10,128 research outputs found

    Recurrent Pixel Embedding for Instance Grouping

    Full text link
    We introduce a differentiable, end-to-end trainable framework for solving pixel-level grouping problems such as instance segmentation consisting of two novel components. First, we regress pixels into a hyper-spherical embedding space so that pixels from the same group have high cosine similarity while those from different groups have similarity below a specified margin. We analyze the choice of embedding dimension and margin, relating them to theoretical results on the problem of distributing points uniformly on the sphere. Second, to group instances, we utilize a variant of mean-shift clustering, implemented as a recurrent neural network parameterized by kernel bandwidth. This recurrent grouping module is differentiable, enjoys convergent dynamics and probabilistic interpretability. Backpropagating the group-weighted loss through this module allows learning to focus on only correcting embedding errors that won't be resolved during subsequent clustering. Our framework, while conceptually simple and theoretically abundant, is also practically effective and computationally efficient. We demonstrate substantial improvements over state-of-the-art instance segmentation for object proposal generation, as well as demonstrating the benefits of grouping loss for classification tasks such as boundary detection and semantic segmentation

    Continuous non-revisiting genetic algorithm

    Get PDF
    The non-revisiting genetic algorithm (NrGA) is extended to handle continuous search space. The extended NrGA model, Continuous NrGA (cNrGA), employs the same tree-structure archive of NrGA to memorize the evaluated solutions, in which the search space is divided into non-overlapped partitions according to the distribution of the solutions. cNrGA is a bi-modulus evolutionary algorithm consisting of the genetic algorithm module (GAM) and the adaptive mutation module (AMM). When GAM generates an offspring, the offspring is sent to AMM and is mutated according to the density of the solutions stored in the memory archive. For a point in the search space with high solution-density, it infers a high probability that the point is close to the optimum and hence a near search is suggested. Alternatively, a far search is recommended for a point with low solution-density. Benefitting from the space partitioning scheme, a fast solution-density approximation is obtained. Also, the adaptive mutation scheme naturally avoid the generation of out-of-bound solutions. The performance of cNrGA is tested on 14 benchmark functions on dimensions ranging from 2 to 40. It is compared with real coded GA, differential evolution, covariance matrix adaptation evolution strategy and two improved particle swarm optimization. The simulation results show that cNrGA outperforms the other algorithms for multi-modal function optimization.published_or_final_versio

    Separation of pulsar signals from noise with supervised machine learning algorithms

    Full text link
    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP ), Adaboost, Gradient Boosting Classifier (GBC), XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pi peline. This dataset was previously used for cross-validation of the SPINN-based machine learning engine, used for the reprocessing of HTRU-S survey data arXiv:1406.3627. We have used Synthetic Minority Over-sampling Technique (SMOTE) to deal with high class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean in both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in arXiv:1406.3627, for the same recall value.Comment: 14 pages, 2 figures. Accepted for publication in Astronomy and Computin

    Large-scale Land Cover Classification in GaoFen-2 Satellite Imagery

    Full text link
    Many significant applications need land cover information of remote sensing images that are acquired from different areas and times, such as change detection and disaster monitoring. However, it is difficult to find a generic land cover classification scheme for different remote sensing images due to the spectral shift caused by diverse acquisition condition. In this paper, we develop a novel land cover classification method that can deal with large-scale data captured from widely distributed areas and different times. Additionally, we establish a large-scale land cover classification dataset consisting of 150 Gaofen-2 imageries as data support for model training and performance evaluation. Our experiments achieve outstanding classification accuracy compared with traditional methods.Comment: IGARSS'18 conference pape

    Deep Learning for User Comment Moderation

    Full text link
    Experimenting with a new dataset of 1.6M user comments from a Greek news portal and existing datasets of English Wikipedia comments, we show that an RNN outperforms the previous state of the art in moderation. A deep, classification-specific attention mechanism improves further the overall performance of the RNN. We also compare against a CNN and a word-list baseline, considering both fully automatic and semi-automatic moderation
    corecore