3 research outputs found

    Revisiting Covert Multiparty Computation

    Get PDF
    Is it feasible for parties to securely evaluate a function on their joint inputs, while hiding not only their private input, but even the very fact that they are taking part to the protocol? This intriguing question was given a positive answer in the two-party case at STOC’05, and in the general case at FOCS’07, under the name of covert multiparty computation (CMPC). A CMPC protocol allows n players with inputs (x1 ···xn) to compute a function f with the following guarantees: – If all the parties are taking part to the protocol, and if the result of the computation is favorable to all the parties, then they get to learn f(x1,··· ,xn) (and nothing more) – Else, when the result is not favorable to all the parties, or if some player does not participate to the computation, no one gets to learn anything (and in particular, no player can learn whether any of the other parties was indeed participating to the protocol) While previous works proved the existence of CMPC under standard assumptions, their candidate CMPC protocols were exclusively of theoretical interest. In this work, we revisit the design of CMPC protocols and show that, perhaps surprisingly, this very strong security notion can be achieved essentially for free. More specifically, we show how to build a CMPC protocol out of a standard, state-of-the-art MPC protocol, where both the communication and the computation are the same than the original protocol, up to an additive factor independent of the size of the circuit. Along the way, we prove two variants of the UC theorem which greatly simplify the design and the security analysis of CMPC protocols

    Efficient Covert Two-Party Computation

    Get PDF
    Covert computation of general functions strengthens the notion of secure computation, so that the computation hides not only everything about the participants\u27 inputs except for what is revealed by the function output, but it also hides the very fact that the computation is taking place, by ensuring that protocol participants are indistinguishable from random beacons, except when the function output explicitly reveals the fact that a computation took place. General covert computation protocols proposed before have non-constant round complexity [16,4] and their efficiency is orders of magnitude away from known non-covert secure computation protocols. Furthermore, [8] showed that constant-round covert computation of non-trivial functionalities with black-box simulation is impossible in the plain model. However, the lower-bound of [8] does not disallow constant-round covert computation given some relaxation in the computation model. Indeed, in this work we propose the first constant-round protocol for covert Two-Party Computation (2PC) of general functions, secure against malicious adversaries under concurrent composition, assuming the Common Reference String (CRS) model. Our protocol is a covert variant of a well-known paradigm in standard, i.e. non-covert, secure 2PC, using cut-and-choose technique over O(security parameter) copies of Yao\u27s garbled circuit protocol, and its efficiency is only a constant factor away from non-covert secure 2PC protocols that use cut-and-choose over garbled circuits. An essential tool in the protocol is a concurrently secure covert simulation-sound Conditional KEM (CKEM) for arithmetic languages in prime-order groups. We show that the Implicit Zero-Knowledge arguments in the CRS model of Benhamouda et al. [2] provide covert CKEM\u27s for all languages needed in our covert 2PC protocol. We also show that in the Random Oracle Model the covert CKEM\u27s of [11] also satisfy concurrent security and simulation-soundness. The ROM-based covert CKEM\u27s of [11] match the cost of ROM-based NIZK\u27s for the same languages, while the CRS-model CKEM\u27s of [2] are (only) 2-4 times more expensive

    On Security Notions for Multi-Party Computation

    Get PDF
    Die meisten Sicherheitsbegriffe, die heutzutage benutzt werden, stammen aus den 1980ern. Doch durch ein seitdem besseres Verständnis der Theorie stellt sich die Frage, ob sie nicht weiterentwickelt werden können. Ein begrenzender Faktor sind hierbei sogenannte Unmöglichkeitsbeweise, die mathematisch beweisen, welche Sicherheitsgarantien nicht erfüllt werden können. Diese liefern einen begrenzenden Faktor, ihre Aussage sollte jedoch nicht übertrieben werden. Der Beweis ist nur in seinem eigenen Setting gültig und deckt nur genau den einen Sicherheitsbegriff ab. Historisch haben sich die etablierten Sicherheitsbegriffe jedoch zu etwas deutlich schwächerem entwickelt, wodurch eine Lücke zwischen dem entstanden ist, was praktisch benutzt wird, und dem, was bekanntermaßen unmöglich ist. In dieser Promotion zeigen wir einige dieser Lücken auf und untersuchen Sicherheitsbegriffe, die mit Sicherer Mehrparteienberechnung (MPC) zusammenhängen, und die zwischen den Etablierten und den Unmöglichen liegen. Abbildung von Geschäftsmodellen und Gesetzlichen Regelungen in MPC. Mit Sicherer Mehrparteienberechnung (MPC) können Parteien eine Funktion über privaten Eingaben auf sichere Weise so berechnen, dass nichts über die Eingaben der anderen Parteien bekannt wird außer die Ausgabe der Funktion. Heutzutage hat MPC nur einen vergleichsweise geringen Mehraufwand im Vergleich zur direkten Berechnung. Und obwohl Datensparsamkeit in der Praxis belohnt wird, wird MPC kaum benutzt. Wir glauben dass einer der Gründe dafür, dass MPC in Praxis kaum benutzt wird, darin liegt, dass es Geschäftsmodelle und gesetzliche Regelungen ignoriert die eine gewisse Leakage der Daten benötigen, während allgemeines MPC auf fast-perfekte Privatsphäre hinarbeitet. Wir präsentieren einen neuen Baustein, der es Geschäften---die durch einen zentralen Operator repräsentiert werden---ermöglicht, effizient die gewünschte Menge an Leakage abzubilden, die benötigt wird, um das Geschäft aufrechtzuerhalten oder um gesetzliche Vorgaben zu erfüllen, während Nutzer anonym und ohne durch mehrere Interaktionen hinweg verlinkt werden können Daten sammeln. Wir modellieren die Anforderungen im Universal Composability (UC) Framework. Dadurch wird garantiert, dass die Sicherheitsgarantien unabhängig davon halten, welche Protokolle parallel ausgeführt werden. Trotz dieser starken Sicherheitsgarantien ist das Protokoll dabei effizient genug, um auf moderner Hardware ausgeführt zu werden, selbst wenn der Nutzer die Daten auf Smartphones mit beschränkter Rechenleistung sammeln. (Fetzer, Keller, Maier, Raiber, Rupp, Schwerdt, PETS 2022) Eine Instantiierung stärkerer Commitments. Mit einem Bit Commitment Schema kann sich ein Sender gegenüber eines Empfängers auf ein Bit festlegen, ohne das dabei zu offenbaren (hiding), aber auf eine Art die es dem Sender nicht erlaubt, den Empfänger später davon zu überzeugen, dass das Commitment auf ein anderes Bit festgelegt wurde (binding). In der Quantenwelt sind Commitments stark genug, um MPC zu konstruieren, weswegen es einen Anreiz gibt, Commitments so sicher wie möglich zu machen; jedoch sagen Unmöglichkeitsbeweise aus, dass beide Sicherheitsbegriffe -- hiding und binding -- gleichzeitig nicht bedingungslos halten können. Als Konsequenz weichen moderne Bit Commitment Schemas eine Sicherheitseigenschaft auf, die dann nur noch computationally halten, also auf Grundlage komplexitätstheoretischer Annahmen. Wir stellen das erste Bit Commitment Protokoll im Quantum Random Oracle Modle (QROM) vor, das bedingungslose Sicherheit für den Empfänger (binding) und langfristige Sicherheit für den Sender (hiding) bietet und das dabei keine Zusatzhardware benötigt. Unser Resultat basiert auf einer neuen Annahme über die Schwierigkeit, Quantenzustände über einen langen Zeitraum zu speichern. Langfristige Sicherheit modelliert technischen Fortschritt des Angreifers, da Transkripte, die heutzutage nicht effizient gebrochen werden können, in Zukunft vielleicht einfach extrahierbar sind, sobald schnellere Maschinen verfügbar sind. Wir beweisen die Sicherheit des Commitment Protokolls im QROM unter oben genannter Annahme und zeigen, dass eine Instantiierung im Standardmodell zu einem neuen Angriff auf die langfristige Hiding-Eigenschaft zulässt. (Döttling, Koch, Maier, Mechler, Müller, Müller-Quade, Tiepelt, IN EINREICHUNG) Undetectable Multi-Party Computation. Covert MPC ist eine Erweiterung von MPC, die nicht nur die Eingaben versteckt, sondern das gesamte Vorhandensein der Berechnung. Teilnehmer lernen nur dann die Ausgabe, wenn alle anderen Parteien das Protokoll ausgeführt haben und die Ausgabe für alle Parteien vorteilhaft ist. Anderenfalls lernen die Teilnehmer nichts, nicht mal, welche anderen Parteien versucht haben, an der Berechnung teilzunehmen. Ein einzelner Nichtteilnehmer kann unabsichtlich die gesamte Berechnung abbrechen. Daher stellt sich die Frage: können NN Teilnehmer eine Berechnung ausführen, während K>NK > N Parteien anwesend sind, und bei der die Ausgabe nur von den Eingaben der NN Teilnehmer abhängt, während die Identität der anderen Teilnehmer unter den anwesenden Parteien versteckt wird? Dies sollte insbesondere dann gelten, wenn die restlichen Parteien nicht wissen, dass eine Berechnung im Gang ist. Wir verknüpfen diese Frage mit der theoretischen Machbarkeit von Anonymen Whistleblowing, bei dem eine einzelne Partei versucht, eine Nachricht preiszugeben, ohne dabei die eigene Identität zu offenbaren und ohne dass sich die anderen Parteien auf irgendeine besondere Art verhalten müssen. Leider zeigen wir dass keine Primitive sowohl Korrektheit und Anonymität mit überwältigender Wahrscheinlichkeit im asymptotischen Setting erreichen kann, selbst unter sehr starken Annahmen. Jedoch konstruieren wir eine heuristische Instantiierung im Fine-Grained setting mit überwältigender Korrektheit und jeder beliebigen Ziel-Anonymität. Unsere Ergebnisse liefern starke Grundlagen für die Untersuchung der Möglichkeit von Anonymen Nachrichtentransfer durch authentifizierte Kanäle, ein faszinierendes Ziel von dem wir glauben, dass es von grundlegendem Interesse ist. (Agrikola, Couteau, Maier, TCC 2022
    corecore