there are 180 and 187 distinct edges in the p̂∗ and q̂∗

models respectively. From the top left plot in Fig. 6.8, we see that CV is effective for
the purpose of finding a balance between optimizing modeling ability and preventing
overfitting.

Real-World Datasets We also obtained five different datasets from the UCI Machine
Learning Repository [144] as well as the previously-mentioned MNIST database. For
datasets with continuous variables, the data values were quantized so that each variable
only takes on a finite number of values. For datasets without separate training and test
sets, we estimated the test error by averaging over 100 randomly partitioned training-
test sets from the available data. The Pr(err) as a function of the number of training
examples n is plotted in Fig. 6.8 for a variety of datasets. We observe that, apart from
the Pendigits dataset, BGMC performs better than the other two (boosted) graphical
model classifiers. Also, it compares well with SVM. In particular, for the synthetic,
three MNIST, Optdigits and Chess datasets, the advantage of BGMC over the other
tree-based methods is evident.

� 6.6 Chapter Summary

In this chapter, we proposed a discriminative objective for the specific purpose of learn-
ing two tree-structured graphical models for classification. We observe that Discrim-
inative Trees outperforms existing tree-based graphical model classifiers like TANs,
especially in the absence of a large number of training examples. This is true for sev-
eral reasons. First, our discriminative tree learning procedure is designed to optimize
an approximation to the expectation of the log-likelihood ratio (6.18), while TAN is a
generative procedure. Thus, if the intended purpose is known (e.g., in [207] the task
was prediction), we can learn graphical models differently and often, more effectively
for the task at hand. Secondly, we allowed the learned structures of the two models
to be distinct, and each model is dependent on data with both positive and negative
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Figure 6.8. Pr(err) against n, the number of training samples, for various datasets using Boosted
Graphical Model Classifiers (BGMC, blue ◦), Boosted Chow-Liu (BCL, red ×), Boosted TAN (BTAN,
magenta +) and SVM with quadratic kernel (green ×). In all cases, the performance of BGMC is
superior to Boosted TAN.
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labels. It is worth noting that the proposed discriminative tree learning procedure does
not incur any computational overhead compared to existing tree-based methods.

We showed that the discriminative tree learning procedure can be adapted to the
weighted case, and is thus amenable to the use the models resulting from this procedure
as weak classifiers for boosting to learn thicker models, which have better modeling
ability. This is what allows us to circumvent the intractable problem of having to find
the maximum-likelihood parameters of loopy graphical models.

In addition to learning two graphical models specifically for the purpose of dis-
crimination, the proposed method also provides a principled approach to learn which
pairwise features (or edges) are the most salient for classification (akin to the methods
described in [90]). Our method for sequentially learning optimal forests serves precisely
this purpose and also provides a natural way to incorporate costs of adding edges. Fur-
thermore, to learn more edges than in a tree, we used boosting in a novel way to learn
more complex models for the purpose of classification. Indeed, at the end of T boosting
iterations, we can precisely characterize the set of edges for the normalized versions
of the boosted models (Proposition 6.7). We can use these pairwise features, together
with the marginal features, as inputs to any standard classification algorithm. Finally,
our empirical results on a variety of synthetic and real datasets adequately demonstrate
that the forests, trees and thicker models learned serve as good classifiers.

Appendices for Chapter 6

� 6.A Proof of Proposition 6.3

Proof. We use
c
= to denote equality up to a constant. Now, we can simplify the objective

in the optimization problem in (6.15a), namely D(p̃ || p̂)−D(q̃ || p̂) :

c
=
∑

x∈X d

(q̃(x)− p̃(x)) log


∏

i∈V

p̂i(xi)
∏

(i,j)∈E

p̂i,j(xi, xj)

p̂i(xi)p̂i(xj)


 , (6.30)

c
=
∑

x∈X d

(q̃(x)− p̃(x))
∑

(i,j)∈E

log

[
p̃i,j(xi, xj)

p̃i(xi)p̃j(xj)

]
, (6.31)

=
∑

(i,j)∈E

∑

(xi,xj)X 2

(q̃i,j(xi, xj)− p̃i,j(xi, xj)) log
[
p̃i,j(xi, xj)

p̃i(xi)p̃j(xj)

]
, (6.32)

where (6.30) follows from the fact that p̂ is a tree-structured distribution [and hence
factorizes as (2.95)] and (6.31) follows from marginal consistency and the fact that
we are optimizing only over the edge set of p̂ and thus the marginals can be dropped
from the optimization. The final equality in (6.32), derived using (6.12) and (6.13),
shows that we need to optimize over all tree structures with edge weights given by the
expression in (6.16).
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� 6.B Proof of Proposition 6.7

Proof. This result holds even when the p̂t are not trees, and the proof is straightforward.
In general, a (everywhere non-zero) distribution p is Markov [127] with respect to some
edge set E if and only if

log p(x)
c
=

∑

(i,j)∈E

θijφij(xi, xj) +
∑

i∈V

θiφi(xi) (6.33)

for some constants θ and functions φ. This means that each tree model p̂t can be
written as

log p̂t(x)
c
=

∑

(i,j)∈Ep̂t

θtijφ
t
ij(xi, xj) +

∑

i∈V

θtiφ
t
i(xi). (6.34)

Let E :=
⋃T
t=1Ep̂t be the union of the edge sets after T boosting iterations. Then

log p̂∗(x) is equal (up to constants) to

T∑

t=1

αt

( ∑

(i,j)∈Ep̂t

θtijφ
t
ij(xi, xj) +

∑

i∈V

θtiφ
t
i(xi)

)
, (6.35)

=
∑

(i,j)∈E

(
T∑

t=1

αtθ
t
ijφ

t
ij(xi, xj)

)
+
∑

i∈V

(
T∑

t=1

αtθ
t
iφ
t
i(xi)

)
, (6.36)

where in we interpret the right hand side of the last equality as θtij = 0 if and only
if (i, j) /∈ Ep̂t . This is seen to be of the same form as (6.33) – to see this, define the
functions

ξij(xi, xj) :=
T∑

t=1

αtθ
t
ijφ

t
ij(xi, xj), (6.37a)

ξi(xi) :=
T∑

t=1

αtθ
t
iφ
t
i(xi), (6.37b)

so that log p̂∗(x)
c
=
∑

(i,j)∈E ξij(xi, xj) +
∑

i∈V ξi(xi). By the Hammersley-Clifford
Theorem [91], we have proven the desired Markov property.



Chapter 7

High-Dimensional Salient

Subset Recovery

� 7.1 Introduction

CONSIDER the following scenario which was used as a motivating example in Chap-
ter 1: There are 1000 children participating in a longitudinal study in childhood

asthma of which 500 of them are asthmatic and the other 500 are not. 106 measurements
of possibly relevant features (e.g., genetic, environmental, physiological) are taken from
each child but only a very small subset of these (say 30) is useful in predicting whether
the child has asthma. The correct identification and subsequent interpretation of this
salient subset is important to clinicians for assessing the susceptibility of other children
to asthma. We expect that by focusing only on the 30 salient features, we can improve
discrimination and reduce the computational cost in coming up with a decision rule.
Indeed, when the salient set is small compared to the overall dimension (106), we also
expect to be able to estimate the salient set with a small number of samples.

In this chapter, we build on the idea of salient feature extraction from the previous
chapter to derive and study conditions under which we can asymptotically recover
the salient feature subset for distinguishing between two probability models from i.i.d.
samples. Identifying the salient set improves discrimination performance and reduces
complexity. The focus in this chapter is similar to Chapter 5 and is focused on the high-
dimensional regime where the number of variables d, the number of salient variables
k and the number of samples n all grow. The definition of saliency is motivated by
error exponents in a binary hypothesis test (cf. Section 2.2.3) and is stated in terms of
relative entropies. Intuitively, we expect that if k and d do not grow too quickly with
n, then consistent recovery is possible in high-dimensions.

As with the rest of the thesis, we adopt an information-theoretic perspective. More
specifically, we utilize ideas from the method of types and typicality (described in
Section 2.2.1) to prove achievability statements and Fano’s inequality (described in
Section 2.1.6) to prove converses. Furthermore, we we define the notion of saliency for
distinguishing between two probability distributions by appealing to the Chernoff-Stein
lemma in a binary hypothesis test under the Neyman-Pearson framework. We show
that this definition of saliency can also be motivated by the same hypothesis testing

185
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problem under the Bayesian framework, in which the overall error probability is to
be minimized. For the asthma example, intuitively, a feature is salient if it is useful in
predicting whether a child has asthma and we also expect the number of salient features
to be very small. Also, conditioned on the salient features, the non-salient ones should
not contribute to the distinguishability of the classes. Our mathematical model and
definition of saliency in terms of the KL-divergence (or Chernoff information) captures
this intuition.

There are three main contributions in this chapter. Firstly, we provide sufficient
conditions on the scaling of the model parameters (n, d, k) so that the salient set is
recoverable asymptotically. Secondly, by modeling the salient set as a uniform random
variable (over all sets of size k), we derive a necessary condition that any decoder must
satisfy in order to recover the salient set. Thirdly, in light of the fact that the exhaustive
search decoder is computationally infeasible, we examine the case in which the under-
lying distributions are Markov on trees and derive efficient tree-based combinatorial
optimization algorithms to search for the salient set.

The literature on feature subset selection (or variable extraction) is vast. See [90]
(and references therein) for a thorough review of the field. The traditional methods
include the so-called wrapper (assessing different subsets for their usefulness in pre-
dicting the class) and filter (ranking) methods. Our definition of saliency is related to
the minimum-redundancy, maximum-relevancy model in [155], the notion of Markov
blankets in [118] and the notion of sufficiency by Kullback [125] and is expressed using
information-theoretic quantities motivated by hypothesis testing. The algorithm sug-
gested in [147] shows that the generalization error remains small even in the presence
of a large number of irrelevant features, but this chapter focuses on exact recovery of
the salient set given scaling laws on (n, d, k). This work is also related to [208] and [72]
on sparsity pattern recovery (or compressed sensing) but does not assume the linear
observation model. Rather, samples are drawn from two arbitrary discrete multivari-
ate probability distributions so this can also be considered as a nonparametric model
selection problem.

The rest of this chapter is organized as follows: In Section 7.2, we define the notation
used in this chapter and state the definition of achievability. In Section 7.3, we derive
necessary and sufficient conditions for asymptotic salient subset recovery. In Section 7.4,
we demonstrate that for special classes of tree-structured distributions, the recovery
of the salient subset can be performed very efficiently. Conclusions are provided in
Section 7.5. Most of the proofs of the statements are deferred to the appendices of this
chapter.

� 7.2 Notation, System Model and Definitions

Let {P (d), Q(d)}d∈N be two sequences of distributions where P (d), Q(d) ∈ P(X d), are the
distributions of d-dimensional random vectors x,y respectively. For a vector x ∈ X d,
xA is the length-|A| subvector that consists of the elements in A. Let Ac := Vd \ A.
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In addition, let Vd := {1, . . . , d} be the index set and for a subset A ⊂ Vd, let P
(d)
A be

the marginal of the subset of random variables in A, i.e., the random vector xA. Each

index i ∈ Vd, associated to marginals (P
(d)
i , Q

(d)
i ), will be generically called a feature.

We assume that for each pair (P (d), Q(d)), there exists a set of n i.i.d. samples
(xn,yn) := ({x(l)}nl=1, {y(l)}nl=1) drawn from P (d) × Q(d). Each sample x(l) (and also
y(l)) belongs to X d. Our goal is to distinguish between P (d) and Q(d) using the samples.
Note that for each d, this setup is analogous to binary classification where one does not
have access to the underlying distributions but only samples from the distribution. We
suppress the dependence of (xn,yn) on the dimensionality d when the lengths of the
vectors are clear from the context.

� 7.2.1 Definition of The Salient Set of Features

We now motivate the notion of saliency (and the salient set) by considering the following
binary hypothesis testing problem. There are n i.i.d. d-dimensional samples zn :=
{z(1), . . . , z(n)} drawn from either P (d) or Q(d), i.e.,

H0 : z
n i.i.d.∼ P (d), H1 : z

n i.i.d.∼ Q(d). (7.1)

The Chernoff-Stein lemma (Lemma 2.22) says that the error exponent for (7.1) under
the Neyman-Pearson formulation is D(P (d) ||Q(d)). More precisely, if the probability
of false alarm PFA = Pr(Ĥ1|H0) is kept below α, then the probability of mis-detection
PM = Pr(Ĥ0|H1) tends to zero exponentially fast as n → ∞ with exponent given by
D(P (d) ||Q(d)).

In the Bayesian formulation, we seek to minimize the overall probability of error
Pr(err) = Pr(H0)PFA+Pr(H1)PM, where Pr(H0) and Pr(H1) are the prior probabilities
of hypotheses H0 and H1 respectively. It is known from Lemma 2.23 that in this case,
the error exponent governing the rate of decay of Pr(err) with the sample size n is
the Chernoff information between P (d) and Q(d), i.e., D∗(P (d), Q(d)) defined in (2.70).
Similar to the KL-divergence, D∗(P (d), Q(d)) is a measure of the separability of the
distributions. It is a symmetric quantity in the distributions but is still not a metric.
Given the form of the error exponents for the Neyman-Pearson and Bayesian setups, we
would like to identify a size-k subset of features Sd ⊂ Vd that “maximally distinguishes”
between P (d) and Q(d). This motivates the following definitions:

Definition 7.1. (KL-divergence Salient Set) A subset Sd ⊂ Vd of size k is KL-divergence
salient (or simply salient) if

D(P (d) ||Q(d)) = D(P
(d)
Sd
||Q(d)

Sd
), (7.2)

Thus, conditioned on the variables in the salient set Sd (with |Sd| = k for some 1 ≤
k ≤ d), the variables in the complement Scd do not contribute to the distinguishability
(in terms of the KL-divergence) of P (d) and Q(d).
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Definition 7.2. (Chernoff information Salient Set) A subset Sd ⊂ Vd of size k is
Chernoff information salient if

D∗(P (d), Q(d)) = D∗(P
(d)
Sd
, Q

(d)
Sd

), (7.3)

Thus, given the variables in Sd, the remaining variables in Scd do not contribute to
the Chernoff information defined in (2.70). A natural question to ask is whether the
two definitions above are equivalent. We claim the following lemma.

Lemma 7.1. (Equivalence of Saliency Definitions) For a subset Sd ⊂ Vd of size k, the
following are equivalent:

S1: Sd is KL-divergence salient.

S2: Sd is Chernoff information salient.

S3: P (d) and Q(d) admit the following decompositions into the Sd marginals and the
conditional distribution of Scd given Sd:

P (d) = P
(d)
Sd
·WSc

d|Sd
, Q(d) = Q

(d)
Sd
·WSc

d|Sd
. (7.4)

Proof. Lemma 7.1 is proved using Hölder’s inequality and Jensen’s inequality. See
Appendix 7.A for the details.

Observe from (7.4) that the conditionals WSc
d|Sd

of both models are identical. Con-

sequently, the likelihood ratio test (LRT) between P (d) and Q(d) depends solely on the
marginals of the salient set Sd, i.e.,

1

n

n∑

l=1

log
P (d)(z(l))

Q(d)(z(l))
=

1

n

n∑

l=1

log
P

(d)
Sd

(z
(l)
Sd
)

Q
(d)
Sd

(z
(l)
Sd
)

Ĥ=H0

≷
Ĥ=H1

γn, (7.5)

is the most powerful test of fixed size α for threshold γn.
1 Also, the inclusion of any

non-salient subset of features B ⊂ Scd keeps the likelihood ratio in (7.5) exactly the
same, i.e.,

P
(d)
Sd

Q
(d)
Sd

=
P

(d)
Sd∪B

Q
(d)
Sd∪B

. (7.6)

Moreover, correctly identifying Sd from the set of samples (xn,yn) results in a reduction
in the number of relevant features, which is advantageous for the design of parsimonious
and efficient binary classifiers.

Because of this equivalence of definitions of saliency (in terms of the Chernoff-Stein
exponent and the Chernoff information), if we have successfully identified the salient set

1We have implicitly assumed that the distributions P (d), Q(d) are nowhere zero and consequently
the conditional WSc

d
|Sd

is also nowhere zero.
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in (7.2), we have also found the subset that maximizes the error exponent associated to
the overall probability of error Pr(err). In our results, we find that the characterization
of saliency in terms of (7.2) is more convenient than its equivalent characterization
in (7.3). Finally, we emphasize that the number of variables and the number of salient
variables k = |Sd| can grow as functions of n, i.e., d = d(n), k = k(n). In the sequel,
we provide necessary and sufficient conditions for the asymptotic recovery of Sd as the
model parameters scale, i.e., when (n, d, k) all grow.

� 7.2.2 Definition of Achievability

Let Sk,d := {A : A ⊂ Vd, |A| = k} be the set of cardinality-k subsets in Vd. A
decoder is a set-valued function ψn that maps the samples to a subset of size k, i.e.,
ψn : (X d)n × (X d)n → Sk,d. Note in this chapter that the decoder is given k, i.e., the

cardinality of the salient set. In the following, we use the notation P̂ (d), Q̂(d) to denote
the empirical distributions (or types) of xn,yn respectively. Note that as usual, we drop
the dependence of P̂ (d) on the samples xn and also on n for brevity. All the quantities
with hats depend on (xn,yn).

Definition 7.3. (Exhaustive Search Decoder) The exhaustive search decoder (ESD)
ψ∗
n : (X d)n × (X d)n → Sk,d is given as

ψ∗
n(x

n,yn) ∈ argmax
S′
d∈Sk,d

D(P̂
(d)
S′
d
|| Q̂(d)

S′
d
). (7.7)

where P̂
(d)
S′
d

is the marginal of the empirical distribution of the variables in S′
d. If the

argmax in (7.7) is not unique, output any set S′
d ∈ Sk,d that maximizes the objective.

We remark that, in practice, the ESD is computationally infeasible for large d and

k since it has to compute the empirical KL-divergence D(P̂
(d)
S′
d
|| Q̂(d)

S′
d
) for all subsets

in Sk,d. In Section 7.4, we analyze how to reduce the complexity of (7.7) for tree
distributions. Nonetheless, the ESD is consistent for fixed d and k. That is, as n→∞,
the probability that a non-salient set is selected by ψ∗

n tends to zero. We provide the
exponential rate of decay in Section 7.3.2. Let Pn := (P (d) × Q(d))n denote the n-fold
product probability measure of P (d) ×Q(d).

Definition 7.4. (Achievability) The sequence of model parameters {(n, d, k)}n∈N is
achievable for the sequence of distributions {P (d), Q(d) ∈ P(X d)}d∈N if there exists a
sequence of decoders {ψn} such that to every ε > 0, there exists a Nε ∈ N for which the
error probability

pn(ψn) := Pn(ψn(x
n,yn) 6= Sd) < ε, ∀n > Nε. (7.8)

Thus, if {(n, d, k)}n∈N is achievable, limn pn(ψn) = 0. In (7.8), (xn,yn) is a set of n
i.i.d. samples drawn from P (d) ×Q(d).

In the sequel, we provide achievability conditions for the ESD.
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� 7.3 Conditions for the High-Dimensional Recovery of Salient Subsets

In this section, we state three assumptions on the sequence of distributions {P (d), Q(d)}d∈N
such that under some specified scaling laws, the triple of model parameters (n, d, k) is
achievable with the ESD as defined in (7.8). We provide both positive (achievability)
and negative (converse) sample complexity results under these assumptions. That is,
we state when (7.8) holds and also when the sequence pn(ψn) is uniformly bounded
away from zero.

� 7.3.1 Assumptions on the Distributions

In order to state our results, we assume that the sequence of probability distributions
{P (d), Q(d)}d∈N satisfy the following three conditions:

A1: (Saliency) For each pair of distributions P (d), Q(d), there exists a salient set Sd ⊂ Vd
of cardinality k such that (7.2) (or equivalently (7.3)) holds.

A2: (η-Distinguishability) There exists a constant η > 0, independent of (n, d, k), such
that for all d ∈ N and for all non-salient subsets S′

d ∈ Sk,d \ {Sd}, we have

D(P
(d)
Sd
||Q(d)

Sd
)−D(P

(d)
S′
d
||Q(d)

S′
d
) ≥ η > 0. (7.9)

A3: (L-Boundedness of the Likelihood Ratio) There exists a L ∈ (0,∞), independent
of (n, d, k), such that for all d ∈ N, we have

log

[
P

(d)
Sd

(xSd
)

Q
(d)
Sd

(xSd

]
∈ [−L,L] (7.10)

for all length-k vectors xSd
∈ X k.

Assumption A1 pertains to the existence of a salient set. Assumption A2 allows
us to employ the large deviation principle [59] to quantify error probabilities. This is
because all non-salient subsets S′

d ∈ Sk,d \ {Sd} are such that their divergences are
uniformly smaller than the divergences on Sd, the salient set. Thus, for each d, the
associated salient set Sd is unique and the error probability of selecting any non-salient
set S′

d decays exponentially. A2 together with A3, a regularity condition, allows us to
prove that the exponents of all the possible error events are uniformly bounded away
from zero. In the next subsection, we formally define the notion of an error exponent
for the recovery of salient subsets.

� 7.3.2 Fixed Number of Variables d and Salient Variables k

In this section, we consider the situation when d and k are constant. This provides key
insights for developing achievability results when (n, d, k) scale. Under this scenario,
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we have a large deviations principle for the error event in (7.8). We define the error
exponent for the ESD ψ∗

n as

C(P (d), Q(d)) := − lim
n→∞

1

n
logPn(ψ∗

n(x
n,yn) 6= Sd). (7.11)

Let JS′
d|Sd

be the error rate at which the non-salient set S′
d ∈ Sk,d \ {Sd} is selected by

the ESD, i.e.,

JS′
d|Sd

:= − lim
n→∞

1

n
logPn

(
ψ∗
n(x

n,yn) = S′
d

)
. (7.12)

For each S′
d ∈ Sk,d \ {Sd}, also define the set of distributions

ΓS′
d|Sd

:=
{
(P,Q) ∈ P(X 2|Sd∪S

′
d|) : D(PSd

||QSd
) = D(PS′

d
||QS′

d
)
}
. (7.13)

Proposition 7.2. (Error Exponent as Minimum Error Rate) Assume that the ESD ψ∗
n

is used. If d and k are constant, then the error exponent (7.11) is given as

C(P (d), Q(d)) = min
S′
d∈Sk,d\{Sd}

JS′
d|Sd

, (7.14)

where the error rate JS′
d|Sd

, defined in (7.12), is

JS′
d|Sd

= min
ν∈ΓS′

d
|Sd

D(ν ||P (d)
Sd∪S

′
d
×Q(d)

Sd∪S
′
d
). (7.15)

Furthermore if A2 holds, C(P (d), Q(d)) > 0 and hence the error probability in (7.8)
decays exponentially fast in n.

Proof. This result is proved using Sanov’s Theorem and the contraction principle in
large deviations. See Appendix 7.B.

� 7.3.3 An Achievability Result for the High-Dimensional Case

We now consider the high-dimensional scenario when (n, d, k) all scale and we have
a sequence of salient set recovery problems indexed by n for the probability models
{P (d), Q(d)}d∈N. Thus, d = d(n) and k = k(n) and we are searching for how such
dependencies must behave (scale) such that we have achievability in the sense of Defi-
nition 7.4. This is of interest since this regime (typically d � n, k) is most applicable
to many practical problems and modern datasets such as the motivating example in
the introduction. Before stating our main theorem, we define the greatest lower bound
(g.l.b.) of the error exponents as

B := B({P (d), Q(d)}d∈N) := inf
d∈N

C(P (d), Q(d)), (7.16)

where C(P (d), Q(d)) is given in (7.14). Clearly, B ≥ 0 by the non-negativity of the KL-
divergence. In fact, we prove that B > 0 under assumptions A1 – A3, i.e., the exponents
in (7.14) are uniformly bounded away from zero. For ε > 0, define the functions

g1(k, ε) := exp

(
2k log |X |
1− ε

)
, g2(d, k) :=

k

B
log

(
d− k
k

)
. (7.17)
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Theorem 7.3 (Main Result: Achievability). Assume that A1 – A3 hold for the sequence
of distributions {P (d), Q(d)}d∈N. If there exists an ε > 0 and an N ∈ N such that

n > max{g1(k, ε), g2(d, k)}, ∀n > N, (7.18)

then
pn(ψ

∗
n) = O(exp(−nc)) (7.19)

where the exponent

c := B − lim sup
n→∞

k

n
log

d− k
k

> 0. (7.20)

Proof. See Appendix 7.C for the proof.

In other words, the sequence {(n, d, k)}n∈N of parameters is achievable if (7.18)
holds. Furthermore, the exhaustive search decoder in (7.7) achieves the scaling law
in (7.18).

The key elements in proof include applications of large deviations bounds (e.g.,
Sanov’s theorem), asymptotic behavior of binomial coefficients and most crucially demon-
strating the positivity of the g.l.b. of the error exponents B defined in (7.16). We now
discuss the ramifications of Theorem 7.3.

Firstly, n > g1(k, ε) means that k, the number of salient features, is only allowed
to grow logarithmically in n. Secondly, n > g2(d, k) means that if k is a constant,
the number of redundant features |Scd| = d − k can grow exponentially with n, and pn
still tends to zero exponentially fast. This means that recovery of Sd is asymptotically
possible even if the data dimension is extremely large (compared to n) but the number
of salient ones remain a small fraction of the total number d. We state this observation
formally as a corollary of Theorem 7.3.

Corollary 7.4. (Achievability for constant k) Assume A1 – A3. Let k = k0 be a
constant and fix R < R1 := B/k0. Then if there exists a N ∈ N such that

n >
log d

R
, ∀n > N, (7.21)

then the error probability obeys pn(ψ
∗
n) = O(exp(−nc′)), where the exponent is c′ :=

B − k0R.

This result means that we can recover the salient set even though the number of
variables d is much larger than (exponential in) in the number of samples n as in the
asthma example.

� 7.3.4 A Converse Result for the High-Dimensional Case

In this section, we state a converse theorem (and several useful corollaries) for the high-
dimensional case. Specifically, we establish a condition on the scaling of (n, d, k) so
that the probability of error is uniformly bounded away from zero for any decoder. In
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order to apply standard proof techniques (such as Fano’s inequality) for converses that
apply to all possible decoders ψn, we consider the following slightly modified problem
setup where Sd is random and not fixed as was in Theorem 7.3. More precisely, let
{P̃ (d), Q̃(d)}d∈N be a fixed sequence of distributions, where P̃ (d), Q̃(d) ∈ P(X d). We
assume that this sequence of distributions satisfies A1 – A3, namely there exists a
salient set S̃d ∈ Sk,d such that P̃ (d), Q̃(d) satisfies (7.2) for all d.

Let Π be a permutation of Vd chosen uniformly at random, i.e., Pr(Π = π) =
1/(d!) for any permutation operator π : Vd → Vd. Define the sequence of distributions
{P (d), Q(d)}d∈N as

π ∼ Π, P (d) := P̃ (d)
π , Q(d) := Q̃(d)

π . (7.22)

Put simply, we permute the indices in P̃ (d), Q̃(d) (according to the realization of Π) to
get P (d), Q(d), i.e.,

P (d)(x1 . . . xd) := P̃ (d)(xπ(1) . . . xπ(d)). (7.23)

Thus, once π has been drawn, the distributions P (d) and Q(d) of the random vectors x
and y are completely determined. Clearly the salient sets Sd are drawn uniformly at
random (u.a.r.) from Sk,d and we have the Markov chain:

Sd
ϕn−→ (xn,yn)

ψn−→ Ŝd, (7.24)

where the length-d random vectors (x,y) ∼ P (d) × Q(d) and Ŝd is any estimate of Sd.
Also, ϕn is the encoder given by the random draw of π and (7.22). ψn is the decoder
defined in Section 7.2.2. We denote the entropy of a random vector z with pmf P as
H(z) = H(P ) and the conditional entropy of zA given zB as H(zA|zB) = H(PA|B).

Theorem 7.5. (Converse) Assume that the salient sets {Sd}d∈N are drawn u.a.r. and
encoded as in (7.22). If

n <
λk log( dk )

H(P (d)) +H(Q(d))
, for some λ ∈ (0, 1), (7.25)

then pn(ψn) ≥ 1− λ for any decoder ψn.

Proof. The converse is proven using Fano’s inequality. See Appendix 7.E for the proof
of this result.

Note from (7.25) that if the non-salient set Scd consists of uniform random variables
independent of those in Sd then H(P (d)) = O(d) and the bound is never satisfied. How-
ever, the converse is interesting and useful if we consider distributions with additional
structure on their entropies. In particular, we assume that most of the non-salient vari-
ables are redundant (or processed) versions of the salient ones. Again appealing to the
asthma example in the introduction, there could be two features in the dataset “body
mass index” (in Sd) and “is obese” (in Scd). These two features capture the same basic
information and are thus redundant, but the former may be more informative to the
asthma hypothesis.
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Figure 7.1. TS = (V (TS), E(TS)) (in bold) is a subtree in T and its nodes (in black) comprise the
salient set S = {3, 4}.

Corollary 7.6. (Converse with Bound on Conditional Entropy) If there exists a M <
∞ such that

max
{
H(P

(d)
Sc
d|Sd

), H(Q
(d)
Sc
d|Sd

)
}
≤Mk (7.26)

for all d ∈ N, and

n <
λ log( dk )

2(M + log |X |) , for some λ ∈ (0, 1), (7.27)

then pn(ψn) ≥ 1− λ for any decoder ψn.

Corollary 7.7. (Converse for constant k) Assume the setup in Corollary 7.6. Fix
R > R2 := 2(M + log |X |). Then if k is a constant and if there exists an N ∈ N such
that n < (log d)/R for all n > N , then there exist a δ > 0 such that error probability
pn(ψn) ≥ δ for all decoders ψn.

We previously showed (cf. Corollary 7.4) that there is a rate of growth R1 so that
achievability holds if R < R1. Corollary 7.7 says that, under the specified conditions,
there is also another rate R2 so that if R > R2, recovery of Sd is no longer possible.

� 7.4 Specialization to Tree Distributions

As mentioned previously, the ESD in (7.7) is computationally prohibitive. In this sec-
tion, we assume Markov structure on the distributions and devise an efficient algorithm
to reduce the computational complexity of the decoder. To do so, for each d and k,
assume the following:

A4: (Markov tree) The distributions P := P (d), Q := Q(d) are undirected graphi-
cal models [127]. More specifically, P,Q are Markov on a common tree T =
(V (T ), E(T )), where V (T ) = {1, . . . , d} is the vertex set and E(T ) ⊂

(
V
2

)
is the

edge set. That is, P,Q admit the factorization in (2.95) where their edge sets are
common.

A5: (Subtree) The salient set S := Sd is such that PS , QS are Markov on a common
(connected) subtree TS = (V (TS), E(TS)) in T . See Fig. 7.1.
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Note that ES ⊂ E has to be a connected edge set so that the marginal distribution
PS and QS remain Markov on a common tree TS = (V,EE). Otherwise, additional edges
may be introduced when the variables in Sc are marginalized out [127]. For example,
if S is a singleton set and, in particular, is the sole non-leaf node in a star-structured
graphical model, marginalizing over S yields, in general, a fully-connected graphical
model. Under A4 and A5, the KL-divergence decomposes as:

D(P ||Q) =
∑

i∈V (T )

Di +
∑

(i,j)∈E(T )

Wi,j , (7.28)

where Di := D(Pi ||Qi) is the KL-divergence of the marginals and the weights Wi,j :=
Di,j − Di − Dj . A similar decomposition holds for D(PS ||QS) with V (TS), E(TS)
in (7.28) in place of V (T ), E(T ). Let Tk(T ) be the set of subtrees with k < d vertices
in T , a tree with d vertices. We now describe an efficient algorithm to learn S when T
is unknown.

Firstly, using the samples (xn,yn), learn a single Chow-Liu tree model TML using
the sum of the empirical mutual information quantities {I(P̂i,j) + I(Q̂i,j)} as the edge
weights. It is known that the Chow-Liu max-weight spanning tree algorithm is consis-
tent and large deviations rates have also been studied (Chapter 3). Secondly, solve the
following optimization:

T ∗
k = argmax

T ′
k∈Tk(TML)

∑

i∈V (T ′
k)

D̂i +
∑

(i,j)∈E(T ′
k)

Ŵi,j , (7.29)

where D̂i and Ŵi,j are the empirical versions of Di and Wi,j respectively. In (7.29), the
sum of the node and edge weights over all size-k subtrees in TML is maximized. The
problem in (7.29) is known as the k-CARD TREE problem [22, 78] and it runs in time
O(dk2) using a dynamic programming procedure on trees. Thirdly, let the estimate of
the salient set be the vertex set of T ∗

k , i.e, ψn(x
n,yn) := V (T ∗

k ).

Proposition 7.8. (Complexity Reduction for Trees) Assume that A4 and A5 hold.
Then if k, d are constant, the algorithm described above to estimate S is consistent.
Moreover, the time complexity is O(dk2 + nd2|X |2).

Proof. The proof can be found in Appendix 7.H.

Hence, there are significant savings in computational complexity if the probability
models P and Q are trees.

� 7.5 Conclusion

In this chapter, we defined the notion of saliency and provided necessary and sufficient
conditions for the asymptotic recovery of salient subsets in the high-dimensional regime.
We also provided an computationally efficient algorithm for the search of the salient
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set in the case when it is known that the true distributions are Markov on trees. We
discuss possible extensions in Chapter 8.

Appendices for Chapter 7

� 7.A Proof of Proposition 7.1

Proof. We will prove that (S3) ⇔ (S1) ⇔ (S2). Assuming (S1) holds, D(P (d) ||Q(d)) =

D(P
(d)
Sd
||Q(d)

Sd
) implies that the conditional KL-divergence is identically zero, i.e,

D(P
(d)
Sc
d|Sd
||Q(d)

Sc
d|Sd

) = 0. (7.30)

Expanding the above expression yields the following:

∑

xSd

P (d)(xSd
)
∑

xSc
d

P
(d)
Sc
d|Sd

(xSc
d
|xSd

) log
P

(d)
Sc
d|Sd

(xSc
d
|xSd

)

Q
(d)
Sc
d|Sd

(xSc
d
|xSd

)
= 0. (7.31)

From the positivity of the distributions and non-negativity of the KL-divergence, we
have that

∑

xSc
d

P
(d)
Sc
d|Sd

(xSc
d
|xSd

) log
P

(d)
Sc
d|Sd

(xSc
d
|xSd

)

Q
(d)
Sc
d|Sd

(xSc
d
|xSd

)
= 0, (7.32)

for all xSd
∈ X k. We conclude that

P
(d)
Sc
d|Sd

(xSc
d
|xSd

) = Q
(d)
Sc
d|Sd

(xSc
d
|xSd

), ∀xSd
∈ X k, xSc

d
∈ X d−k, (7.33)

which implies that the conditional distributions are identical. This proves (S3). The
reverse implication is obvious.

Assume that Sd is KL-divergence salient (S1). Then from the above, we have (7.4).
The Chernoff information is then given by

D∗(P (d), Q(d)) = − min
t∈[0,1]

log

(∑

z

(P (d)(z))t(Q(d)(z))1−t

)
,

= − min
t∈[0,1]

log

(∑

z

(P
(d)
Sd

(zSd
))t(Q

(d)
Sd

(zSd
))1−tWSc

d|Sd
(zSc

d
|zSd

)

)
,

= − min
t∈[0,1]

log


∑

zSd

(P
(d)
Sd

(zSd
))t(Q

(d)
Sd

(zSd
))1−t

∑

zSc
d

WSc
d|Sd

(zSc
d
|zSd

)


 ,

= − min
t∈[0,1]

log


∑

zSd

(P
(d)
Sd

(zSd
))t(Q

(d)
Sd

(zSd
))1−t


 = D∗(P

(d)
Sd
, Q

(d)
Sd

),
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which proves that Sd is Chernoff information salient (S2). Now for the reverse implica-
tion, we claim the following lemma:

Lemma 7.9. (Monotonicity of Chernoff information) For every set A ⊂ Vd, the Cher-
noff information satisfies

D∗(P (d), Q(d)) ≥ D∗(P
(d)
A , Q

(d)
A ), (7.34)

with equality if and only if (7.4) holds, i.e., the conditionals P
(d)
Ac|A and Q

(d)
Ac|A are

identical.

Assuming Lemma 7.9 and assuming that Sd is Chernoff information-salient, we
have that P (d) and Q(d) satisfy (S3). Since (S3) ⇔ (S2), this completes the proof of
Lemma 7.1. It remains to prove Lemma 7.9.

Proof. (of Lemma 7.9)
We drop the superscript (d) for notational simplicity. Then we have the following chain

D∗(P,Q) = − min
t∈[0,1]

log

(∑

z

P (z)tQ(z)1−t

)
,

= − min
t∈[0,1]

log

(∑

z

PA(zA)
tQA(zA)

1−tPAc|A(zAc |zA)tQAc|A(zAc |zA)1−t
)
,

= − min
t∈[0,1]

log

(∑

zA

PA(zA)
tQA(zA)

1−t
∑

zAc

PAc|A(zAc |zA)tQAc|A(zAc |zA)1−t
)
,

≥ − min
t∈[0,1]

log

(∑

zA

PS(zA)
tQA(zA)

1−t

)
= D∗(PA, QA), (7.35)

where (7.35) results from Hölder’s inequality: For non-negative vectors v = [vk] and
w = [wk] that sum to 1,

∑
k v

t
kw

1−t
k ≤ (

∑
k vk)

t(
∑

k wk)
1−t = 1 for every t ∈ [0, 1]. The

inequality in (7.34) is tight iff Hölder’s inequality holds with equality. This occurs iff
v = w (since both vectors need to sum to unity). Thus, for equality to hold in (7.34),
we need the conditionals PAc|A and QAc|A to be identical, i.e., (7.4). This completes
the proof.

� 7.B Proof of Proposition 7.2

Proof. Consider the following collection of events ES′
d
:= {ψ∗

n(x
n,yn) = S′

d} for all
S′
d ∈ Sk,d \ {Sd}. Alternatively,

ES′
d
:=

{
S′
d = argmax

S̃d∈Sk,d

D(P̂
(d)

S̃d
|| Q̂(d)

S̃d
)

}
, (7.36)
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where the quantities in hats are the empirical distributions. That is ES′
d
is the event

that the output of the exhaustive search decoder is the non-salient set S′
d.

We now bound the probability of each ES′
d
(wrt the probability measure Pn). By

Sanov’s theorem applied to the product distribution P
(d)
Sd∪S

′
d
×Q(d)

Sd∪S
′
d
, we have the upper

bound

Pn(ES′
d
) ≤ (n+ 1)|X ||Sd∪S′

d| exp(−nJS′
d|Sd

) ≤ (n+ 1)|X |2k exp(−nJS′
d|Sd

), (7.37)

where the error rate is given as the information projection:

JS′
d|Sd

= min
ν∈ΓS′

d
|Sd

D(ν ||P (d)
Sd∪S

′
d
×Q(d)

Sd∪S
′
d
). (7.38)

Note that in the above, we have implicitly applied the contraction principle to the
continuous function f : P(X 2|Sd∪S

′
d|)→ R given by the recipe

f
(
(P

(d)
Sd∪S

′
d
, Q

(d)
Sd∪S

′
d
)
)
:= D(P

(d)
Sd
||Q(d)

Sd
)−D(P

(d)
S′
d
||Q(d)

S′
d
). (7.39)

The constraint set ΓS′
d|Sd

was defined in (7.13). Note also that the minimum in (7.38) is
achieved because the objective function is continuous and the constraint set is compact.
Also, the minimizer in (7.38) is achieved at the boundary of the constraint set

ΛS′
d|Sd

:= {ν = (P,Q) ∈ P(X |Sd∪S
′
d|) : D(PSd

||QSd
) ≤ D(PS′

d
||QS′

d
)} (7.40)

as can be readily checked, i.e., ν∗ ∈ Bd(ΛS′
d|Sd

) = ΓS′
d|Sd

. This follows from the convex-
ity of the KL-divergence objective in (7.38). Next, we complete the proof by applying
the union bound and “largest-exponent-wins” principle.

Pn(ψ∗
n(x

n,yn) 6= Sd) = Pn


 ⋃

S′
d∈Sk,d\{Sd}

ES′
d


 (7.41)

≤
∑

S′
d∈Sk,d\{Sd}

Pn(ES′
d
) (7.42)

≤
∑

S′
d∈Sk,d\{Sd}

(n+ 1)|X |2k exp(−nJS′
d|Sd

) (7.43)

.
= exp(−nC(P (d), Q(d))). (7.44)

Note that the constancy of k and d is crucial in (7.44). The conclusion in (7.44) means
that

lim sup
n→∞

1

n
logPn(ψ∗

n(x
n,yn) 6= Sd) ≤ −C(P (d), Q(d)). (7.45)

Together with the trivial lower bound

lim inf
n→∞

1

n
logPn(ψ∗

n(x
n,yn) 6= Sd) ≥ −C(P (d), Q(d)), (7.46)
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we conclude that the limit exists and equals the error exponent, i.e,

lim
n→∞

− 1

n
logPn(ψ∗

n(x
n,yn) 6= Sd) = C(P (d), Q(d)). (7.47)

This completes the proof.

� 7.C Proof of Theorem 7.3

We first state four basic lemmas before proving Theorem 7.3.

Lemma 7.10. For a continuously differentiable real-valued function f : A ⊂ Rn → R,
define the Lipschitz constant

L := sup
x∈A
‖∇f(x)‖∞ = sup

x∈A

(
max
1≤i≤n

∣∣∣∣
∂f

∂xi
(xi)

∣∣∣∣
)
, (7.48)

and assume L <∞. Then, we have the Lipschitz condition

∀x,y ∈ A, |f(x)− f(y)| ≤ L‖x− y‖1. (7.49)

In fact this claim holds for any pair of conjugate exponents2 p, q ∈ [1,∞], i.e., if the
∞ norm in (7.48) is replaced by p norm and the 1 norm in (7.49) is replaced by q norm.

Lemma 7.11. The following bound for the binomial coefficient holds:

(
d

k

)
≤ exp

(
dHb(

k

d
)

)
≤ exp

[
k

(
log(

d

k
) + 1

)]
, (7.50)

where Hb is the binary entropy function.

Lemma 7.12. Let n be a positive integer and ε ∈ (0, 1). Then the following relation
holds (

n+ n1−ε

n

)
∈ eo(n), (7.51)

where the binomial coefficient defined in terms of Gamma functions, namely

(
n+ n1−ε

n

)
:=

Γ(n+ n1−ε + 1)

Γ(n1−ε + 1)Γ(n+ 1)
. (7.52)

Lemma 7.13. For two distributions Q1, Q2 with the same support Ω (a finite set), we
have

∂D(Q1 ||Q2)

∂Q1(a)
= 1 + log

Q1(a)

Q2(a)
,

∂D(Q1 ||Q2)

∂Q2(a)
= −Q1(a)

Q2(a)
, ∀ a ∈ Ω. (7.53)

2p and q are called conjugate exponents if 1/p+ 1/q = 1.
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We defer the proofs of the first three lemmas to after the proof of the theorem.
The fourth follows by simple calculus and is thus omitted. We now prove the theorem
assuming Lemmas 7.10 – 7.13.

Proof. (of Theorem 7.3)
Step 1: We first prove that the family of differentiable functions (indexed by d) hd :
P(X 2|Sd∪S

′
d|)→ R given by the recipe

hd

(
(P

(d)
Sd∪S

′
d
, Q

(d)
Sd∪S

′
d
)
)
:= D(P

(d)
Sd
||Q(d)

Sd
)−D(P

(d)
S′
d
||Q(d)

S′
d
), (7.54)

is equi-Lipschitz continuous in the l1 norm, i.e., there exists a L′ <∞ (independent of d),

such that for all d ∈ N and for all two distinct product measures ν := (P
(d)
Sd∪S

′
d
, Q

(d)
Sd∪S

′
d
)

and ν̃ := (P̃
(d)
Sd∪S

′
d
, Q̃

(d)
Sd∪S

′
d
),

|hd(ν)− hd(ν̃)| ≤ L′‖ν − ν̃‖1, (7.55)

To prove this first claim, we first argue that ν and ν̃ satisfy condition A3, i.e., the

log-likelihood ratio between the distributions P
(d)
Sd∪S

′
d
and Q

(d)
Sd∪S

′
d
is uniformly bounded

(by L). By using A1 and A3 (which says that the log-likelihood ratio of P
(d)
Sd

and Q
(d)
Sd

is uniformly bounded by L), we conclude that

∀xSd∪S
′
d
∈ X |Sd∪S

′
d|, log

P
(d)
Sd∪S

′
d
(xSd∪S

′
d
)

Q
(d)
Sd∪S

′
d
(xSd∪S

′
d
)
∈ [−L,L], (7.56)

because the union of a non-salient set to the salient set Sd does not change the log-
likelihood ratio (cf. the argument after Proposition 7.1). Thus, the L-boundedness

condition also holds for P
(d)
Sd∪S

′
d
and Q

(d)
Sd∪S

′
d
. Denote the set of such distributions (where

the log-likelihood ratio is bounded by L) as DL. By evaluating the partial derivative
of the KL-divergences in (7.54) with respect to each of its components and applying
Lemma 7.13 repeatedly, we conclude that the l∞ norm of the gradient vector of each
function hd in (7.54) is uniformly bounded, i.e., there exists a L′ <∞ such that

sup
(P

(d)

Sd∪S′
d
,Q

(d)

Sd∪S′
d
)∈DL

∥∥∥∇hd
(
(P

(d)
Sd∪S

′
d
, Q

(d)
Sd∪S

′
d
)
)∥∥∥

∞
= L′. (7.57)

In fact, we can verify directly from Lemma 7.13 that L′ = max{2eL, 2L+2} <∞. Now
since the right-hand side of (7.57) is independent of d, we can take the supremum over
all d on the left-hand side, i.e.,

sup
d∈N





sup
(P

(d)

Sd∪S′
d
,Q

(d)

Sd∪S′
d
)∈DL

∥∥∥∇hd
(
(P

(d)
Sd∪S

′
d
, Q

(d)
Sd∪S

′
d
)
)∥∥∥

∞





= L′. (7.58)
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Finally apply Lemma 7.10 to every d ∈ N to conclude that the equi-Lipschitz continuity
condition (7.55) for the family of functions {hd}d∈N in (7.54) holds with equi-Lipschitz
constant L′.

Step 2: Now, most importantly, we prove that B > 0, where B is defined in (7.16).
Assume, to the contrary, that B = 0 (since B cannot be negative). For a set of distri-
butions Γ, let D(Γ ||µ) := minν∈ΓD(ν ||µ). By the definition of B and the infimum,
there exists a d ∈ N (and a minimizing non-salient set S′

d) such that the divergence
satisfies

D(ΓS′
d|Sd
||P (d)

S′
d∪Sd

×Q(d)
S′
d∪Sd

) <

(
η

2L′
√
2 log 2

)2

. (7.59)

The quantity η was defined in (7.9) and represents how distinguishable the salient set
Sd is from the non-salient sets S′

d ∈ Sk,d \ {Sd}. The quantity L′ < ∞ is the equi-

Lipschitz constant in (7.58). Let ν be the product distribution P
(d)
S′
d∪Sd
×Q(d)

S′
d∪Sd

and ν∗

be the minimizer of the optimization problem in the information projection (7.15) or
equivalently (7.38), i.e.,

ν∗ := argmin
{
D(ν ||P (d)

S′
d∪Sd

×Q(d)
S′
d∪Sd

) : ν ∈ ΓS′
d|Sd

}
. (7.60)

Now referring back to (7.55) and applying Pinsker’s inequality, we have the chain of
inequalities

|hd(ν)−hd(ν∗)| ≤ L′‖ν−ν∗‖1 ≤ L′
√
2 log 2

√
D(ΓS′

d|Sd
||P (d)

S′
d∪Sd

×Q(d)
S′
d∪Sd

) <
η

2
, (7.61)

where the final inequality is because of (7.59). Notice how the finiteness and uniformity
(independence from d) of L′ are crucial in (7.59) and (7.61). Consequently, hd(ν) ≥ η
(by assumption A2 on η-distinguishability) and hd(ν

∗) = 0 (because ν∗ ∈ ΓS′
d|Sd

by
compactness of the constraint set ΓS′

d|Sd
). Thus,

|hd(ν)− hd(ν∗)| = hd(ν)− hd(ν∗) ≥ η (7.62)

and from (7.61), we conclude that η < η/2, which is clearly a contradiction. Hence
B > 0.

Step 3: Now we simply put together the pieces in the proof by upper bounding the
error probability pn, defined in (7.8). Indeed, we that Pn(ψn(x

n,yn) 6= Sd) is upper
bounded as in the following sequence of inequalities:

≤
∑

S′
d∈Sk,d\{Sd}

Pn(ES′
d
), (7.63)

≤
k−1∑

l=0

(
k

l

)(
d− k
k − l

)
max

S′
d∈Sk,d\{Sd}

Pn(ES′
d
), (7.64)
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≤
k−1∑

l=0

(
k

l

)(
d− k
k − l

)
max

S′
d∈Sk,d\{Sd}

(
n+ |X ||Sd∪S

′
d| − 1

n

)
exp(−nJS′

d|Sd
), (7.65)

≤
k−1∑

l=0

(
k

l

)(
d− k
k − l

)(
n+ |X |2k − 1

n

)
exp(−nB), (7.66)

≤
k−1∑

l=0

exp(k) exp

[
k

(
log(

d− k
k

) + 1

)](
n+ |X |2k

n

)
exp(−nB), (7.67)

< k exp

[
k

(
log(

d− k
k

) + 2

)](
n+ n1−ε

n

)
exp(−nB), (7.68)

≤ exp

[
k log(

d− k
k

)

]
exp(2k + log k)

(
n+ n1−ε

n

)
exp(−nB), (7.69)

≤ exp

[
k log(

d− k
k

)

]
exp(o(n)) exp(−nB), (7.70)

where

• (7.63) follows from the union bound and definition of the event ES′
d
given in the

proof of Proposition 7.2 (cf. (7.36)).

• (7.64) follows by a simple counting argument that the number of non-salient sets
S′
d that overlap with Sd in l indices is exactly

(
k
l

)(
d−k
k−l

)
. We also upper bound the

probability Pn(ES′
d
) by the largest possible probability.

• (7.65) follows from Sanov’s theorem and the fact that the number of types [49] with

denominator n for a distributions with support X |Sd∪S
′
d| is precisely

(
n+|X ||Sd∪S′

d|−1
n

)
.

• (7.66) follows from the definition of B > 0 in (7.16) (infimum over all error rates
over all d) and the fact that |Sd ∪ S′

d| ≤ 2k (because |Sd| = |S′
d| = k). Notice how

the positivity of B, proved in Step 2, is crucial here.

• (7.67) follows from two applications of Lemma 7.11. In particular, we note that(
k
l

)
≤ exp(kHb(l/k)) ≤ exp(k) (for every l = 0, 1, . . . , k − 1) and also

(
d−k
k−l

)
is

maximized when l = 0. We also employ a trivial upper bound of the second
binomial coefficient.

• (7.68) follows from the fact that there are only k terms in the sum and assumption
that there exists a ε such that

k <
(1− ε) log n
2 log |X | ⇐⇒ exp

(
2k log |X |
1− ε

)
< n. (7.71)

This is given by the function g1 in (7.17).

• (7.69) follows by simple rearrangement. Note that exp(2k + log k) ∈ exp(o(n)) by
(7.71).
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• Lastly (7.70) follows from Lemma 7.12 and the absorption of all subexponential
terms into exp(o(n)).

Finally, from (7.70), we notice by a simple rearrangement that the exponent is given
by −n(B − o(1) − (k/n) log((d − k)/k)). In order to ensure that the error probability
decays to zero, it is suffices to have

B − o(1)− k

n
log(

d− k
k

) > 0. (7.72)

Condition (7.72) holds if for sufficiently large n

n >
k

B − ε′ log(
d− k
k

), (7.73)

Take ε′ → 0. We conclude from (7.71) and (7.73) that if n > g1(k, ε) ∨ g2(d, k), then
{(n, d, k)}n∈N is achievable, where g1 and g2 were defined in (7.17). Now it is easy to
see that the rate of decay lim supn→∞ n−1 log pn is simply given by −c where c is the
difference between B and the contribution from the binomial coefficient term

(
d−k
k

)
,

i.e.,

c = B − lim sup
n→∞

k

n
log(

d− k
k

), (7.74)

which concludes the proof of Theorem 7.3.

Now we prove the remaining lemmas.

Proof. (of Lemma 7.10)
Consider n = 2. The general case is easily deducible by extending the argument below
inductively. Let x = (x1, x2),y = (y1, y2) ∈ A ⊂ R2 be any two points.

|f(x1, x2)− f(y1, y2)| = |f(x1, x2)− f(y1, x2) + f(y1, x2)− f(y1, y2)| (7.75)

≤ |f(x1, x2)− f(y1, x2)|+ |f(y1, x2)− f(y1, y2)| (7.76)

=

∣∣∣∣
∂f

∂x1
(ξ1)

∣∣∣∣ |x1 − y1|+
∣∣∣∣
∂f

∂x2
(ξ2)

∣∣∣∣ |x2 − y2| (7.77)

≤ sup
ξ1:(ξ1,y1)∈A

∣∣∣∣
∂f

∂x1
(ξ1)

∣∣∣∣ |x1 − y1|+ sup
ξ2:(x2,ξ2)∈A

∣∣∣∣
∂f

∂x2
(ξ2)

∣∣∣∣ |x2 − y2|

≤ L(|x1 − y1|+ |x2 − y2|) = L‖x− y‖1, (7.78)

where in (7.77) we have made use of the 1-dimensional mean-value theorem [166, Ch. 5]
and ξj ∈ (xj , yj) for j = 1, 2 and in (7.78) we made use of the hypothesis in the lemma
(cf. (7.48)). The claim thus follows.

Proof. (of Lemma 7.11)
From [47, Ch. 11], we have the straightforward upper bound

(
d

k

)
≤ exp

(
dHb(

k

d
)

)
. (7.79)
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It remains to bound the binary entropy function Hb(q) for q ∈ [0, 1]. Note that for all
0 ≤ q ≤ 3,

−(1− q) log(1− q) ≤ −(1− q)(−q + q2

2
) = q − 3

2
q2 +

q3

2
≤ q, (7.80)

where we have used the fact that log(1− t) ≥ −t+ t2/2. Thus, we have

Hb(q) = −q log q − (1− q) log(1− q) ≤ −q log q + q = q(− log q + 1). (7.81)

The proof is completed with the identification q = k/d in (7.79).

Proof. (of Lemma 7.12)
We make use of the following bound from [182, Corollary 2.3]:

∀α ∈ R+, n ∈ N,

(
αn

n

)
<

1√
2π
n−1/2 ααn+1/2

(α− 1)(α−1)n+1/2
. (7.82)

Note from close examination of the proof in [182] that this bound applies to the case
where αn may not be an integer. In this case, the binomial coefficient is defined by the
one involving Gamma functions (cf. (7.52)). Thus, taking α = 1 + n−ε in (7.82), we
have
(
n+ n1−ε

n

)
=

(
n(1 + n−ε)

n

)
< poly(n)

(1 + n−ε)n(1+n
−ε)

(n−ε)n1−ε =: poly(n)M(n). (7.83)

where poly(n) ∈ eo(n) is some polynomial function in n. It suffices to prove that
M(n) ∈ eo(n). Indeed,

logM(n) = n(1 + n−ε) log(1 + n−ε)− n1−ε log n−ε (7.84)

≤ n(1 + n−ε)n−ε + εn1−ε log n ∈ o(n) (7.85)

where (7.85) comes from the inequality log(1 + t) ≤ t. Thus M(n) ∈ eo(n) and this
completes the proof.

� 7.D Proof of Corollary 7.4

Proof. Assume that k = k0 is constant. The claim follows by replacing the upper bound
for

(
d
k0

)
in (7.67) with the trivial upper bound dk0 . If k0R < B, the corresponding

exponent in (7.72) is positive.

� 7.E Proof of Theorem 7.5

Proof. Recall the Markov chain given in Section 7.3.4:

Sd
ϕn−→ (xn,yn)

ψn−→ Ŝd (7.86)
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Applying Fano’s inequality, we have

Pn(Sd 6= Ŝd) ≥
H(Sd|Ŝd)− 1

log
(
d
k

) (7.87)

=
H(Sd)− I(Sd; Ŝd)− 1

log
(
d
k

) (7.88)

=
log
(
d
k

)
− I(Sd; Ŝd)− 1

log
(
d
k

) (7.89)

where (7.89) follows from the uniform distribution on Sd, which implies that H(Sd) =
log |Sk,d|. Now we upper bound the mutual information term:

I(Sd; Ŝd)
(a)

≤ I(Sd;x
n,yn)

(b)

≤ H(xn,yn) ≤ n(H(P (d)) +H(Q(d))), (7.90)

where (a) follows from the data processing inequality and (b) follows from non-negativity
of conditional entropy. Inserting (7.90) into (7.89), we have

Pn(Sd 6= Ŝd) ≥ 1− n(H(P (d)) +H(Q(d)))

log
(
d
k

) − o(1) (7.91)

(a)

≥ 1− n(H(P (d)) +H(Q(d)))

k log d
k

− o(1), (7.92)

where (a) follows from the fact that
(
d
k

)
≥ (d/k)k. The claim in part (i) thus follows.

Note the independence of the proof on the decoder ψn.

� 7.F Proof of Corollary 7.6

Proof. With the added assumption that the conditional entropies are bounded by a

linear function in k, i.e., max{H(P
(d)
Sc
d|Sd

), H(Q
(d)
Sc
d|Sd

)} ≤ Mk, the entropy decomposes

as follows:

H(P (d)) = H(P
(d)
Sd

) +H(P
(d)
Sc
d|Sd

)
(a)

≤ log |X |k +H(P
(d)
Sc
d|Sd

) (7.93)

≤ k log |X |+Mk = (log |X |+M)k, (7.94)

where (a) is due to the fact that P
(d)
Sd
∈ P(X k) and hence H(P

(d)
Sd

) ≤ log |X |k. Substi-

tuting this and the corresponding upper bound for H(Q(d)) into (7.92) completes the
proof of the claim in part (ii).
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� 7.G Proof of Corollary 7.7

Proof. Take λ = 1 in (7.27). Then the claim follows by replacing d in (7.27) with CenR

(for some C > 0) and further noticing that the inequality is satisfied if and only if

R > 2(M + log |X |) + log k

n
= 2(M + log |X |) + o(1). (7.95)

This completes the proof.

� 7.H Proof of Proposition 7.8

Proof. Recall that k and d are kept constant. We first demonstrate that the Chow-Liu
algorithm for learning the common tree is consistent, as for a single tree [43, 188]. Let
T d be set of trees (or edge sets) with d nodes. Also recall that D(X d; T d) ⊂ P(X d) is
the set of distributions Markov on some tree in T d. The consistency claim follows from
the equivalence of the following optimizations:

min
P̃ ,Q̃∈D(X d;T d):T

P̃
=T

Q̃

D((P̂ , Q̂) || (P̃ , Q̃)), (7.96)

min
P̃ ,Q̃∈D(X d;T d):T

P̃
=T

Q̃

D(P̂ || P̃ ) +D(Q̂ || Q̃), (7.97)

min
E
P̃
,E

Q̃
∈T d:E

P̃
=E

Q̃

∑

(i,j)∈E
P̃

I(P̂i,j) +
∑

(i,j)∈E
P̃

I(Q̂i,j), (7.98)

min
E∈T d

∑

(i,j)∈E

I(P̂i,j) +
∑

(i,j)∈E

I(Q̂i,j), (7.99)

min
E∈T d

∑

(i,j)∈E

I(P̂i,j) + I(Q̂i,j), (7.100)

where (7.98) follows from Chow-Liu and (7.99) follows from enforcing the equality
constraint E

P̃
= E

Q̃
into the objective. Thus, the edge weights are indeed given by the

sum of the empirical mutual informations.
Furthermore, the KL-divergence is continuous in its arguments. To be more explicit,

as n→∞, D̂i → Di and Ŵi,j → Wi,j in probability. Thus, the node and edge weights
in (7.29) converge to their true values and the overall algorithm is consistent. The
second claim follows from the fact that the complexity of Chow-Liu is O(nd2|X |2) and
the complexity of the k-CARD TREE procedure is O(dk2) [22, 78].



Chapter 8

Conclusion

� 8.1 Summary of Main Contributions

THE overarching theme in this work is complexity reduction, of which two aspects
were analyzed in the two parts of this thesis; learning thin graphical models and

dimensionality reduction.
In the first part (Chapters 3 to 5), we analyzed structure learning of tree-structured

probabilistic graphical models from an information-theoretic perspective. In particular,
we took a novel approach that involves deriving a single figure-of-merit known as the
error exponent for learning the tree structure via the Chow-Liu algorithm [42]. We
concluded that in both the discrete and Gaussian settings, the error exponent can be
approximated by a quantity likened to a signal-to-noise ratio. In the Gaussian case,
we proved that under the very-noisy setting, stars are the most difficult for learning
and chains are the easiest (if the paramterizations are kept fixed). Consistency, error
rates and scaling laws for learning (more general) forest models were also studied in
Chapter 5. In contrast to using heuristics such as the Akaike [5] and Bayesian [176]
Information Criteria to learn forests as suggested in Edwards et al. [70], we showed that
as the number of samples tends to infinity, the error probability in learning the forest
structure decays (almost) exponentially fast.

The second part of the thesis analyzes dimensionality reduction for the purpose
of discrimination. Specifically, in Chapter 6, we exploited the modeling capabilities
of sparse graphical models to design lower-dimensional classifiers to approximate the
likelihood ratio test. We showed that the learning of such models is computationally
efficient and gives good classification accuracy on a variety of datasets. The suggested
procedure also produces salient pairwise features for discrimination. Chapter 7 examines
the issue of salient feature subset selection in greater detail and we derived scaling laws
on the number of samples so that the salient set can be recovered asymptotically.

� 8.2 Recommendations for Future Research

The contributions in the previous chapters lead naturally to various avenues for further
research. We mention some possible extensions in the following subsections.

207
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Figure 8.1. A latent tree: The shaded nodes represent the variables where there are measurements.
The unshaded nodes do not provide any measurements. The structure of the latent tree is to be inferred
from data.

� 8.2.1 Optimality of Error Exponents

In Chapters 3 and 4, we analyzed the performance of the Chow-Liu ML algorithm
in terms of the error exponent. However, a converse seems to be lacking. A natural
question is whether this error exponent is the largest possible? In other words, does
ML fitting result in the best possible rate function KP in (3.4)? If not, are there any
alternative algorithms that perform better? It is useful to derive a tight converse result
and to study the optimality of KP ? While the strong converse in Theorem 5.7 suffices
for the discussion in Chapter 5, it is conjectured to be too loose for any meaningful
comparison to KP in (3.4).

The learning problem can also be posed alternatively as a composite hypothesis test:

H0 : x
n i.i.d.∼ P, H1 : x

n i.i.d.∼ {Q : Q ∈ D(X d, T d \ {TP })}. (8.1)

That is, under the null hypothesis, samples are drawn from P , Markov on TP , and
under the alternative, they are drawn from some other unknown distribution that is
not Markov on TP . The worst-case type-II error exponent for the test in (8.1) was
derived in [190] but again it is unclear how this relates to the learning error exponent
KP in (3.4). Yet another way to approach optimality of error exponents is via the use
of Bahadur efficiency [12] as was done in [27] for AR order testing. There are also
a number of other converse techniques [219] that may be useful in deriving converse
results to match the error exponent derived in previous chapters.

� 8.2.2 Learning with Hidden Variables

All the learning problems in this thesis are analyzed based on a set of fully-observed
i.i.d. samples xn = {x1, . . . ,xn} where each sample xl is a length-d vector. Each
component of this vector is in one-to-one correspondence with the nodes on a graph
with d nodes. However, in most realistic and practical situations, we do not have
the luxury of observing measurements from a subset of nodes known as the latent (or
hidden) nodes. See Fig. 8.1. In this case, we are only provided with subvectors of length
d′ < d and would like to reconstruct the full tree, without knowledge of the number
and nature of latent nodes. This problem of reconstructing latent trees has received
considerable attention in the phylogenetic [71, 142], computer vision [152] and network
tomography [149, 150] communities. For example, in phylogenetics, (DNA or amino
acid) sequences from extant species are available and one seeks to infer sequences of
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extinct species as well as to reconstruct the evolutionary tree [68] taking into account
substitution, insertions, deletions (indels) and possibly recombination.

By exploiting the Markov property in Lemma 2.26, we have shown [41] that the a
class of latent trees known as minimal latent trees can be reconstructed consistently
using pairwise information distances between observed nodes. These information dis-
tances generalize the notion of correlation coefficients in Gaussian models. However,
while consistency is a desirable property in structure estimation, it does not provide
a quantitative measure of how well one can learn the latent tree from n samples. An
interesting line of research would be to extend the error exponent analysis in Chapters 3
and 4 to the latent tree case.

� 8.2.3 Learning Loopy Random Graphical Models

The first part of this thesis focuses on learning graphical models in which the true
structure is deterministic. It is also of theoretical interest to address the issue of learning
random graphical models given samples drawn from the graphical model. Specifically,
we assume that the underlying unknown graph G = (V,E) is drawn from the ensemble
of sparse Erdős-Rényi [24] random graphs G(d, cd) (where c > 0 is a constant).1 Samples
are then independently drawn from a graphical model Markov on the particular graph
realization G ∼ G(d, cd). Given the samples, what are some necessary and sufficient
conditions on the sample size for asymptotic structure recovery as the number of nodes
and the number of samples grow together? Are there any simple, computationally
efficient algorithms for learning such classes of random graphical models from data?

This problem is motivated by the fact that many real-world networks can be modeled
by random graphs [145], whose structures are usually unknown a-priori and need to be
inferred. Unfortunately, exact structure estimation is, as mentioned in Section 2.5.1,
NP-hard [112] unless the true graph belongs to the class of trees, in which case Chow-
Liu provides an efficient implementation of maximum-likelihood estimation of the tree
structure. There are also many efficient approximate algorithms (for example [32]) for
learning degree-bounded graphs. However, random graphs, such as the Erdős-Rényi
model do not have a bounded maximum degree.2 The work in [211] allows for slowly
growing maximum degree (with the number of nodes) but the incoherence conditions
required for consistency guarantees are hard to establish for random graphs. Hence,
the existing algorithms do not have provable guarantees for structural estimation of
graphical models on random graphs.

In some preliminary work [9], we study homogeneous ferromagnetic Ising models,
i.e, the inverse temperatures θi,j > 0 are positive and constant across edges. The Ising

1An Erdős-Rényi [24] random graph G ∼ G(d, q) is a graph with d nodes in which each edge is
included in the graph with probability q, with the presence or absence of any two distinct edges in the
graph being independent.

2In fact, the maximum degree grows like O(log d) for G(d, c
d
) [24].
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Figure 8.2. Illustration of online learning. The algorithm updates the model at each time step.

probability measure can thus be expressed as the exponential family:

P (x ; θ) =
1

Zθ
exp


θ

∑

(i,j)∈E

xixj


 , ∀x ∈ {−1,+1}d, (8.2)

where Zθ :=
∑

x
exp(θ

∑
(i,j)∈E xixj) is the partition function. For this class of ho-

mogeneous ferromagnetic models, where E is a random set of edges, we showed that
simple correlation thresholding results in consistently estimated models as the size of
the graph d grows. It has been recently shown that such sparse random graphs are
locally tree-like [140] and so we could possibly leverage on the Chow-Liu algorithm (or
CLThres) to provide a good initial estimate of the random graph. This is currently work
in progress.

� 8.2.4 Online Learning of Graphical Models

In the preceding chapters, we provided quantitative theoretical guarantees for the esti-
mation of tree-structured graphical models from data. In these batch learning problems,
all the data xn are present for learning. Suppose instead that the data, assumed to be
drawn independently from some underlying unknown model P , are broken up into i.i.d.
blocks xn1 ,x

2n
n+1, . . . and each of these blocks of data arrives to the learner sequentially,

i.e., at discrete-time t ∈ N the learner receives data block xtn(t−1)n+1. At time 1, the

learner learns a model P
(1)
ML based on xn1 . At time 2, the learner learns an updated

model P
(2)
ML using both the current model P

(1)
ML and the additional block of data x2n

n+1

and so on. This delves into the realm of online learning [160, 222]. See Fig. 8.2.

Some natural questions are in order: Firstly, how can one update model P
(t)
ML at

time step t+1 to get a new model P
(t+1)
ML without having to recompute all the empirical

statistics and re-run the MWST algorithm for learning trees? Secondly, how good are
the models at each time step relative to one another and to the true model P? Can
convergence rates and error exponents be computed given a reasonable scheme? We
believe that satisfactory answers to these questions will prove to be useful in many
real-time systems where batch data are not readily available.



Sec. 8.2. Recommendations for Future Research 211

� 8.2.5 Estimating the Correct Number of Salient Features

In Chapter 7, we discussed the estimation of salient sets assuming that k, the cardi-
nality of the true salient set is known. However, in many practical applications, the
determination of the size of the salient set is just as important as the nature of the
salient features. Thus, designing an estimation scheme to find k̂, an estimate of k,
would be useful. In fact, some of the thresholding techniques developed in Chapter 5
used to determine the correct number of edges could be employed for this purpose.

In addition, the tree-based dynamic programming algorithm suggested in Chapter 7
has not been analyzed although it was shown to be computationally efficient and also
consistent for the purpose of estimating Sd. It would be useful to study the properties
and performance of this algorithm for recovering salient sets for tree models.
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[139] M. Mézard and A. Montanari. Information, Physics, and Computation. Oxford
University Press, 2009.

[140] A. Montanari, E. Mossel, and A. Sly. The weak limit of ising models on locally
tree-like graphs. Arxiv:0912.0719 [math.PR], 2009.

[141] G. Morvai and B. Weiss. Order Estimation or Markov Chains. IEEE Transactions
on Information Theory, 51(4):1496–97, Apr 2005.

[142] E. Mossel. Phase transitions in phylogeny. Trans. Amer. Math. Soc., 356:2379–
2404, 2004.

[143] R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, Apr 2003.

[144] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of
Machine Learning Databases, University of California, Irvine, 1998.

[145] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random Graph Models
of Social Networks. Proceedings of the National Academy of Sciences USA, 99:
2566–2572, 2002.

[146] J. Neyman and E. Pearson. On the Problem of the Most Efficient Tests of Sta-
tistical Hypotheses. Philosophical Transactions of the Royal Society of London.
Series A, 231:289–337, 1933.



BIBLIOGRAPHY 223

[147] A. Y. Ng. On feature selection: learning with exponentially many irrelevant
features as training examples. In Proc. 15th ICML, pages 404–412. Morgan Kauf-
mann, 1998.

[148] A. Y. Ng and M. Jordan. On discriminative vs. generative classifiers: A compar-
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