28,532 research outputs found

    Search in Power-Law Networks

    Full text link
    Many communication and social networks have power-law link distributions, containing a few nodes which have a very high degree and many with low degree. The high connectivity nodes play the important role of hubs in communication and networking, a fact which can be exploited when designing efficient search algorithms. We introduce a number of local search strategies which utilize high degree nodes in power-law graphs and which have costs which scale sub-linearly with the size of the graph. We also demonstrate the utility of these strategies on the Gnutella peer-to-peer network.Comment: 17 pages, 14 figure

    Revisiting Interval Graphs for Network Science

    Full text link
    The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The generalization is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science

    Why Do Cascade Sizes Follow a Power-Law?

    Full text link
    We introduce random directed acyclic graph and use it to model the information diffusion network. Subsequently, we analyze the cascade generation model (CGM) introduced by Leskovec et al. [19]. Until now only empirical studies of this model were done. In this paper, we present the first theoretical proof that the sizes of cascades generated by the CGM follow the power-law distribution, which is consistent with multiple empirical analysis of the large social networks. We compared the assumptions of our model with the Twitter social network and tested the goodness of approximation.Comment: 8 pages, 7 figures, accepted to WWW 201

    Bayesian Semi-supervised Learning with Graph Gaussian Processes

    Get PDF
    We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.Comment: To appear in NIPS 2018 Fixed an error in Figure 2. The previous arxiv version contains two identical sub-figure
    • …
    corecore